ON A COMBINATORIAL INTERPRETATION OF THE BISECTIONAL PENTAGONAL NUMBER THEOREM

Mircea Merca
Department of Mathematics, University of Craiova, Craiova, 200585, ROMANIA
Academy of Romanian Scientists, Ilfov 3, Sector 5, Bucharest, ROMANIA
E-mail: mircea.merca@profinfo.edu.ro

Dedicated to Prof. A.K. Agarwal on his $70^{\text {th }}$ Birth Anniversary

Abstract: In this paper, we invoke the bisectional pentagonal number theorem to prove that the number of overpartitions of the positive integer n into odd parts is equal to twice the number of partitions of n into parts not congruent to $0,2,12$, $14,16,18,20$ or $30 \bmod 32$. This result allows us to experimentally discover new infinite families of linear partition inequalities involving Euler's partition function $p(n)$. In this context, we conjecture that for $k>0$, the theta series
has non-negative coefficients.
Keyword and Phrases: Partitions, overpartitions, pentagonal number theorem.
2010 Mathematics Subject Classification: 05A17, 05A19.

1. Introduction

The $18^{\text {th }}$ century mathematician Leonard Euler discovered a simple formula for the limiting case $n \rightarrow \infty$ of the q-shifted factorial

$$
(a ; q)_{n}= \begin{cases}1, & \text { for } n=0 \\ (1-a)(1-a q) \cdots\left(1-a q^{n-1}\right), & \text { for } n>0\end{cases}
$$

