POLYNOMIALS YIELDING QUADRUPLES
 WITH PROPERTY D(k)

A.M.S. Ramasamy
Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R\&D
Institute of Science and Technology, Avadi, Chennai - 600062, INDIA
E-mail: ramasamyams@veltech.edu.in

Dedicated to Prof. A.K. Agarwal on his $70^{\text {th }}$ Birth Anniversary

Abstract

Let k be a natural number. Two integers α and β are said to have the property $\mathrm{D}(\mathrm{k})$ (resp. $\mathrm{D}(-\mathrm{k})$) if $\alpha \beta+\mathrm{k}$ (resp. $\alpha \beta-\mathrm{k}$) is a perfect square. The purpose of this paper is identification of polynomials producing quadruples with property $\mathrm{D}(\mathrm{k})$ for certain values of k . Incidentally the paper brings out an attribute of Ramanujan number 1729 in contributing two quadruples of polynomials with property $\mathrm{D}(\mathrm{k})$.

Keyword and Phrases: Property p_{k}, extendable set, $P_{r, k}$ sequence, Pell's equation, quadruple with Diophantine property, Ramanujan number.

2010 Mathematics Subject Classification: 11B37, 11B83, 11D09.

1. Introduction

The Greek mathematician Diophantus raised the question as to four numbers such that the product of any two increased by a given number shall be a square. M.Gardner [11] asked for a fifth number that can be added to the set $\{1,3,8,120\}$ without destroying the property that the product of any two integers is one less than a perfect square. For historical details of the problem, one may refer to J.Roberts [24] and the author [19].

It is seen that the polynomials $\mathrm{x}, \mathrm{x}+2,4 \mathrm{x}+4$ have the property that the product of any two of them increased by 1 is a square. A fourth polynomial that works with these three is $16 x^{3}+48 x^{2}+44 x+12$. B.W.Jones $[12,13]$ considered polynomials for this problem. He found all polynomials that work with x and $\mathrm{x}+2$. He defined

