

**CHARACTERIZATIONS OF δ_p -NORMAL SPACE BY
GENERALIZED VERSION OF δ_p -OPEN
SET IN FUZZY m -SPACE**

Anjana Bhattacharyya

Department of Mathematics,
Victoria Institution (College),
78 B, A.P.C. Road Kolkata - 700009, INDIA
E-mail : anjanabhattacharyya@hotmail.com

(Received: Oct. 08, 2025 Accepted: Dec. 16, 2025 Published: Dec. 30, 2025)

Abstract: In this paper we characterize fuzzy m - δ_p -normal space [7] by $fmg\delta_p$ -open set, the class of which is strictly larger than that of fuzzy m -open set [2]. Also here we introduce fuzzy quasi (m, m_1) - δ -preclosed, almost $f(m, m_1)g\delta_p$ -closed and $fmg\delta_p$ - $fmg\delta_p$ -closed functions between two fuzzy m -spaces and establish the interrelations of these functions. The applications of these functions on fuzzy m - δ_p -normal space are shown here.

Keywords and Phrases: Fuzzy m -closed set, fuzzy m - δ -preclosed set, $fmg\delta_p$ -closed set, fuzzy m - δ_p -normal space, fuzzy strongly (m, m_1) - δ -preclosed function, $fmg\delta_p$ - $fmg\delta_p$ -closed function, fuzzy m -normal space.

2020 Mathematics Subject Classification: Primary 54A40, Secondary 03E72.

1. Introduction

Alimohammady and Roohi introduced fuzzy minimal structure as follows : A family \mathcal{M} of fuzzy sets in a non-empty set X is said to be a fuzzy minimal structure on X if $\alpha 1_X \in \mathcal{M}$ for every $\alpha \in [0, 1]$ [1]. However a more general version of it is introduced in [8, 10] as follows : A family \mathcal{F} of fuzzy sets in a non-empty set X is a fuzzy minimal structure on X if $0_X \in \mathcal{F}$ and $1_X \in \mathcal{F}$. In this paper, we use this notion of fuzzy minimal structure. In [2], we introduced fuzzy minimal space (fuzzy m -space, for short) as follows : Let X be a non-empty set and $m \subset I^X$.