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1. Introduction, Notations and Definitions
The q-shifted factorial is defined by,

(a; q)n =

{
1, n = 0
(1− a)(1− aq)...(1− aqn−1), n ≥ 1

Also,

(a; q)−n =
qn(n+1)/2

(−a)n(q/a; q)n

The generalized basic hypergeometric series is given by,

rΦr−1

[
a1, a2, ..., ar; q; z
b1, b2, ..., br−1

]
=

∞∑
n=0

(a1; q)n(a2; q)n...(ar; q)nz
n

(b1; q)n(b2; q)n...(br−1; q)n(q; q)n
,

where max. (|q|, |z|) < 1.
A generalized bilateral basic hypergeometric series is defined by,

rΨr

[
a1, a2, ..., ar; q; z
b1, b2, ..., br

]
=

∞∑
n=−∞

(a1; q)n(a2; q)n...(ar; q)nz
n

(b1; q)n(b2; q)n...(br; q)n
,


