A NOTE ON FRACTIONAL DERIVATIVE AND ITS APPLICATIONS

Satya Prakash Singh, Vijay Yadav* and Priyanka Singh
Department of Mathematics
T.D.P.G. College, Jaunpur - 222002, U.P., INDIA.
E-mail: snsp39@gmail.com, rps2006lari@gmail.com
*Department of Mathematics and Statistics
S.P.D.T. College, Andehri (E), Mumbai-400059, INDIA
E-mail: vijaychottu@yahoo.com

Dedicated to Prof. K. Srinivasa Rao on his $75^{\text {th }}$ Birth Anniversary

Abstract: In this paper, starting from the historical developments of fractional calculus, certain results regarding fractional calculus have been discussed. These results have been further used to establish transformation formulae for ordinary hypergeometric series as well as for q-hypergeometric series.
Keywords and Phrases: Fractional derivative, fractional q-derivative, transformation formula, hypergeometric series, q-hypergeometric series.
2010 Mathematics Subject Classification: Primary 11A55, 33D15, 33D90; Secondary 11F20, 33F05.

1. Introduction, Notations and Definitions

The generalized hypergeometric function ${ }_{p} F_{q}(x)$ is defined as

$$
{ }_{p} F_{q}\left[\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{p} ; x \tag{1.1}\\
b_{1}, b_{2}, \ldots, b_{q}
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \ldots\left(a_{p}\right)_{k} x^{k}}{\left(b_{1}\right)_{k}\left(b_{2}\right)_{k} \ldots\left(b_{q}\right)_{k} k!} .
$$

When $q=p$, this series converges for $|x|<\infty$, but when $p=q+1$, convergence occurs for $|x|<1$. In (1.1) the Pochhammer symbol $(a)_{k}$ is defined by $(a)_{0}=1$ and for $k \geq 1$ by $(a)_{k}=a(a+1) \ldots(a+k-1)$. However, for all integers k we write simply $(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)}$.
We shall also use the notation,

