SOME RESULTS IN CONNECTION WITH SUM AND PRODUCT THEOREMS RELATED TO GENERALIZED RELATIVE ORDER (α, β) AND GENERALIZED RELATIVE TYPE (α, β) OF ENTIRE FUNCTIONS IN THE UNIT DISC

Tanmay Biswas and Chinmay Biswas*
Rajbari, Rabindrapally, R. N. Tagore Road, Krishnagar, Nadia - 741101, West Bengal, INDIA
E-mail : tanmaybiswas_math@rediffmail.com
*Department of Mathematics, Nabadwip Vidyasagar College, Nabadwip, Nadia - 741302, West Bengal, INDIA
E-mail : chinmay.shib@gmail.com

(Received: Jul. 23, 2022 Accepted: Oct. 21, 2022 Published: Dec. 30, 2022)
Abstract: Orders and types of entire functions have been actively investigated by many authors. In this paper, we investigate some basic properties in connection with sum and product of generalized relative order (α, β), generalized relative type (α, β) and generalized relative weak type (α, β) of entire functions in the unit disc D with respect to another entire function where α, β are continuous non-negative functions on ($-\infty,+\infty$).
Keywords and Phrases: Entire function, growth, composition, generalized relative order (α, β), generalized relative type (α, β), generalized relative weak type (α, β).
2020 Mathematics Subject Classification: 30D35, 30D30, 30D20.

1. Introduction and Definitions

Let $h(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ be analytic in the unit disc $U=\{z:|z|<1\}$ and $M_{h}(r)$ be the maximum of $|h(z)|$ on $|z|=r$. In [12], Sons defined the order $\varrho(h)$ and the
lower order $\lambda(h)$ as

$$
\varrho(h)=\limsup _{r \rightarrow 1} \frac{\log ^{[2]} M_{h}(r)}{-\log (1-r)} \text { and } \lambda(h)=\liminf _{r \rightarrow 1} \frac{\log ^{[2]} M_{h}(r)}{-\log (1-r)}
$$

However during the last several years many authors have investigated different properties of analytic function in the unit disc U and derived so many great results e.g. $[7,8,9,10,11]$. The notion of relative order was first introduced by Bernal [2, $3]$.

An entire function h is said to have Property (D), if for any $\delta>1, \gamma>0$ and for all $r(0<r<1)$ sufficiently close to 1 ,

$$
\left(M_{h}\left(\beta\left(\frac{1}{1-r}\right)^{\gamma}\right)\right)^{2} \leq M_{h}\left(\left(\beta\left(\frac{1}{1-r}\right)^{\gamma}\right)^{\delta}\right)
$$

Now let L be a class of continuous non-negative functions α defined on $(-\infty, \infty)$ such that $\alpha(x)=\alpha\left(x_{0}\right) \geq 0$ for $x \leq x_{0}$ with $\alpha(x) \uparrow \infty$ as $x \rightarrow \infty$. Further we assume that throughout the present paper $\alpha, \beta \in L$. Now considering this, Biswas et al. [4] have introduced the definitions of the generalized order (α, β) and generalized lower order (α, β) of an entire function h in the unit disc U which are as follows:
Definition 1. [4] The generalized order (α, β) denoted by $\varrho_{(\alpha, \beta)}[h]$ and generalized lower order (α, β) denoted by $\lambda_{(\alpha, \beta)}[h]$ of an entire function h in the unit disc U are defined as:

$$
\varrho_{(\alpha, \beta)}[h]=\limsup _{r \rightarrow 1} \frac{\alpha\left(M_{h}(r)\right)}{\beta\left((1-r)^{-1}\right)} \text { and } \lambda_{(\alpha, \beta)}[h]=\liminf _{r \rightarrow 1} \frac{\alpha\left(M_{h}(r)\right)}{\beta\left((1-r)^{-1}\right)} .
$$

Now for making some progresses about the works of relative order, one can introduce the definitions of generalized relative order (α, β) and generalized relative lower order (α, β) of an entire functions in the unit disc U with respect to another entire function in the following way:
Definition 2. Let h and k be entire functions defined in the unit disc U, the quantities $\varrho_{(\alpha, \beta)}[h]_{k}$ and $\lambda_{(\alpha, \beta)}[h]_{k}$ respectively called generalized relative order (α, β) and generalized relative lower order (α, β) of h with respect to k, are defined as:

$$
\varrho_{(\alpha, \beta)}[h]_{k}=\limsup _{r \rightarrow 1} \frac{\alpha\left(M_{k}^{-1}\left(M_{h}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)} \text { and } \lambda_{(\alpha, \beta)}[h]_{k}=\liminf _{r \rightarrow 1} \frac{\alpha\left(M_{k}^{-1}\left(M_{h}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)}
$$

Further if $\varrho_{(\alpha, \beta)}[h]_{k}$ and $\lambda_{(\alpha, \beta)}[h]_{k}$ are the same, then we call h as a function of regular generalized relative growth (α, β) with respect to k. Otherwise, we call h as a function of irregular generalized relative growth (α, β) with respect to k.

Now in order to refine the growth scale namely the generalized relative order (α, β), we introduce the definitions of another growth indicators, called generalized relative type (α, β) and generalized relative lower type (α, β) respectively of an entire function h with respect to an entire function k in the unit disc U which are as follows:

Definition 3. Let h and k be entire functions defined in the unit disc U with h have finite positive generalized relative order (α, β) with respect to k (i.e., $0<$ $\left.\varrho_{(\alpha, \beta)}[h]_{k}<\infty\right)$, then the quantities $\sigma_{(\alpha, \beta)}[h]_{k}$ and $\bar{\sigma}_{(\alpha, \beta)}[h]_{k}$ respectively called generalized relative type (α, β) and generalized relative lower type (α, β) of h with respect to k, are defined as:

$$
\begin{aligned}
& \sigma_{(\alpha, \beta)}[h]_{k}=\limsup _{r \rightarrow 1} \frac{\exp \left(\alpha\left(M_{k}^{-1}\left(M_{h}(r)\right)\right)\right)}{\left(\beta\left((1-r)^{-1}\right)\right)^{\rho_{(\alpha, \beta)}[h]_{k}}} \text { and } \\
& \bar{\sigma}_{(\alpha, \beta)}[h]_{k}=\liminf _{r \rightarrow 1} \frac{\exp \left(\alpha\left(M_{k}^{-1}\left(M_{h}(r)\right)\right)\right)}{\left(\beta\left((1-r)^{-1}\right)\right)^{\rho_{(\alpha, \beta)}[h]_{k}}} .
\end{aligned}
$$

It is obvious that $0 \leq \bar{\sigma}_{(\alpha, \beta)}[h]_{k} \leq \sigma_{(\alpha, \beta)}[h]_{k} \leq \infty$.
Analogously, to determine the relative growth of two entire functions in the unit disc U having same non zero finite generalized relative lower order (α, β), one can introduce the definitions of generalized relative weak type (α, β) denoted by $\tau_{(\alpha, \beta)}[h]_{k}$ and generalized relative upper weak type (α, β) denoted by $\bar{\tau}_{(\alpha, \beta)}[h]_{k}$ of an entire function h with respect to entire function k in the unit disc U in the following way:
Definition 4. Let h and k be entire functions defined in the unit disc U with h have finite positive generalized relative lower order (α, β) (i.e., $\left.0<\lambda_{(\alpha, \beta)}[h]_{k}<\infty\right)$, then the quantities $\tau_{(\alpha, \beta)}[h]_{k}$ and $\bar{\tau}_{(\alpha, \beta)}[h]_{k}$ respectively called generalized relative weak type (α, β) and generalized relative upper weak type (α, β) of h with respect to k, are defined as:

$$
\begin{aligned}
& \tau_{(\alpha, \beta)}[h]_{k}=\liminf _{r \rightarrow 1} \frac{\exp \left(\alpha\left(M_{k}^{-1}\left(M_{h}(r)\right)\right)\right)}{\left(\beta\left((1-r)^{-1}\right)\right)^{\lambda_{(\alpha, \beta)}\left[h_{k}\right.}} \text { and } \\
& \bar{\tau}_{(\alpha, \beta)}[h]_{k}=\limsup _{r \rightarrow 1} \frac{\exp \left(\alpha\left(M_{k}^{-1}\left(M_{h}(r)\right)\right)\right)}{\left(\beta\left((1-r)^{-1}\right)\right)^{\lambda(\alpha, \beta)}[h]_{k}} .
\end{aligned}
$$

It is obvious that $0 \leq \tau_{(\alpha, \beta)}[h]_{k} \leq \bar{\tau}_{(\alpha, \beta)}[h]_{k} \leq \infty$.
We finally remind the following definition which is needed in the sequel.
Definition 5. Let h and k be entire functions defined in the unit disc U. Then
they are said to have mutually Property (X) in U if for all $r, 0<r<1$, sufficiently close to 1 ,

$$
M_{h \cdot k}(r)>M_{h}(r) \quad \text { and } \quad M_{h \cdot k}(r)>M_{k}(r)
$$

hold simultaneously.
Here, in this paper, our aim is to investigate some basic properties of entire functions in the unit disc U connected to generalized relative order (α, β), generalized relative type (α, β) and generalized relative weak type (α, β) with respect to another entire function under somewhat different conditions. In this paper, we suppose that all the growth indicators are nonzero finite. We do not explain the standard definitions and notations in the theory of entire functions as those are available in [1], [5], [6], [13] and [14].

2. Main Results

In this section, we present the main results of the paper.
Theorem 1. Let h_{1}, h_{2} and k_{1} be entire functions defined in the unit disc U such that at least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}. Then

$$
\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \leq \max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\} .
$$

The equality holds when $\lambda_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{j}\right]_{k_{1}}$ with at least h_{j} is of regular generalized relative growth (α, β) with respect to k_{1} where $i, j=1,2$ and $i \neq j$.
Proof. If $\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=0$ then theorem is trivially true. So we take $\lambda_{(\alpha, \beta)}\left[h_{1} \pm\right.$ $\left.h_{2}\right]_{k_{1}}>0$. Clearly $\lambda_{(\alpha, \beta)}\left[h_{k}\right]_{k_{1}}$ is finite for $k=1,2$. Also let $\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}=\Delta$ and h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}. Now for any arbitrarily chosen $\eta>0$ from the definition of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$, we get for a sequence of r tending to 1 that

$$
\begin{gather*}
M_{h_{1}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left[\left(\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right) \beta\left((1-r)^{-1}\right)\right]\right) \\
i . e ., M_{h_{1}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left[(\Delta+\eta) \beta\left((1-r)^{-1}\right)\right]\right) \tag{2.1}
\end{gather*}
$$

Also for any arbitrarily chosen $\eta>0$ and from the definition of $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}(=$ $\left.\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right)$, we obtain for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{gather*}
M_{h_{2}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left[\left(\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\eta\right) \beta\left((1-r)^{-1}\right)\right]\right) \\
i . e ., M_{h_{2}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left[(\Delta+\eta) \beta\left((1-r)^{-1}\right)\right]\right) \tag{2.2}
\end{gather*}
$$

So from (2.1) and (2.2), we have for a sequence of r tending to 1 that

$$
M_{h_{1} \pm h_{2}}(r)<2 M_{k_{1}}\left(\alpha^{-1}\left[(\Delta+\eta) \beta\left((1-r)^{-1}\right)\right]\right)
$$

$$
\begin{aligned}
& M_{h_{1} \pm h_{2}}(r)<2 M_{k_{1}}\left(\alpha^{-1}\left[\log \left(\exp \beta\left((1-r)^{-1}\right)\right)^{(\Delta+\eta)}\right]\right) \text {. } \\
& \text { i.e., } M_{h_{1} \pm h_{2}}(r)<M_{k_{1}}\left(\alpha^{-1}\left[\log \left(\exp \beta\left((1-r)^{-1}\right)\right)^{(\Delta+2 \varepsilon)}\right]\right) \\
& \quad \text { i.e., } \frac{\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1} \pm h_{2}}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)}<(\Delta+2 \varepsilon) \text {. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
\liminf _{r \rightarrow 1} \frac{\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1} \pm h_{2}}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)} & \leq \Delta+2 \varepsilon . \\
\text { i.e., } \lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} & \leq \Delta+2 \varepsilon .
\end{aligned}
$$

Since $\eta>0$ is arbitrary, we get above

$$
\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \leq \Delta=\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\} .
$$

Similarly, if we take h_{1} as a function of regular generalized relative growth (α, β) with respect to k_{1} or both h_{1} and h_{2} are of regular generalized relative growth (α, β) with respect to k_{1}, then we can verify that

$$
\begin{equation*}
\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \leq \Delta=\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\} . \tag{2.3}
\end{equation*}
$$

Moreover without loss of any generality, let $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ and $h=h_{1} \pm$ h_{2}. Then in view of (2.3) we get that $\lambda_{(\alpha, \beta)}[h]_{k_{1}} \leq \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. As, $h_{2}= \pm\left(h-h_{1}\right)$ and in this case we obtain that $\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} \leq \max \left\{\lambda_{(\alpha, \beta)}[h]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}\right\}$. As we assume that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, therefore we have $\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} \leq \lambda_{(\alpha, \beta)}[h]_{k_{1}}$ and
hence $\lambda_{(\alpha, \beta)}[h]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}=\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}$. Therefore, $\lambda_{(\alpha, \beta)}\left[h_{1} \pm\right.$ $\left.h_{2}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}} \mid i=1,2$ provided $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. Thus the theorem follows.
Theorem 2. Let h_{1}, h_{2}, k_{1} be all entire functions defined in the unit disc U such that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ and $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ exist. Then

$$
\varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \leq \max \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\} .
$$

The equality holds when $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$.
We omit the proof of Theorem 2 as easily it can be derived in view of Theorem 1.

Theorem 3. Let h_{1}, k_{1}, k_{2} be all entire functions defined in the unit disc U such that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ and $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ exist. Then

$$
\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \geq \min \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\} .
$$

The equality holds when $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$.
Proof. If $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\infty$ then the theorem is trivially true. So we suppose that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}<\infty$. We can clearly assume that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{k}}$ is finite for $k=1,2$. Also let $\Psi=\min \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}$. Now for any arbitrary $\eta>0$ from the definition of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{k}}$ where $k=1,2$, we have for all $r, 0<r<1$, sufficiently close to 1

$$
\begin{gathered}
M_{k_{k}}\left(\alpha^{-1}\left[\left(\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{k}}-\eta\right) \beta\left((1-r)^{-1}\right)\right]\right) \leq M_{h_{1}}(r) \\
i . e, M_{k_{k}}\left(\alpha^{-1}\left[(\Psi-\eta) \beta\left((1-r)^{-1}\right)\right]\right) \leq M_{h_{1}}(r)
\end{gathered}
$$

Hence, we obtain from above for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{gathered}
M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left[(\Psi-\eta) \beta\left((1-r)^{-1}\right)\right]\right) \\
<M_{k_{1}}\left(\alpha^{-1}\left[(\Psi-\eta) \beta\left((1-r)^{-1}\right)\right]\right)+M_{k_{2}}\left(\alpha^{-1}\left[(\Psi-\eta) \beta\left((1-r)^{-1}\right)\right]\right) \\
\text { i.e., } M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left[(\Psi-\eta) \beta\left((1-r)^{-1}\right)\right]\right)<2 M_{h_{1}}(r) \\
\text { i.e., } M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left[\log \left(\exp \beta\left((1-r)^{-1}\right)\right)^{(\Psi-\eta)}\right]\right)<2 M_{h_{1}}(r) \\
\text { i.e., } \frac{1}{2} M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left[\log \left(\exp \beta\left((1-r)^{-1}\right)\right)^{(\Psi-\eta)}\right]\right)<M_{h_{1}}(r) \\
\text { i.e., } M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left[\log \left(\exp \beta\left((1-r)^{-1}\right)\right)^{(\Psi-2 \varepsilon)}\right]\right)<M_{h_{1}}(r) \\
\text { i.e., } \frac{\alpha\left(M_{k_{1} \pm k_{2}}^{-1}\left(M_{h_{1}}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)}>\Psi-2 \varepsilon
\end{gathered}
$$

Since $\eta>0$ is arbitrary, we get from above that

$$
\begin{equation*}
\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \geq \Psi=\min \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\} \tag{2.4}
\end{equation*}
$$

Now without loss of any generality, we can take that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and $k=k_{1} \pm k_{2}$. Then in view of (2.4) we get that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k} \geq \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$. Further, $k_{1}=\left(k \pm k_{2}\right)$ and in this case we obtain that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \geq$ $\min \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}$. As we assume that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, therefore we have $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \geq \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k}$ and hence $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\min \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}$. Therefore, $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=$ $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}} \mid i=1,2$ provided $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$. Thus the theorem follows.
Theorem 4. Let h_{1}, k_{1}, k_{2} be all entire functions defined in the unit disc U such that h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2}. Then

$$
\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \geq \min \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\} .
$$

The equality holds when $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{j}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{j} where $i=j=1,2$ and $i \neq j$.

We omit the proof of Theorem 4 as it can be easily derived in view of Theorem 3.

Theorem 5. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U, then

$$
\begin{aligned}
& \varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}} \\
\leq & \max \left[\min \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}, \min \left\{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right]
\end{aligned}
$$

when the following two conditions holds:
(i) $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{j}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{j} for $i=1,2, j=1,2$ and $i \neq j$; and
(ii) $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{i}}<\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{j}}$ with at least h_{2} is of regular generalized relative growth (α, β) with respect to k_{j} for $i=1,2, j=1,2$ and $i \neq j$.
The equality holds when both $\varrho_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{j}\right]_{k_{1}}$ and $\varrho_{(\alpha, \beta)}\left[h_{i}\right]_{k_{2}}<\varrho_{(\alpha, \beta)}\left[h_{j}\right]_{k_{2}}$ hold for $i=1,2 ; j=1,2$ and $i \neq j$.
Proof. Let both the conditions (i) and (ii) hold. Then from Theorem 2 and Theorem 4, we get

$$
\begin{align*}
& \max \left[\min \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}, \min \left\{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right] \\
& =\max \left[\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1} \pm k_{2}}\right] \\
& \geq \varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}} . \tag{2.5}
\end{align*}
$$

As $\varrho_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{j}\right]_{k_{1}}$ and $\varrho_{(\alpha, \beta)}\left[h_{i}\right]_{k_{2}}<\varrho_{(\alpha, \beta)}\left[h_{j}\right]_{k_{2}}$ hold simultaneously for $i=1,2 ; j=1,2$ and $i \neq j$, we obtain that

$$
\begin{aligned}
& \text { either } \min \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}>\min \left\{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\} \text { or } \\
& \min \left\{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}>\min \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\} \text { holds. }
\end{aligned}
$$

Hence from the conditions (i) and (ii), we have from above that
either $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1} \pm k_{2}}$ or $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1} \pm k_{2}}>\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}$
which is the condition for holding equality in (2.5). Hence the theorem follows.
Theorem 6. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U, then

$$
\begin{aligned}
& \lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}} \\
\geq & \min \left[\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}, \max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right]
\end{aligned}
$$

when the following two conditions hold:
(i) $\lambda_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{j}\right]_{k_{1}}$ with at least h_{j} is of regular generalized relative growth (α, β) with respect to k_{1} for $i=1,2, j=1,2$ and $i \neq j$; and
(ii) $\lambda_{(\alpha, \beta)}\left[h_{i}\right]_{k_{2}}>\lambda_{(\alpha, \beta)}\left[h_{j}\right]_{k_{2}}$ with at least h_{j} is of regular generalized relative growth (α, β) with respect to k_{2} for $i=1,2, j=1,2$ and $i \neq j$.
The sign of equality holds when both the conditions $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{j}}$ and $\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{i}}<\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{j}}$ hold for $i=1,2 ; j=1,2$ and $i \neq j$.
Proof. Let both the conditions (i) and (ii) hold. Then from Theorem 1 and Theorem 3, we get that

$$
\begin{align*}
& \min \left[\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}, \max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right] \\
& =\min \left[\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{2}}\right] \\
& \leq \lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}} \tag{2.6}
\end{align*}
$$

Since $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{j}}$ and $\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{i}}<\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{j}}$ hold simultaneously for $i=1,2 ; j=1,2$ and $i \neq j$, we get that

$$
\begin{aligned}
& \text { either } \max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}<\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\} \text { or } \\
& \quad \max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}<\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\} \text { holds. }
\end{aligned}
$$

Since conditions (i) and (ii) hold, we get from above that

$$
\text { either } \lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{2}} \text { or } \lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{2}}<\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}
$$

which is the condition for holding the equality in (2.6).
This completes the theorem.
Theorem 7. Let h_{1}, h_{2}, k_{1} be all entire functions defined in the unit disc U such that at least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1} where k_{1} satisfy the Property (D) and h_{1}, h_{2} satisfy the Property (X), then

$$
\lambda_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}
$$

Proof. Suppose that $\lambda_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}>0$. Otherwise if $\lambda_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=0$ then the theorem is trivially true. Let us consider that h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}. Also let $\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}$ $=\Delta$. We can clearly assume that $\lambda_{(\alpha, \beta)}\left[h_{k}\right]_{k_{1}}$ is finite for $k=1,2$. Now for any arbitrarily chosen $\frac{\eta}{2}>0$, it follows from the definition of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$, for a sequence of r tending to 1 that

$$
M_{h_{1}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left[\left(\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right)
$$

$$
\begin{equation*}
\text { i.e., } M_{h_{1}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left[\left(\Delta+\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right) \text {. } \tag{2.7}
\end{equation*}
$$

Also for any arbitrarily chosen $\frac{\eta}{2}>0$, we obtain from the definition of $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ ($=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$), for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{gather*}
M_{h_{2}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left[\left(\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right) \\
\text { i.e., } M_{h_{2}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left[\left(\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right) \\
\text { i.e., } M_{h_{2}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left[\left(\Delta+\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right) . \tag{2.8}
\end{gather*}
$$

Observe that

$$
\frac{\Delta+\eta}{\Delta+\frac{\eta}{2}}>1 .
$$

Therefore we consider the expression $\frac{\log \left[\alpha^{-1}\left[(\Delta+\eta) \beta\left((1-r)^{-1}\right)\right]\right]}{\log \left[\alpha^{-1} 1\left[\left(+\frac{n}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right]}$ for all $r, 0<r<1$, sufficiently close to 1 . Thus for any $\delta>1$, it follows from the above that there is r_{0} such that, $0<r_{0}<1$, for which

$$
\begin{equation*}
\frac{\log \left[\alpha^{-1}\left[(\Delta+\eta) \beta\left(r_{0}\right)\right]\right]}{\log \left[\alpha^{-1}\left[\left(\Delta+\frac{\eta}{2}\right) \beta\left(r_{0}\right)\right]\right]}=\delta . \tag{2.9}
\end{equation*}
$$

Hence from (2.7) and (2.8), we have for a sequence of r tending to 1 that

$$
M_{h_{1} \cdot h_{2}}(r)<\left[M_{k_{1}}\left(\alpha^{-1}\left[\left(\Delta+\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right)\right]^{2} .
$$

Now we obtain from above for a sequence of r tending to 1 that

$$
M_{h_{1} \cdot h_{2}}(r)<M_{k_{1}}\left(\left(\alpha^{-1}\left[\left(\Delta+\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right)^{\delta}\right),
$$

since k_{1} has the Property (D) and $\delta>1$. Therefore from (2.9), we get from above for a sequence of r tending to 1 that

$$
M_{h_{1} \cdot h_{2}}(r)<M_{k_{1}}\left(\alpha^{-1}\left[(\Delta+\eta) \beta\left((1-r)^{-1}\right)\right]\right) .
$$

Since $\eta>0$ is arbitrary, we get from above that

$$
\lambda_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}} \leq \Delta=\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\} .
$$

Similarly, if we take h_{1} as a function of regular generalized relative growth (α, β) with respect to k_{1} or both h_{1} and h_{2} as functions of regular generalized relative growth (α, β) with respect to k_{1}, then we can easily show that

$$
\lambda_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}} \leq \Delta=\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\} .
$$

Let us now show that $\lambda_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}} \geq \Delta$. Since h_{1}, h_{2} satisfy the Property (X), we have $M_{h_{1} \cdot h_{2}}(r)>M_{h_{1}}(r)$ for all $r, 0<r<1$, sufficiently close to 1 and therefore

$$
\frac{\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1} \cdot h_{2}}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)}>\frac{\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1}}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)}
$$

since $M_{k_{1}}^{-1}(r)$ is an increasing function of r. So $\lambda_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}} \geq \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ and similarly, $\lambda_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}} \geq \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$.

This completes the proof.
Now we state the next theorem which can be easily followed in view of Theorem 7 and so its proof is omitted.
Theorem 8. Let h_{1}, h_{2}, k_{1} be all entire functions defined in the unit disc U such that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ exist where k_{1} satisfies the Property (D) and h_{1}, h_{2} satisfy the Property (X), then

$$
\varrho_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\max \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}
$$

Theorem 9. Let h_{1}, k_{1}, k_{2} be all entire functions defined in the unit disc U such that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ exist where $k_{1} \cdot k_{2}$ satisfies the Property (D) and k_{1}, k_{2} satisfy the Property (X), then

$$
\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\min \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}
$$

Proof. Suppose that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}<\infty$. Otherwise if $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\infty$ then the theorem is trivially true. Also let $\min \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}=\Psi$. We can clearly assume that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{k}}$ is finite for $k=1,2$. Now for any arbitrary $\eta>0$, with $\eta<\Psi$, we obtain for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{gathered}
M_{k_{k}}\left(\alpha^{-1}\left[\left(\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{k}}-\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right) \leq M_{h_{1}}(r) \\
\quad \text { i.e., } M_{k_{k}}\left(\alpha^{-1}\left[\left(\Psi-\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right) \leq M_{h_{1}}(r)
\end{gathered}
$$

Hence we have

$$
\begin{gathered}
M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left[\left(\Psi-\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right)<\left[M_{h_{1}}(r)\right]^{2}, \\
\text { i.e., }\left[M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left[\left(\Psi-\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right)\right]^{\frac{1}{2}}<M_{h_{1}}(r), \\
\text { i.e., }\left[M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left[\log \left(\exp \beta\left((1-r)^{-1}\right)\right)^{\left(\Psi-\frac{\eta}{2}\right)}\right]\right)\right]^{\frac{1}{2}}<M_{h_{1}}(r) .
\end{gathered}
$$

We have from above for all $r, 0<r<1$, sufficiently close to 1 that

$$
M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left[\log \left(\exp \beta\left((1-r)^{-1}\right)\right)^{\left(\Psi-\frac{\eta}{2}\right)}\right]\right)^{\frac{1}{\delta}}<M_{h_{1}}(r)
$$

since $k_{1} \cdot k_{2}$ has the Property (D) and $\delta>1$.
Therefore taking $\delta \rightarrow 1+$, we have

$$
M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left[\left(\Psi-\frac{\eta}{2}\right) \beta\left((1-r)^{-1}\right)\right]\right)<M_{h_{1}}(r) .
$$

It follows from above for all $r, 0<r<1$, sufficiently close to 1 that

$$
\frac{\alpha\left(M_{k_{1} \cdot k_{2}}^{-1}\left(M_{h_{1}}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)}>\Psi-\frac{\eta}{2} .
$$

Since $\eta>0$ is arbitrary, from above we get that

$$
\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}} \geq \Psi=\min \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\} .
$$

Let us now show that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}} \leq \Psi$. Since k_{1}, k_{2} satisfy the Property (X), we have $M_{k_{1} \cdot k_{2}}(r)>M_{k_{1}}(r)$ for all $r, 0<r<1$, sufficiently close to 1 and therefore $M_{k_{1} \cdot k_{2}}^{-1}(r)<M_{k_{1}}^{-1}(r)$. Hence

$$
\frac{\alpha\left(M_{k_{1} \cdot k_{2}}^{-1}\left(M_{h_{1}}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)}<\frac{\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1}}(r)\right)\right)}{\beta\left((1-r)^{-1}\right)} .
$$

So $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}} \leq \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ and similarly, $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}} \leq \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$.
Hence the theorem follows.
Theorem 10. Let h_{1}, k_{1}, k_{2} be all entire functions defined in the unit disc U such that h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2} and $k_{1} \cdot k_{2}$ satisfy the Property (D) and k_{1}, k_{2} satisfy the Property (X), then

$$
\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\min \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\} .
$$

We omit the proof of Theorem 10 as it can easily be followed from Theorem 9.
Now we state the next two theorems without their proofs as one can easily derived their proofs from Theorem 5 and Theorem 6 respectively.

Theorem 11. Let h_{1}, h_{2}, k_{1}, k be all entire functions defined in the unit disc U such that $k_{1} \cdot k_{2}$ be satisfies the Property (D), h_{1}, h_{2} satisfy the Property (X) and k_{1}, k_{2} satisfy the Property (X), then,

$$
\begin{aligned}
& \varrho_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1} \cdot k_{2}} \\
= & \max \left[\min \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}, \min \left\{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right],
\end{aligned}
$$

when the following two conditions hold:
(i) h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2}; and
(ii) h_{2} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2}.
Theorem 12. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U such that $k_{1} \cdot k_{2}, k_{1}, k_{2}$ be satisfy the Property (D), h_{1}, h_{2} satisfy the Property (X) and k_{1}, k_{2} satisfy the Property (X), then,

$$
\begin{aligned}
& \lambda_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1} \cdot k_{2}} \\
= & \min \left[\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}, \max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right]
\end{aligned}
$$

when the following two conditions hold:
(i) At least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}; and
(ii) At least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{2}.

Next we find out the sum and product related theorems with generalized relative type (α, β) (respectively generalized relative lower type (α, β)) and generalized relative weak type (α, β) of an entire functions in the unit disc U with respect to an entire function taking into consideration of the above theorems.
Theorem 13. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U such that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$, $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$ are all non-zero and finite.
(A) If $\varrho_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{j}\right]_{k_{1}}$ for $i, j=1,2$ and $i \neq j$, then

$$
\sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}} \text { and } \bar{\sigma}_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}
$$

(B) If $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{j}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{j} for $i, j=1,2$ and $i \neq j$, then

$$
\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}} \text { and } \bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}} .
$$

(C) Assume the functions h_{1}, h_{2}, k_{1} and k_{2} satisfy the following conditions:
(i) $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{j}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{j} for $i=1,2, j=1,2$ and $i \neq j$;
(ii) $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{i}}<\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{j}}$ with at least h_{2} is of regular generalized relative growth (α, β) with respect to k_{j} for $i=1,2, j=1,2$ and $i \neq j$;
(iii) $\varrho_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{j}\right]_{k_{1}}$ and $\varrho_{(\alpha, \beta)}\left[h_{i}\right]_{k_{2}}<\varrho_{(\alpha, \beta)}\left[h_{j}\right]_{k_{2}}$ hold simultaneously for $i=1,2 ; j=1,2$ and $i \neq j$;
(iv) $\varrho_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}}=$
$\max \left[\min \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}, \min \left\{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right] \mid l=m=1,2 ;$
then we have

$$
\sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}}=\sigma_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}} \mid l, m=1,2
$$

and

$$
\bar{\sigma}_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}} \mid l, m=1,2 .
$$

Proof. From the definitions of generalized relative type (α, β) and generalized relative lower type (α, β), we get for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{align*}
& M_{h_{k}}(r) \leq M_{k_{l}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{k}\right] k_{l}}\right\}\right),\right. \tag{2.10}\\
& M_{h_{k}}(r) \geq M_{k_{l}}\left[\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{k}\right] k_{l}}\right\}\right]\right. \tag{2.11}\\
& \text { i.e., } M_{k_{l}}(r) \leq M_{h_{k}}\left(\beta^{-1}\left(\log \left(\left(\frac{\exp (\alpha(r))}{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}-\eta\right)}\right)^{\left.\bar{e}_{(\alpha, \beta)}{ }^{\left[h_{k} \mid k_{l}\right.}\right)}\right)\right)\right), \tag{2.12}
\end{align*}
$$

and for a sequence of values of r tending to 1 , we obtain that

$$
\begin{align*}
M_{h_{k}}(r) & \geq M_{k_{l}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{k}\right] k_{l}}\right\}\right)\right. \tag{2.13}\\
\text { i.e., } M_{k_{l}}(r) & \leq M_{h_{k}}\left(\beta^{-1}\left(\log \left(\left(\frac{\exp (\alpha(r))}{\left(\sigma_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}-\eta\right)}\right)^{\frac{1}{\left.\rho_{(\alpha, \beta)}\right)}{ }^{\left[h_{k}\right] k_{l}}}\right)\right)\right), \tag{2.14}
\end{align*}
$$

and

$$
\begin{equation*}
M_{h_{k}}(r) \leq M_{k_{l}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{k}\right] k_{l}}\right\}\right),\right. \tag{2.15}
\end{equation*}
$$

where $\eta>0$ is any arbitrary positive number, $k=1,2$ and $l=1,2$.
Case I. Suppose that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ holds. Also let $\eta(>0)$ be arbitrary. Now in view of (2.10), we get for all $r, 0<r<1$, sufficiently close to 1 that
$M_{h_{1} \pm h_{2}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{1}\right] k_{k_{1}}}\right\}\right) \cdot(1+A)\right.$,
 $>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, and for all $r, 0<r<1$, sufficiently close to 1 , we can make the term A sufficiently small.

Hence for any $\xi=1+\eta_{1}$, where $\eta_{1}=A$, it follows from (2.16) for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{aligned}
& M_{h_{1} \pm h_{2}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}\right\}\right) \cdot\left(1+\eta_{1}\right)\right. \\
& \quad \text { i.e., } M_{h_{1} \pm h_{2}}(r) \leq M_{k_{1}}\left[\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}\right\}\right] \cdot \xi .\right.
\end{aligned}
$$

Hence making $\xi \rightarrow 1+$, we get in view of Theorem $2, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ and above for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{gather*}
\limsup _{r \rightarrow 1} \frac{\exp \left(\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1} \pm h_{2}}(r)\right)\right)\right)}{\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}}} \leq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \\
\text { i.e., } \sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \leq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} . \tag{2.17}
\end{gather*}
$$

Now we may consider that $h=h_{1} \pm h_{2}$. Since $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ holds, then $\sigma_{(\alpha, \beta)}[h]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \leq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$. Further, let $h_{1}=\left(h \pm h_{2}\right)$. Therefore in view of Theorem 2 and $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, we obtain that $\varrho_{(\alpha, \beta)}[h]_{k_{1}}>$ $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ holds. Hence in view of (2.17) $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \leq \sigma_{(\alpha, \beta)}[h]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}$. Therefore $\sigma_{(\alpha, \beta)}[h]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \Rightarrow \sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$.

Similarly, if we consider $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, then one can easily verify that $\sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$.
Case II. Let us consider that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ holds. Also let $\eta(>0)$ be arbitrary. By (2.10) and (2.15), we have for a sequence of values of r tending to 1 that
$M_{h_{1} \pm h_{2}}(r) \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right) \cdot(1+B)\right.$,
where $B=\frac{M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\alpha}(\alpha, \beta){ }^{\left[h_{2}\right] k_{1}}\right\}\right)\right.}{M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\rho}(\alpha, \beta){ }^{\left[h_{1}\right] k_{1}}\right\}\right)\right.}$, and in view of $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ $>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, we can make the term B sufficiently small by taking r (where $0<r<1$) sufficiently close to 1 and therefore by the same technique of the proof of Case I, we have from (2.18) that $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ when $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ holds.

Likewise, if we consider $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, then one can easily verify that $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$.

Hence from Case I and Case II, we get the first part of the theorem.

Case III. Let us consider that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{2}. Hence from (2.11) and (2.13), we obtain for a sequence of values of r tending to 1 that

$$
\begin{align*}
& M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}\right\}\right)\right. \\
& +M_{k_{2}}\left(\alpha ^ { - 1 } \left(\operatorname { l o g } \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\left.\left.\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}\right\}\right)}\right.\right.\right. \\
& \text { i.e., } M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}\right\}\right) \leq M_{h_{1}}(r)(1+C)\right. \tag{2.19}
\end{align*}
$$

where $C=\frac{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right] k_{1}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\alpha}(\alpha, \beta)\right.\right.\right.}{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{h_{1}\right] k_{1}\right\}\right)}$, and since $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, we can make the term C sufficiently small for a sequence of values of r sufficiently close to 1 . Hence for any $\xi=1+\eta_{1}$, where $\eta_{1}=C$, we get from (2.19) and Theorem 4, for a sequence of values of r tending to 1 that

$$
\begin{gathered}
M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{1}\right] k_{k_{1}}}\right\}\right) \leq M_{h_{1}}(r)\left(1+\eta_{1}\right)\right. \\
\text { i.e., } M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}}\left[h_{1}\right] k_{k_{1}}\right\}\right) \leq M_{h_{1}}(r) \xi .\right.
\end{gathered}
$$

Hence, making $\xi \rightarrow 1+$, we obtain from above for a sequence of values of r tending to 1 that

$$
\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}}\left[h_{1}\right] k_{1} \pm k_{2}<\exp \left(\alpha\left(M_{k_{1} \pm k_{2}}^{-1}\left(M_{h_{1}}(r)\right)\right)\right) .
$$

Since $\eta>0$ is arbitrary, we find that

$$
\begin{equation*}
\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \geq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} . \tag{2.20}
\end{equation*}
$$

Now we may consider that $k=k_{1} \pm k_{2}$. Also $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{2}. Then $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \geq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$. Further let $k_{1}=\left(k \pm k_{2}\right)$. Therefore in view of Theorem 4 and $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, we obtain that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k}<$ $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ as at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{2}. Hence in view of (2.20), $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \geq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}$. Therefore $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ $\Rightarrow \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$.

Similarly if we consider $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{1}, then $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=$ $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$.

Case IV. In this case suppose that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{2}. Therefore in view of (2.11), we have for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{align*}
& M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}\right\}\right)\right. \\
& +M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}\right\}\right) \leq M_{h_{1}}(r)(1+D)\right. \tag{2.21}
\end{align*}
$$

where $D=\frac{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho(\alpha, \beta)}{ }^{\left.\left.\left[h_{1}\right]_{k_{1}}\right\}\right)}\right.\right.\right.}{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\left.\left.\rho(\alpha, \beta))^{\left[h_{1}\right] k_{2}}\right\}\right)}\right.\right.\right.}$ and in view of $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ $<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, we can make the term D sufficiently small by taking r sufficiently close to 1 and hence by the similar way of the proof of Case III we have from (2.21) that $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ where $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{2}.

Similarly if we take $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{1}, then $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$.

Thus from Case III and Case IV, we get the second part of the theorem.
The third part of the theorem is a natural consequence of Theorem 5 and the first part and second part of the theorem. So its proof is omitted.

Theorem 14. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U such that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and $\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$ are all non-zero and finite.
(A) If $\lambda_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{j}\right]_{k_{1}}$ with at least h_{j} is of regular generalized relative growth (α, β) with respect to k_{1} for $i, j=1,2$ and $i \neq j$, then

$$
\tau_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}} \text { and } \bar{\tau}_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}
$$

(B) If $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{j}}$ for $i=j=1,2$ and $i \neq j$, then

$$
\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}} \text { and } \bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}}
$$

(C) Assume the functions h_{1}, h_{2}, k_{1} and k_{2} satisfy the following conditions:
(i) $\lambda_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{j}\right]_{k_{1}}$ with at least h_{j} is of regular generalized relative growth (α, β) with respect to k_{1} for $i, j=1,2$ and $i \neq j$;
(ii) $\lambda_{(\alpha, \beta)}\left[h_{i}\right]_{k_{2}}>\lambda_{(\alpha, \beta)}\left[h_{j}\right]_{k_{2}}$ with at least h_{j} is of regular generalized relative growth (α, β) with respect to k_{2} for $i, j=1,2$ and $i \neq j$;
(iii) Both of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{j}}$ and $\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{i}}<\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{j}}$ hold for i,
$j=1,2$ and $i \neq j$;
(iv) $\lambda_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}}=$
$\min \left[\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}, \max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right] \mid l=m=1,2 ;$
then we have

$$
\tau_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}}=\tau_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}} \mid l, m=1,2
$$

and

$$
\bar{\tau}_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}} \mid l, m=1,2 .
$$

Proof. We obtain for any $\eta(>0)$ and for all r with $0<r<1$, sufficiently close to 1 that

$$
\begin{align*}
& M_{h_{k}}(r) \leq M_{k_{l}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda}(\alpha, \beta)\left[h_{k}\right] k_{l}\right\}\right),\right. \tag{2.22}\\
& M_{h_{k}}(r) \geq M_{k_{l}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda(\alpha, \beta)}\left[h_{k}\right] k_{l}\right\}\right)\right. \tag{2.23}\\
& \text { i.e., } M_{k_{l}}(r) \leq M_{h_{k}}\left(\beta^{-1}\left(\log \left(\left(\frac{\exp (\alpha(r))}{\left(\tau_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}-\eta\right)}\right)^{\left.\lambda_{(\alpha, \beta)}^{\left[h_{k} \mid k_{l}\right.}\right)}\right)\right),\right. \tag{2.24}
\end{align*}
$$

and for a sequence of values of $r \rightarrow 1$, we get that

$$
\begin{align*}
& M_{h_{k}}(r) \geq M_{k_{l}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{k}\right] k_{l}}\right\}\right)\right. \tag{2.25}\\
& \text { i.e., } M_{k_{l}}(r) \leq M_{h_{k}}\left(\beta ^ { - 1 } \left(\log \left(\left(\frac{\exp (\alpha(r))}{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}-\eta\right)}\right)^{\left.\frac{1}{\left.\lambda_{(\alpha, \beta)}\right)^{\left[k_{k}\right] k_{k}}}\right)}\right),\right.\right. \tag{2.26}
\end{align*}
$$

and

$$
\begin{equation*}
M_{h_{k}}(r) \leq M_{k_{l}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{k}\right]_{k_{l}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}}\left[h_{k}\right] k_{l}\right\}\right),\right. \tag{2.27}
\end{equation*}
$$

where $k=1,2$ and $l=1,2$.
Case I. Let $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ with at least h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}. Also let $\eta(>0)$ be arbitrary. Now we obtain from (2.22) and (2.27), for a sequence of values of r tending to 1 that
$M_{h_{1} \pm h_{2}}(r)(r) \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right] k_{k_{1}}}\right\}\right) \cdot(1+E)\right.$.
where $E=\frac{M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left\{\tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right) \lambda^{\lambda}(\alpha, \beta)\left[h_{2}\right] k_{1}\right\}\right)\right.\right.}{M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right] k_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda(\alpha, \beta)}{ }^{\left[h_{1}\right] k_{1}}\right\}\right)\right.}$ and in view of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ $>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, we can make the term E sufficiently small by taking r sufficiently close to 1 . Hence with the help of Theorem 1 and using the same technique of Case I of Theorem 13, we have from (2.28) that

$$
\begin{equation*}
\tau_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}} \leq \tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} . \tag{2.29}
\end{equation*}
$$

Further, we may consider that $h=h_{1} \pm h_{2}$. Also suppose that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>$ $\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ and at least h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}. Then $\tau_{(\alpha, \beta)}[h]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}} \leq \tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$. Now let $h_{1}=\left(h \pm h_{2}\right)$. Therefore in view of Theorem 1,
$\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ and at least h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}, we obtain that $\lambda_{(\alpha, \beta)}[h]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ holds. Hence in view of (2.29), $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \leq \tau_{(\alpha, \beta)}[h]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}}$. Therefore $\tau_{(\alpha, \beta)}[h]_{k_{1}}=$ $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ i.e., $\tau_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$.

Similarly, if we consider $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{1} then we can easily verify that $\tau_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$.
Case II. Let us consider that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ with at least h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}. Also let $\eta(>0)$ be arbitrary. Hence we get from (2.22) for all $r, 0<r<1$, sufficiently close to 1 that $M_{h_{1} \pm h_{2}}(r)(r) \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right) \cdot(1+K)\right.$.
where $K=\frac{M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda}(\alpha, \beta){ }^{\left[h_{2}\right] k_{1}}\right\}\right)\right.}{M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda}(\alpha, \beta){ }^{\left[h_{1}\right] k_{1}}\right\}\right)\right.}$, and in view of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ $>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, we can make the term K sufficiently small by taking r sufficiently close to 1 and therefore for similar reasoning of Case I we get from (2.30) that $\bar{\tau}_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ when $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ and at least h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}.

Similarly, if we take $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ with at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{1} then we can easily verify that $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$

Thus from Case I and Case II, we get the first part of the theorem.
Case III. Let us consider that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$. Hence we get from (2.23) for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{align*}
& M_{k_{1} \pm k_{2}}\left(\alpha ^ { - 1 } \left(\operatorname { l o g } \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\left.\left.\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}\right\}\right)}\right.\right.\right. \\
& \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}\right\}\right)\right. \\
& +M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& \text { i.e., } M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& \leq M_{h_{1}}(r)(1+L) \tag{2.31}
\end{align*}
$$

 $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, we can make the term L sufficiently small by taking r
sufficiently closed to 1 . Therefore observing Theorem 3 and by the same way of Case III of Theorem 13, we obtain from (2.31) that

$$
\begin{equation*}
\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \geq \tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} . \tag{2.32}
\end{equation*}
$$

Further, we may consider that $k=k_{1} \pm k_{2}$. As $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, so $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \geq \tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$. Further let $k_{1}=\left(k \pm k_{2}\right)$. Therefore in view of Theorem 3 and $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ we obtain that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k}<$ $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ holds. Hence in view of (2.32) $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \geq \tau_{(\alpha, \beta)}\left[h_{1}\right]_{k}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}$. Therefore $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ i.e., $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$.

Likewise, if we consider that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, then one can easily verify that $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$.
Case IV. In this case further we consider $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$. Therefore we obtain from (2.23) and (2.25), for a sequence of r tending to 1 , that

$$
\begin{align*}
& M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right] k_{k_{1}}}\right\}\right)\right. \\
& \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& +M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\left.\lambda_{(\alpha, \beta)}\right)} h_{11}\right]_{k_{1}}\right\}\right) \\
& M_{k_{1} \pm k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& \leq M_{h_{1}}(r)(1+H), \tag{2.33}
\end{align*}
$$

where $H=\frac{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left\{\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda(\alpha, \beta)}\right]^{\left.\left[h_{1}\right]_{k_{1}}\right\}}\right)\right.}{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\right) \text {. } h_{1}\right]_{k_{2}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda(\alpha, \beta)}{ }^{\left[h_{1} k_{2}\right\}}\right\}}$. Now in view of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, we can make the term H sufficiently small by taking r sufficiently close to 1 and therefore using the similar technique for as executed in the proof of Case IV of Theorem 13, we get from (2.33) that $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ when $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$.

Similarly, if we consider that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, then one can easily verify that $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$.

Thus from Case III and Case IV, we get the second part of the theorem.
The proof of the third part of the Theorem is omitted as it can be followed from Theorem 6 and the above cases.

In the following two theorems we retake the equalities in Theorem 1 to Theorem 4 under somewhat different conditions.

Theorem 15. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U. (A) The following condition is assumed to be satisfied:
(i) If either $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ or $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\sigma}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ holds, then

$$
\varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} .
$$

(B) The following conditions are assumed to be satisfied:
(i) Either $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ or $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ holds;
(ii) If h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2}, then

$$
\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}} .
$$

Proof. Case I. Suppose that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ $\left(0<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}<\infty\right)$. Now in view of Theorem 2 it is easy to see that $\varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \leq \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. If possible let

$$
\begin{equation*}
\varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} \tag{2.34}
\end{equation*}
$$

Let $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. Then from the first part of Theorem 13 and (2.34) we obtain that $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2} \mp h_{2}\right]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ which is a contradiction. Hence $\varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. Similarly by the first part of Theorem 13, one can obtain the same conclusion under the hypothesis $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq$ $\bar{\sigma}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. This completes the proof of the first part of the theorem.
Case II. Let us assume that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\left(0<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right.$ $<\infty)$ and h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2} and $\left(k_{1} \pm k_{2}\right)$. Therefore in view of Theorem 4, it follows that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \geq \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and if possible let

$$
\begin{equation*}
\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}>\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}} \tag{2.35}
\end{equation*}
$$

Let us take $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$. Then from the proof of second part of Theorem 13 and (2.35) we have $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2} \mp k_{2}}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ which is a contradiction. Hence $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$. Also from the proof of second part of Theorem 13 we can get the same conclusion under the condition $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and hence the second part of the theorem is established.

Theorem 16. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U. (A) The following conditions are assumed to be satisfied:
(i) $\left(h_{1} \pm h_{2}\right)$ is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2};
(ii) Either $\sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \neq \sigma_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{2}}$ or $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \neq \bar{\sigma}_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{2}}$;
(iii) Either $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ or $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\sigma}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$;
(iv) Either $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}} \neq \sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$ or $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}} \neq \bar{\sigma}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$; then

$$
\varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}=\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}} .
$$

(B) The following conditions are assumed to be satisfied:
(i) h_{1} and h_{2} are of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2};
(ii) Either $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \neq \sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1} \pm k_{2}}$ or $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \neq \bar{\sigma}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1} \pm k_{2}}$;
(iii) Either $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ or $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$;
(iv) Either $\sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} \neq \sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$ or $\bar{\sigma}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} \neq \bar{\sigma}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$; then

$$
\varrho_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}=\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}=\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}} .
$$

The proof of Theorem 16 is similar to Theorem 15, so we neglect it.
Theorem 17. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1};
(ii) Either $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ or $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ holds, then

$$
\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} .
$$

(B) The following conditions are assumed to be satisfied:
(i) h_{1}, k_{1} and k_{2} be any three entire functions such that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ and $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ exists;
(ii) Either $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ or $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ holds, then

$$
\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}} .
$$

Proof. Case I. Let $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\left(0<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}<\infty\right)$ and at least h_{1} or h_{2} and ($h_{1} \pm h_{2}$) are of regular generalized relative growth (α, β) with respect to k_{1}. Now, from seeing Theorem 1 , it is easy to say that $\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}} \leq \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. If possible let

$$
\begin{equation*}
\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} . \tag{2.36}
\end{equation*}
$$

Let $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. Then from the proof of the first part of Theorem 14 and (2.36) we have $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{1} \pm h_{2} \mp h_{2}\right]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ which is a
contradiction. Hence $\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. Similarly from the proof of the first part of Theorem 14, we can get the same conclusion under the hypothesis $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. This completes the proof of the first part of the theorem.

Case II. Let us consider that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$
$\left(0<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}<\infty\right)$. Therefore from Theorem 3, we get that
$\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \geq \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and if possible let

$$
\begin{equation*}
\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}>\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}} \tag{2.37}
\end{equation*}
$$

Suppose $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$. Then from the second part of Theorem 14 and (2.37), we have $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2} \mp k_{2}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ which is a contradiction. Hence $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$. Similarly with the help of the second part of Theorem 14, we can get the same conclusion under the condition $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and therefore the second part of the theorem is established.

Theorem 18. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1} and k_{2};
(ii) Either $\tau_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}} \neq \tau_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{2}}$ or $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}+h_{2}\right]_{k_{1}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{2}}$;
(iii) Either $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ or $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$;
(iv) Either $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}} \neq \tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$ or $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$; then

$$
\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}
$$

(B) The following conditions are assumed to be satisfied:
(i) At least any one of h_{1} or h_{2} are of regular generalized relative growth (α, β) with respect to $k_{1} \pm k_{2}$;
(ii) Either $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \neq \tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1} \pm k_{2}}$ or $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \pm k_{2}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1} \pm k_{2}}$ holds;
(iii) Either $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ or $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ holds;
(iv) Either $\tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} \neq \tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$ or $\bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}} \neq \bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$ holds, then

$$
\lambda_{(\alpha, \beta)}\left[h_{1} \pm h_{2}\right]_{k_{1} \pm k_{2}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}=\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}=\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}} .
$$

The proof of Theorem 18 is similar as of Theorem 17 , so we neglect it.
Theorem 19. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U such that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and $\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$ are all non-zero.
(A) The following conditions are assumed to be satisfied:
(i) k_{1} satisfies the Property (D);
(ii) h_{1}, h_{2} satisfy the Property (X), then

$$
\sigma_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}} \text { and } \quad \bar{\sigma}_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}
$$

(B) The following conditions are assumed to be satisfied:
(i) h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2};
(ii) $k_{1} \cdot k_{2}$ satisfies the Property (D);
(iii) k_{1}, k_{2} satisfy the Property (X), then,

$$
\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}} \text { and } \bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}} .
$$

(C) The following conditions are assumed to be satisfied:
(i) $k_{1} \cdot k_{2}, k_{1}$ and k_{2} satisfy the Property (D);
(ii) h_{1}, h_{2} satisfy the Property (X) and k_{1}, k_{2} satisfy the Property (X);
(iii) h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2};
(iv) h_{2} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2};
(v) $\varrho_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}}=$
$\max \left[\min \left\{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}, \min \left\{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right] \mid l, m=1,2$; then

$$
\sigma_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1} \cdot k_{2}}=\sigma_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}} \text { and } \bar{\sigma}_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1} \cdot k_{2}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}}
$$

Proof. Case I. Suppose that $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$. Also let k_{1} be satisfy the Property (D). Now from (2.10), we have for any $\eta>0$ and for all r with $0<r<1$ and sufficiently close to 1 that

$$
\begin{align*}
M_{h_{1} \cdot h_{2}}(r) \leq & M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right) \\
& \times M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}}\right\}\right)\right) \tag{2.38}
\end{align*}
$$

Since $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, we get that

$$
\lim _{r \rightarrow+\infty} \frac{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}}{\left(\sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}}}=\infty
$$

Therefore we get from (2.38) for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{equation*}
M_{h_{1} \cdot h_{2}}(r)<\left[M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right]^{2}\right. \tag{2.39}
\end{equation*}
$$

Let us observe that

$$
\begin{gather*}
\frac{\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta}{\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}}>1 \\
\Rightarrow \frac{\log \left(\alpha^{-1}\left(\log \left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\right)\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]_{(\alpha, \beta)}^{\varrho_{(\alpha)}\left[h_{1}\right]_{k_{1}}}}{\log \left(\alpha^{-1}\left(\log \left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\right)\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}}=\delta(\text { say })>1 . \tag{2.40}
\end{gather*}
$$

Since k_{1} satisfies the Property (D), we get from (2.40) and (2.39) for all r with $0<r<1$ and sufficiently close to 1 that

$$
\begin{aligned}
M_{h_{1} \cdot h_{2}}(r) & <M_{k_{1}}\left[\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right]^{\delta} \\
\text { i.e., } M_{h_{1} \cdot h_{2}}(r) & <M_{k_{1}}\left[\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right] . \\
\text { for } \delta & \rightarrow 1+
\end{aligned}
$$

Now in view of Theorem 8, we get from above for all r with $0<r<1$ and sufficiently close to 1 that

$$
\begin{align*}
M_{h_{1} \cdot h_{2}}(r) & <M_{k_{1}}\left[\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}}\right\}\right)\right] . \\
\text { i.e., } & \frac{\exp \left(\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1} \cdot h_{2}}(r)\right)\right)\right)}{\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}}<\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\eta\right) \\
\text { i.e., } & \sigma_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}} \leq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} . \tag{2.41}
\end{align*}
$$

Now we establish the equality of (2.41). Since h_{1}, h_{2} satisfy the Property (X), we have $M_{h_{1} \cdot h_{2}}(r)>M_{h_{1}}$ for all r with $0<r<1$ and sufficiently close to 1 and therefore

$$
\frac{\exp \left(\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1} \cdot h_{2}}(r)\right)\right)\right)}{\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}}\left[h_{1} \cdot h_{2}\right]_{k_{1}}}>\frac{\exp \left(\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1}}(r)\right)\right)\right)}{\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}}
$$

as $M_{k_{1}}^{-1}(r)$ is an increasing function of r. So $\sigma_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}} \geq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$. Hence $\sigma_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}} \leq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$.

Similarly, if we consider $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, then one can verify that $\sigma_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$.
Case II. Let $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ and k_{1} be satisfy the Property (D). Now we get from (2.10) and (2.15) for any $\eta>0$ and for a sequence of values of r tending to infinity that

$$
\begin{align*}
M_{h_{1} \cdot h_{2}}(r) & \leq M_{k_{1}}\left[\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right] \\
& \times M_{k_{1}}\left[\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}}\right\}\right)\right] . \tag{2.42}
\end{align*}
$$

Now in view of $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, we get that

$$
\lim _{r \rightarrow 1} \frac{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\sigma_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}}{\left(\sigma_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\sigma_{(\alpha, \beta)}}\left[h_{2}\right]_{k_{1}}}=\infty .
$$

Hence we get from (2.42) for a sequence of values of $r \rightarrow 1$ that

$$
M_{h_{1} \cdot h_{2}}(r)<\left[M_{k_{1}}\left[\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\left.e^{(\alpha, \beta)}\right)}\left[h_{1}\right] k_{k_{1}}\right\}\right)\right]\right]^{2} .
$$

Now by the same technique of the proof of Case I, we can easily show for a sequence of values of $r \rightarrow 1$ that $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ under the conditions specified in the theorem.

In the same way, assuming $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ we can verify that $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right.$. $\left.h_{2}\right]_{k_{1}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$.

Hence the first part of theorem follows from Case I and Case II.
Case III. Let $k_{1} \cdot k_{2}$ be satisfy the Property (D) and $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ with h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2}. So by (2.11) and (2.13), we get for a sequence of values of $r \rightarrow 1$, that

$$
\begin{align*}
& M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\theta_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}\right\}\right)\right. \\
& \times M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{1}\right] k_{1}}\right\}\right) .\right. \tag{2.43}
\end{align*}
$$

Now in view of $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, we obtain that

$$
\lim _{r \rightarrow 1} \frac{M_{k_{2}}\left(\alpha ^ { - 1 } \left(\operatorname { l o g } \left\{(\sigma _ { (\alpha , \beta) } [h _ { 1 }] _ { k _ { 1 } } - \eta) [\operatorname { e x p } (\beta ((1 - r) ^ { - 1 }))] ^ { e _ { (\alpha , \beta) } } \left[h _ { k _ { 2 } } \left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\right\} h_{1}\right\}\right)\right.\right.\right.\right.\right.}{\left.\left.\left.\left.h_{1}\right]_{k_{2}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{2}}\right\}\right)}=\infty .
$$

Now from (2.43) we have for a sequence of values of $r \rightarrow 1$, that

$$
\begin{align*}
& M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& \leq M_{h_{1}}(r) \times M_{h_{2}}(r) \\
& \text { i.e., }\left[M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right]^{\frac{1}{2}} \leq M_{h_{1}}(r)\right. \tag{2.44}
\end{align*}
$$

Since $k_{1} \cdot k_{2}$ satisfies the Property (D), we get from (2.44) for a sequence of values of $r \rightarrow 1$, that

$$
\text { i.e., }\left[M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{e_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)^{\frac{1}{6}}\right] \leq M_{h_{1}}(r)\right.
$$

Now letting $\delta \rightarrow 1+$ we have from above and Theorem 10 for a sequence of values of $r \rightarrow 1$, that

$$
\begin{aligned}
& M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}}\right\}\right) \leq M_{h_{1}}(r)\right. \\
& \frac{\exp \left(\alpha\left(M_{k_{1} \cdot k_{2}}^{-1}\left(M_{h}(r)\right)\right)\right)}{\left(\exp \beta\left((1-r)^{-1}\right)\right)^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}}}>\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta
\end{aligned}
$$

Since $\eta>0$ is arbitrary, it follows from above that

$$
\begin{equation*}
\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}} \geq \sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}} \tag{2.45}
\end{equation*}
$$

Now we establish the equality of (2.45). Since k_{1}, k_{2} satisfy the Property (X), we have $M_{k_{1} \cdot k_{2}}(r)>M_{k_{1}}(r)$ for all $r, 0<r<1$, sufficiently close to 1 and therefore $M_{k_{1} \cdot k_{2}}^{-1}(r)<M_{k_{1}}^{-1}(r)$. Hence

$$
\frac{\exp \left(\alpha\left(M_{k_{1} \cdot k_{2}}^{-1}\left(M_{h_{1}}(r)\right)\right)\right)}{\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}}}<\frac{\exp \left(\alpha\left(M_{k_{1}}^{-1}\left(M_{h_{1}}(r)\right)\right)\right.}{\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}}
$$

as $M_{h_{1}}(r)$ is an increasing function of r. So $\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\sigma_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$.
Case IV. Suppose $k_{1} \cdot k_{2}$ be satisfy the Property (D). Also let $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<$ $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ where h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2}. Therefore in view of (2.11), we obtain for all r, $0<r<1$, sufficiently close to 1 that

$$
\begin{align*}
& M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right] k_{1}}\right\}\right)\right. \\
& \times M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \tag{2.46}
\end{align*}
$$

Now in view of $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, we obtain that

$$
\lim _{r \rightarrow 1} \frac{M_{k_{2}}\left(\alpha ^ { - 1 } \left(\operatorname { l o g } \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\left.\left.\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}\right\}\right)}\right.\right.\right.}{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\left.\rho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}\right\}}\right\}\right)\right.}=\infty
$$

Therefore it follows from (2.46) for all $r, 0<r<1$, sufficiently close to 1 that

$$
M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right) \leq\left[M_{h_{1}}(r)\right]^{2}\right.
$$

Now by the similar technique of the proof of Case III, we can show, for all r with $0<r<1$ and sufficiently close to 1 , that $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ under the given conditions.

Similarly, if we take $\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\varrho_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ where at least h_{1} is of regular generalized relative growth (α, β) with respect to k_{1}, then we can show that $\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\bar{\sigma}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$.

Hence Case III and Case IV completes the second part of theorem.
The proof of the third part can be easily carried out from Theorem 11 and the above cases.

Theorem 20. Let $h_{1}, h_{2}, k_{1}, k_{2}$ be all entire functions defined in the unit disc U such that $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and $\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}$ are all non-zero and finite.
(A) The following conditions are assumed to be satisfied:
(i) At least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1} for $i, j=1,2$ and $i \neq j$;
(ii) k_{1} satisfies the Property (D) and h_{1}, h_{2} satisfy the Property (X), then

$$
\tau_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}} \text { and } \bar{\tau}_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{i}\right]_{k_{1}}
$$

(B) The following condition is assumed to be satisfied:
(i) $k_{1} \cdot k_{2}$ satisfies the Property (D) and k_{1}, k_{2} satisfy the Property (X),

$$
\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}} \text { and } \bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{i}} .
$$

(C) The following conditions are assumed to be satisfied:
(i) $k_{1} \cdot k_{2}, k_{1}$ and k_{2} be satisfy the Property (D);
(ii) h_{1}, h_{2} satisfy the Property (X) and k_{1}, k_{2} satisfy the Property (X);
(iii) At least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1} for $i=1,2, j=1,2$ and $i \neq j$;
(iv) At least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{2} for $i=1,2, j=1,2$ and $i \neq j$;
(v) $\lambda_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}}=$
$\min \left[\max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}\right\}, \max \left\{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}, \lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{2}}\right\}\right] \mid l, m=1,2$; then

$$
\tau_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1} \cdot k_{2}}=\tau_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}} \text { and } \bar{\tau}_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1} \cdot k_{2}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{l}\right]_{k_{m}} .
$$

Proof. Case I. Suppose $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ where at least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1} and k_{1} satisfies the Property (D). Now we get from (2.22) and (2.25) for any $\eta>0$, for a sequence of $r \rightarrow 1$ that

$$
\begin{align*}
M_{h_{1} \cdot h_{2}}(r) & \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right) \\
& \times M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}}\right\}\right)\right) \tag{2.47}
\end{align*}
$$

Now in view of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, we get that

$$
\left.\lim _{r \rightarrow 1} \frac{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}}\left(\bar{\tau}_{(\alpha, \beta)}\right]_{k_{1}}}{}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}}=\infty
$$

As $M_{k_{1}}(r)$ increases with r, so we obtain from (2.47) for a sequence of values of $r \rightarrow 1$ that

$$
\begin{equation*}
M_{h_{1} \cdot h_{2}}(r)<\left[M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right)\right]^{2} \tag{2.48}
\end{equation*}
$$

Now by similar proof of Case I of Theorem 19 we have from (2.48) that

$$
\tau_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}
$$

Similarly, if we consider $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ with at least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}, then we can show that $\tau_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\tau_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$.
Case II. Let $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ where at least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1} and k_{1} which satisfy the Property (D). Now we get from (2.22) for any $\eta>0$ and for all r with $0<r<1$, sufficiently close to 1 that

$$
\begin{align*}
M_{h_{1} \cdot h_{2}}(r) & \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right) \\
& \times M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}}\right\}\right)\right) \tag{2.49}
\end{align*}
$$

Now in view of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$, we get that

$$
\lim _{r \rightarrow 1} \frac{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}}{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}}}=\infty .
$$

As $M_{k_{1}}(r)$ increases with r, so we obtain from (2.49) for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{equation*}
M_{h_{1} \cdot h_{2}}(r)<\left[M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}+\frac{\eta}{2}\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right]^{2}\right. \tag{2.50}
\end{equation*}
$$

Now by similar argument of the proof of Case I of Theorem 20 we get from (2.50) that $\bar{\tau}_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$ under the conditions specified in the theorem.

Likewise, if we take $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$ where at least h_{1} or h_{2} is of regular generalized relative growth (α, β) with respect to k_{1}, then we can show that $\bar{\tau}_{(\alpha, \beta)}\left[h_{1} \cdot h_{2}\right]_{k_{1}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{2}\right]_{k_{1}}$.

Therefore from Case I and Case II, the first part of theorem follows.
Case III. Let $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$ and $k_{1} \cdot k_{2}$ be satisfy the Property (D). We get for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{align*}
& M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \\
& \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}\right\}\right)\right. \\
& \times M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}} h_{1}\right]_{k_{1}}\right\}\right) . \tag{2.51}
\end{align*}
$$

Now in view of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, we get that

$$
\lim _{r \rightarrow 1} \frac{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\left.\lambda_{(\alpha, \beta)}\left[h_{1}\right]\right]_{k_{1}}}\right\}\right)\right.}{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{(\alpha, \beta, \beta)}\left[h_{1}\right]_{k_{2}}\right\}\right)\right.}=\infty .
$$

Hence it follows from (2.51) and (2.23) for all $r, 0<r<1$, sufficiently close to 1 that

$$
\begin{align*}
& M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\left.\lambda_{(\alpha, \beta)}\left[h_{1}\right]\right]_{k_{1}}}\right\}\right)\right. \\
& \leq M_{h_{1}}(r) \times M_{h_{2}}(r) \\
& \text { i.e., }\left[M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right]^{\frac{1}{2}} \leq M_{h_{1}}(r)\right. \tag{2.52}
\end{align*}
$$

Now by the similar technique of the proof of Case III of Theorem 19 we get from (2.52) that $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$. If $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, then one can easily verify that $\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\tau_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$.
Case IV. Suppose $k_{1} \cdot k_{2}$ be satisfy the Property (D) and $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, where h_{1} is of regular generalized relative growth (α, β) with respect to at least any one of k_{1} or k_{2}. Now we obtain for a sequence of values of r tending to 1 , that

$$
\begin{align*}
& M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right] k_{k_{1}}}\right\}\right)\right. \\
& \leq M_{k_{1}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}}\left[h_{1}\right]_{k_{1}}\right\}\right)\right. \\
& \times M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}}\right\}\right)\right. \tag{2.53}
\end{align*}
$$

Now in view of $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}<\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, we get that

$$
\lim _{r \rightarrow 1} \frac{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}}\left[h_{1}\right] k_{k_{1}}\right\}\right)\right.}{M_{k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}}{ }^{\left[h_{1}\right] k_{k_{2}}}\right\}\right)\right.}=\infty .
$$

Hence it follows from (2.53), (2.23) and (2.25), for a sequence of values of r tending to 1 , that

$$
\begin{equation*}
M_{k_{1} \cdot k_{2}}\left(\alpha^{-1}\left(\log \left\{\left(\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}-\eta\right)\left[\exp \left(\beta\left((1-r)^{-1}\right)\right)\right]^{\lambda_{(\alpha, \beta)}}\left[h_{1}\right] k_{k_{1}}\right\}\right) \leq\left[M_{h_{1}}(r)\right]^{2}\right. \tag{2.54}
\end{equation*}
$$

Now by the similar argument of the proof of Case III of Theorem 20, we get from (2.54) that $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}$. Similarly if we take $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1}}>$ $\lambda_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$, then we can easily verify that $\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{1} \cdot k_{2}}=\bar{\tau}_{(\alpha, \beta)}\left[h_{1}\right]_{k_{2}}$. Hence from Case III and Case IV, the second part of the theorem follows.

Proof of the third part of the Theorem can be easily followed from Theorem 12 and the above cases.

Acknowledgement

The authors are grateful to the reviewer for his/her valuable suggestions and constructive comments for the improvement of the paper.

References

[1] Agarwal A. K., On the properties of an entire function of two complex variables, Canadian J. Math., 20 (1968), 51-57.
[2] Bernal-González L., Crecimiento relativo de funciones enteras, Aportaciones al estudio de las funciones enteras coníndice exponencial finito, Doctoral Thesis, Universidad de Sevilla, Spain, 1984.
[3] Bernal L., Orden relative de crecimiento de funciones enteras, Collect. Math., 39 (1988), 209-229.
[4] Biswas C. and Biswas T., Generalized order (α, β) based some growth analysis of composite analytic functions in the unit disc, Int. J. Nonlinear Sci., $30(1)(2020)$, 70-75.
[5] Fuks B. A., Introduction to the theory of analytic functions of several complex variables, Translations of Mathematical Monographs, Amer. Math. Soc., Providence, Rhode Island, 1963.
[6] Juneja O. P. and Kapoor G. P., Analytic functions-growth aspects, Research Notes in Mathematics 104, Pitman Adv. Publ. Prog., Boston-LondonMelbourne, 1985.
[7] Kapoor G. P. and Gopal K., Decomposition theorems for analytic functions having slow rates of growth in a finite disc, J. Math. Anal. Appl., 74 (1980), 446-455.
[8] Mulyava O. M. and Sheremeta M. M., Relative growth of Dirichlet series, Mat. Stud., 49 (2)(2018), 158-164.
[9] Mulyava O. M. and Sheremeta M. M., Remarks to relative growth of entire Dirichlet series, Visnyk of the Lviv Univ. Series Mech. Math., 87 (2019), 73-81.
[10] Nicholls P. J. and Sons L. R., Minimum modulus and zeros of functions in the unit disc, Proc. Lond. Math. Soc., 31 (3) (1975), 99-113.
[11] Sheremeta M. N., Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion, Izv. Vyssh. Uchebn. Zaved Mat., 2(1967), 100-108, (in Russian).
[12] Sons L. R., Regularity of growth and gaps, J. Math. Anal. Appl., 24 (1968), 296-306.
[13] Valiron G., Lectures on the general theory of integral functions, Chelsea Publishing Company, New York (NY) USA, 1949.
[14] Yang L., Value distribution theory, Springer-Verlag, Berlin, 1993.

