A DIRECT PROOF OF THE AAB-BAILEY LATTICE

Caihuan Zhang and Zhizheng Zhang Department of Mathematics, Luoyang Normal University, Luoyang 471934, P. R. China E-mail: zhcaihuan@163.com, zhzhzhang-yang@163.com

Dedicated to Prof. K. Srinivasa Rao on his $75^{\text {th }}$ Birth Anniversary

Abstract: The purpose of this paper is to give a direct proof of AAB-Bailey lattice.

Keywords and Phrases: Bailey pair, identity, AAB Bailey lattice.
2010 Mathematics Subject Classification: 33D15.

1. Introduction

First recall some standard basic hypergeometric notation [8]. For two indeterminate q and x with $|q|<1$, let

$$
(x ; q)_{\infty}==\prod_{n=1}^{\infty}\left(1-x q^{n-1}\right),
$$

which can be used to define the following shifted factorial:

$$
(x ; q)_{n}=\frac{(x ; q)_{\infty}}{\left(x q^{n} ; q\right)_{\infty}}
$$

The multiple parameter form is abbreviated as

$$
\left(x_{1}, x_{2}, \cdots, x_{k} ; q\right)_{n}=\left(x_{1} ; q\right)_{n}\left(x_{2} ; q\right) \cdots\left(x_{k} ; q\right)_{n}
$$

The basic hypergeometric series ${ }_{r} \phi_{s}$ is defined by

$$
{ }_{r} \phi_{s}\left[\left.\begin{array}{ccc}
\alpha_{1}, & \ldots, & \alpha_{r} \\
\beta_{1}, & \ldots, & \beta_{s}
\end{array} \right\rvert\, q, z\right]=\sum_{n=0}^{\infty} \frac{\left(\alpha_{1}, \alpha_{2}, \cdots \alpha_{r} ; q\right)_{n}}{\left(q, \beta_{1}, \cdots, \beta_{s} ; q\right)_{n}}\left\{(-1)^{n} q^{\binom{n}{2}}\right\}^{1+s-r} z^{n} .
$$

