J. of Ramanujan Society of Mathematics and Mathematical Sciences

Vol. 9, No. 1 (2021), pp. 83-90
ISSN (Online): 2582-5461
ISSN (Print): 2319-1023

A SERIES EXPANSION FOR THE $b(s)$ BROUNCKER-RAMANUJAN FUNCTION

Mateus Alegri
Department of Mathematics (DMAI), University of Sergipe, 49500-000, Itabaiana-SE, BRAZIL
E-mail : allegri.mateus@gmail.com

(Received: Oct. 23, 2021 Accepted: Dec. 26, 2021 Published: Dec. 30, 2021)

Abstract: Our basic aim is to provide a power series representation for $b(s)$, $0<s<3$, the well-known function satisfying $b(s-1) b(s+1)=s^{2}$. We will do this by using integer compositions of n. In the last section, some properties involving the coefficients of s^{n} in the power series expansion of $b(s)$ are given, as well an expression for $\frac{4}{\pi}$.

Keywords and Phrases: Brouncker-Ramanujan function, Integer Compositions, Convergent series, Infinite Products, Functional Equations.
2020 Mathematics Subject Classification: 40B05, 40C15.

1. Introduction

In 1655 , the mathematician John Wallis concerning in the quadrature of the unit circle wrote a letter to William Brouncker in the attempt to solve a special problem. He want to find an arithmetical expression to

$$
\int_{0}^{1} \sqrt{1-x^{2}} d x
$$

wrote in contemporaneous mathematical language.
The answer of Brouncker is the $b(s)$ function satisfying $b(s-1) b(s+1)=s^{2}$. Writing using continued fraction, we have

