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1. Introduction and Definitions
Let h(2) = > ¢,2" be analytic in the unit disc U = {z : |z| < 1} and M, (r)
be the maximur?lzgf |h (2)| on |z| = 7. In [12], Sons defined the order g (k) and the



48 J. of Ramanujan Society of Mathematics and Mathematical Sciences

lower order A (h) as

loa? A log? M
o(h) = lim supOg—h(r) and \(h) = lim inng—h(r).
r—1 —log (1 —r) r—1 —log (1 —r)

However during the last several years many authors have investigated different
properties of analytic function in the unit disc U and derived so many great results
e.g. [7,8,9, 10, 11]. The notion of relative order was first introduced by Bernal [2,
3.

An entire function h is said to have Property (D), if for any § > 1, v > 0 and
for all » (0 < r < 1) sufficiently close to 1,

(o)) = ()

Now let L be a class of continuous non-negative functions « defined on (—o00, 00)
such that a(z) = a(xy) > 0 for x < zy with a(x) 1 0o as © — oo. Further we assume
that throughout the present paper «, § € L. Now considering this, Biswas et al.
[4] have introduced the definitions of the generalized order (a, ) and generalized
lower order (o, [3) of an entire function h in the unit disc U which are as follows:

Definition 1. [4] The generalized order (o, B) denoted by o(a,p) k] and generalized
lower order (o, B) denoted by Aap)lh] of an entire function h in the unit disc U
are defined as:

: a (M (r)) e a (M(r))
bl = imsup——-—+"~ and Ao 3 |h| = liminf —————
Now for making some progresses about the works of relative order, one can
introduce the definitions of generalized relative order (a, #) and generalized relative
lower order (v, 3) of an entire functions in the unit disc U with respect to another
entire function in the following way:

Definition 2. Let h and k be entire functions defined in the unit disc U, the
quantities o(a,p) ]k and A gy Rk respectively called generalized relative order (o, 3)
and generalized relative lower order (a, ) of h with respect to k, are defined as:

= limsu a(M,;l(Mh(r))) an = limin Oé(M’;l(Mh(r)))
Clonlhe = IP—ymy n Aenle = IS )

Further if o, g)[h]r and A g)[h]r are the same, then we call h as a function of
regular generalized relative growth («, ) with respect to k. Otherwise, we call h
as a function of irregular generalized relative growth (o, 8) with respect to k.
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Now in order to refine the growth scale namely the generalized relative order
(o, ), we introduce the definitions of another growth indicators, called generalized
relative type (o, ) and generalized relative lower type («, ) respectively of an
entire function h with respect to an entire function k& in the unit disc U which are
as follows:

Definition 3. Let h and k be entire functions defined in the unit disc U with
h have finite positive generalized relative order («, [3) with respect to k (i.e., 0 <
O(a,p) M)k < 00), then the quantities o p)[h]k and G p)[h], respectively called gen-
eralized relative type (o, B) and generalized relative lower type (o, B) of h with
respect to k, are defined as:

D

. xp (M (Mh(r))))
Taplhly = hr?jlup(ﬁ((l_T),l))g(m[h]k and
_ L cexp(a(M ! (Ma(r))))
O-(CM,B) [h]k = llgiglrlf (5( 1 _ T)fl))g@é’ﬁ)[h}k :

It is obvious that 0 < (a5 [hlk < 0(a,p)[h]r < 0.

Analogously, to determine the relative growth of two entire functions in the
unit disc U having same non zero finite generalized relative lower order (a, 3), one
can introduce the definitions of generalized relative weak type (a, ) denoted by
T(a,5) [Pk and generalized relative upper weak type (o, 5) denoted by 7, g [h]i of
an entire function h with respect to entire function %k in the unit disc U in the
following way:

Definition 4. Let h and k be entire functions defined in the unit disc U with h
have finite positive generalized relative lower order (v, ) (i.e., 0 < Aa,p)[h]r < 00),
then the quantities T(qpy[h|k and T g)[hlk respectively called generalized relative

weak type (o, B) and generalized relative upper weak type (c, 5) of h with respect to
k, are defined as:

MM,
Ta,p)Pr = liminf exp(a(M, ( /\h(r))h)) and
Pl B ) ) e
_ : exp(a (M, (M (r))))
Pl = limsu .
It is obvious that 0 < 7(a8)[hlk < T(a,p) [k < 0.
We finally remind the following definition which is needed in the sequel.
Definition 5. Let h and k be entire functions defined in the unit disc U. Then
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they are said to have mutually Property (X) in U if for allr, 0 < r < 1, sufficiently

close to 1,
My (r) > My(r) and Mpyg(r) > Mg(r)

hold simultaneously.

Here, in this paper, our aim is to investigate some basic properties of entire
functions in the unit disc U connected to generalized relative order («, (3), gener-
alized relative type (a, ) and generalized relative weak type («, 3) with respect
to another entire function under somewhat different conditions. In this paper, we
suppose that all the growth indicators are nonzero finite.We do not explain the
standard definitions and notations in the theory of entire functions as those are
available in [1], [5], [6], [13] and [14].

2. Main Results

In this section, we present the main results of the paper.

Theorem 1. Let hy, hy and ki be entire functions defined in the unit disc U such
that at least hy or hy is of reqular generalized relative growth (o, B) with respect to
ki. Then

)\(a’g) [hl + hQ]kl < max{)\(aﬁ) [hl]kla >\(a,5) [hQ]kl }
The equality holds when \ap)|hilk, > Na,p) il with at least h; is of reqular
generalized relative growth (o, ) with respect to ky where i,7 = 1,2 and 1 # j.
Proof. If A4 g)[h1 £ holi, = 0 then theorem is trivially true. So we take Ao ) [h1 £
holk, > 0. Clearly A g)[hilr, is finite for £ = 1,2. Also let
max{A(a,g [Pk, A, P2l } = A and hy is of regular generalized relative growth
(o, B) with respect to k;. Now for any arbitrarily chosen n > 0 from the definition
of Ao, (1], we get for a sequence of r tending to 1 that

My, (r) < My, (07 [(Aap[hali +m)B((L—7)71)])

i.e., My, (r) < My, (@™ [(A+m)B((1—7)71)]). (2.1)

Also for any arbitrarily chosen n > 0 and from the definition of o0 g)[holk (=
Ao, [h2lk, ), we obtain for all r, 0 < 7 < 1, sufficiently close to 1 that

Mi, (r) < My, (0™ [(Ma,p) [heliy +m)B((1=7)71)])

e, My, (r) < My (o [(A+n)B((1—7)71)). (2.2)
So from (2.1) and (2.2), we have for a sequence of r tending to 1 that

Mpyny (r) < 2My, (@ (A4 0)B((1 =)~ H)]).
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My (1) < 2Mi (o log(exp B((1 — ) ~1) +7)).
i.€., Mhlihz (7”) < Mkl (a_l[log(exp B((l _ T)_l))(A+25)])

« M1 A]\fhlih2 r
i.e., ( ﬁk(l(i — 7")_1§ ) < (A +2e).
Hence
i O WD)

SR = 0
i.e., )\(a’g) [hl + hQ]kl S A + 2¢.

Since 1 > 0 is arbitrary, we get above
)\(a,ﬁ) [hl + hQ]kl < A= max{)\(aﬁ) [hl]k17 )\(aﬁ) [hQ]kl}

Similarly, if we take h; as a function of regular generalized relative growth (a, )
with respect to k1 or both h; and hy are of regular generalized relative growth
(cv, B) with respect to k;, then we can verify that

)\(a,,é’) [hl :|: hQ]kl S A = maX{/\(aﬁ) [hl]kla )\(a,,é’) [hQ]kl} (23)

Moreover without loss of any generality, let Ao ) [Pk, < A(a,8)[h2)k, and h = hy £
hy. Then in view of (2.3) we get that Ao [k, < A@,g)[holk - As, hg = £(h — hy)
and in this case we obtain that A, [halr, < max{Aa,g [Pl A [ile } - As we
assume that A g)[hile < Aa,p)he)k, . therefore we have Ao g)lholi, < Aag)[Pi
and

hence Aa,g) Ak, = Aa.plhel, = max{Aia,5)h1]k, Aag)[halk, - Therefore, A, g [+
h2]k1 = )\(a,ﬁ) [hz]kl | 1= 1, 2 provided )\(a,ﬁ) [hl]kl 7é /\(a,ﬁ) [hQ]kl- Thus the theorem
follows.

Theorem 2. Let hy, hy, ky be all entire functions defined in the unit disc U such
that o(a,p) Mk, and o pylholk, exist. Then
0,8 [l £ halk, < max{o(,p)[hi]rs 0(a,)h2]k }-

The equality holds when o p) [k, 7 0(a,8) 2]k, -
We omit the proof of Theorem 2 as easily it can be derived in view of Theorem
1.

Theorem 3. Let hy, ki, ko be all entire functions defined in the unit disc U such
that Na,gylP1)k, and A gylhilk, exist. Then

/\(0475) [hl]lﬁ:l:kz > min{)‘(mﬁ) [hl]/ﬁ’ )‘(a,b’) [hl]kz}



52 J. of Ramanujan Society of Mathematics and Mathematical Sciences

The equality holds when A gy[h1]k, 7 Aa,g)[P1]ks-

Proof. If A\(o,g)[l1]k 4k, = 00 then the theorem is trivially true. So we suppose that
Aa,g) [Py 2k, < 00. We can clearly assume that A gy[hi], is finite for & = 1,2.
Also let ¥ = min{A g)[h1]k, Ao, [Pk, }- Now for any arbitrary n > 0 from the
definition of A4 g)[h1]k, where k = 1,2, we have for all 7, 0 < r < 1, sufficiently
close to 1

My, (@™ A [ —m)B((L = 7)) < My, (r)
i, My, (@7 (T =n)B((1—r)"")]) < M, (r)
Hence, we obtain from above for all , 0 < r < 1, sufficiently close to 1 that
My, (@7 (@ =) B((1 = )7 1))
< My, (a7 (W =) B((1 — 7)) + M, (@™ (T = m)B((L = r)7H)])
i-e.; Miyai (@7 [(U = m)B((1 = r)71)]) < 2M, (r)
i.e., My sp, (o log(exp B((1 — )™)Y =]) < 2M,, (1)

by 5 Mg (o log(exp B((1 = 1)) V)) < My (1)
i.e.; My, ary (o™ log(exp (1 =) 71) " 72]) < My, (r)
oML (M, (r)))
i.€., > U — 2e.

Al =7r)7)

Since 1 > 0 is arbitrary, we get from above that

)‘(067,3) [hl]k1ik2 >V = min{)‘(aw@) [hl]ku )‘(aﬁ) [hl]k2} (24>

Now without loss of any generality, we can take that A\ g)[hi]k, < Aa,g)[P1]k, and
k = ki £ ky. Then in view of (2.4) we get that A g)[h1]k > A(a,8)[P1]k,. Further,
ki1 = (k = k2) and in this case we obtain that A g)[h1]r, >

min{ A g)[P1]k: Aa,p) [Pk} - As we assume that A g)[hi]e, < A,g)[P1]k,, there-
fore we have A g)[h1lk; > A(a,)[h1]r and hence

A Mk = Naglhale, = min{A,p)[1]k s Aa,s) [Pk, - Therefore, A ) [Pk x, =
Nag) [Pk, | © = 1,2 provided A g)[P1]k, 7# Aa,g)[P1]k,. Thus the theorem follows.

Theorem 4. Let hy, ki, ko be all entire functions defined in the unit disc U such
that hy is of reqular generalized relative growth («, ) with respect to at least any
one of ki or ky. Then

O(a,8) [Pk 4k, > min{ 0 8)[P1]k, 5 0,8 [Pk, }-



Some Results in Connection with Sum and Product Theorems Related to ... 53

The equality holds when o p)[hilr, < 0(ap)lP1lr, with at least hy is of reqular
generalized relative growth («, B) with respect to k; where i =j =1,2 and i # j.

We omit the proof of Theorem 4 as it can be easily derived in view of Theorem
3.

Theorem 5. Let hy, ho, ki, ko be all entire functions defined in the unit disc U,
then

0(a8)[P1 = holky £k,

< max[min{o(,g) [k, 0.8k, } min{ o, [halk 0, 2k, }]
when the following two conditions holds:
(1) O(a,p) 1)k < 0(a,8)[P1]k; with at least hy is of reqular generalized relative growth
(o, B) with respect to k; fori=1,2,j =1,2 and i # j; and
(91) 0(c,p) 2]k, < O(a,p)[P2]k; with at least hy is of regular generalized relative growth
(o, B) with respect to kj fori =1,2,j=1,2 and i # j.
The equality holds when both o(.g)[Rilk, < 0(a,8)[Pjlkr and o(a,p)[Pilks < 0(a) M)k,
hold fori=1,2; 7 =1,2 and 1 # j.
Proof. Let both the conditions (i) and (i) hold. Then from Theorem 2 and
Theorem 4, we get

max[min{ 0(a,s)[M1]k,  0(a,8) [P1]k, }, MIn{ 0(a,5) [P2]ky s 0(a0) 2] ks }]
= max[0(a,8) A1) k1 ks s O(a,8) P2 k1 45
> 0(a,8) 1 £ holk, ks - (2.5)

As 0@.p) il < 0(,p Pl and 0w p)[hilk, < 0(ap)[hjlk, hold simultaneously for
1=1,2; 7=1,2 and i # j, we obtain that

either min{g(a.g)[M]krs 0]k} > min{ow,p o]k, 0(.p o]k, } or
min{o(a,8 M2k s 0(a,8) [h2lk. } > min{o(a,p) [Pk s 0(a,8) M1k, } holds.
Hence from the conditions (z) and (ii), we have from above that
either @(ag)[Mlkiry > 0(ap)[h2]kitrs OF 0(a,0)[h2lkithy > 0(a,8) (P2l ks
which is the condition for holding equality in (2.5). Hence the theorem follows.

Theorem 6. Let hy, ho, ki, ko be all entire functions defined in the unit disc U,
then

Nagy[P1 £ holk, 4k,
> min[max{)‘(aﬁ) [hl]kn /\(a,ﬁ) [hQ]lﬁ}v maX{/\(a,B) [hl]kzv )‘(017,3) [hQ]k2 }]



54 J. of Ramanujan Society of Mathematics and Mathematical Sciences

when the following two conditions hold:

() Na,p)[hilkr > Nap)[llk, with at least hj is of reqular generalized relative growth
(o, B) with respect to ky fori =1,2,j =1,2 and i # j; and

(i) A,y [Pilks > Aa,py[hj]k, with at least hj is of reqular generalized relative growth
(cv, B) with respect to ky fori=1,2,j = 1,2 and i # j.

The sign of equality holds when both the conditions A gy[h1lr, < Na,p)ha]r, and
Ao P2l < Nayg)lholk;, hold fori=1,2;j=1,2 and i # j.

Proof. Let both the conditions (i) and (i7) hold. Then from Theorem 1 and
Theorem 3, we get that

min[max{/\(a,ﬁ) [hl]klv )‘(0475) [hQ]kl }7 max{)‘(aﬁ) [hl]kw /\(0675) [hQ]k2 }]
= min[A@,g)h1 £ holi,, A, £ hok,]
< Moyl £ holr i, - (2.6)

Since Aap)[Pile; < Mag)ha]k, and A glholr, < A,g)lh2lr, hold simultaneously
fori=1,2; j=1,2 and 7 # j, we get that

either max{)\(a,g) [hl]kla )\(a,ﬁ) [hQ]kl} < max{)\(ayﬁ) [hl]]@, )\(a,ﬁ) [hg]kQ} or
max{)\(aﬁ) [hl]k27 /\(a,ﬁ) [h2]k2} < maX{/\(aﬁ) [hl]kla )\(a”g) [hQ]kl} holds.

Since conditions (7) and (éi) hold, we get from above that
either )\(a,ﬁ) [hl + h2]k1 < A(a,ﬁ) [hl + hg]kz or )\(a,ﬁ) [hl + hg]k2 < A(a,ﬁ) [hl + hf2]k1

which is the condition for holding the equality in (2.6).
This completes the theorem.

Theorem 7. Let hy, ho, ki be all entire functions defined in the unit disc U such
that at least hy or hy is of reqular generalized relative growth (o, B) with respect to
ki where ky satisfy the Property (D) and hy, hy satisfy the Property (X), then

Aag) [P - halk, = max{Aa,)[M1]k s A, [Pk, }-

Proof. Suppose that Ao g)[h1 - holr, > 0. Otherwise if A )71 - holr, = 0 then the
theorem is trivially true. Let us consider that hs is of regular generalized relative
growth (o, 8) with respect to k. Also let max{ A g7k, Aa,8)[P2)k, }

= A. We can clearly assume that A gk, is finite for & = 1,2. Now for any
arbitrarily chosen Z > 0, it follows from the definition of A4 g)[h1]x,, for a sequence
of r tending to 1 that

My, (r) < My, (@ {(Aas) [Pl + g)ﬁ((l — ) H)])
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i.e., My, (r) < My (o™ [(A+ g)ﬁ((l =7)7))). (2.7)
Also for any arbitrarily chosen 7 > 0, we obtain from the definition of o(q,g)[he],
(= MNaplhelr,), for all r, 0 < r < 1, sufficiently close to 1 that

My (1) < My (@™ [(ea halis + 3)B((L =) 7))

ive My (r) < M, (7 [Ny el + )81 = 1))

iiey Mig(r) < My (7 [(A + D)1 =) ). (2.8)

Observe that
A+n

— > 1.
A+

Therefore we consider the expression llggg[[z:ll[[((ﬁig))%((((ll:?):ll))]}]] forall v, 0 < r < 1,
2
sufficiently close to 1. Thus for any ¢ > 1, it follows from the above that there is

ro such that, 0 < rg < 1, for which

log[a™"[(A + ) B(ro)]]
logla™*[(A + 3)B(ro)]]

= 4. (2.9)

Hence from (2.7) and (2.8), we have for a sequence of r tending to 1 that

Mipya (r) < [Miy (a7 (A + g)ﬁ((l =) )%

Now we obtain from above for a sequence of r tending to 1 that

My (r) < My, (@7 [(A+ DB =) 7H])P),

since k; has the Property (D) and § > 1. Therefore from (2.9), we get from above
for a sequence of r tending to 1 that

My (r) < Miy (a7 (A +)B((1 = 1))

Since 1 > 0 is arbitrary, we get from above that

Aoyl - holk, <A =max{ A gk Aas) ]k }-
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Similarly, if we take h; as a function of regular generalized relative growth (a, )
with respect to k; or both h; and hy as functions of regular generalized relative
growth («, #) with respect to ki, then we can easily show that

)\(a’g) [hl . h2]l~c1 S A = max{)\(a,g) [hl]kl, )\(a,ﬁ) [h2]k1}-

Let us now show that A g)[h1 - ho]r, > A. Since hy, hy satisfy the Property (X),
we have My, ., (1) > My, (r) for all v, 0 < r < 1, sufficiently close to 1 and therefore

(M (M1, (r))) _ oM (M (r)))
Bl(1=r)) Bl —=r))

since M, '(r) is an increasing function of 7. So A(a,s)[h1 - halk, > Aas)[hi]r, and
similarly, Aa,g)[h1 - hole, > Aol -

This completes the proof.

Now we state the next theorem which can be easily followed in view of Theorem
7 and so its proof is omitted.

Theorem 8. Let hy, hy, k1 be all entire functions defined in the unit disc U such
that 0(ap) Pk, O(a)[Pi]k, exist where ky satisfies the Property (D) and hy , ho
satisfy the Property (X), then

0,1 - halw, = max{o(a,pg 1]k, 0(a,8) P2k }-

Theorem 9. Let hy, ki, ko be all entire functions defined in the unit disc U such
that Xa,p) [Pk, > Na,gylPalk, exist where ki- ky satisfies the Property (D) and ki, ks
satisfy the Property (X), then

AMay8) [P ky ke = Min{ A 8) 1]y s Ay [P }-

Proof. Suppose that A ) [h1]k.k < 00. Otherwise if A g)[h1]r,.k, = 00 then the
theorem is trivially true. Also let min{Aw g [Pk, s A(a,p)[P1]k, } = V. We can clearly
assume that A g)[hilk, is finite for & = 1,2. Now for any arbitrary n > 0, with
n < ¥, we obtain for all r, 0 < r < 1, sufficiently close to 1 that

My, (0 [l = )B(L =) 7)) < My (1),

ice My (™! [(2 = D)B((L = 1)) < My (r).
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Hence we have

Miga (@7 [(0 = D)B((L = )7)]) < [Mi ()]
sy My (@7 (8 = DB =) E < My (7).
i€, [My, .k, (o log(exp B((1 — ) ") P D))z < My, (r).
We have from above for all r, 0 < r < 1, sufficiently close to 1 that
My, (0 log(exp B((1 = r) ™))"~ #])3 < My, (r)
since k1- ko has the Property (D) and 6 > 1.
Therefore taking 6 — 14, we have

Miyaa(a” (% = D)B((1 = 1)) < My (7).

It follows from above for all r, 0 < r < 1, sufficiently close to 1 that

oI, ()

Al(L=r)"1) 2

Since 1 > 0 is arbitrary, from above we get that

Mgy M)k ke > W = min{ Ao, [Pk, M) [Pk, }-

Let us now show that A g) [k, .k, < W. Since ky, ky satisfy the Property (X), we
have My, .k, (1) > My, (r) for all r, 0 < r < 1, sufficiently close to 1 and therefore
M, (r) < M, *(r). Hence

A(My k(Mo (1) _ (M (M, (1)
BL-m) T A=

So )\(aﬁg) [hl]klkz < )\(a,ﬁ) [hl]kl and similarly, )\(a,,B) [hl]kl'kz < )\(a,ﬁ) [hl]kz-
Hence the theorem follows.

Theorem 10. Let hy, k1, ko be all entire functions defined in the unit disc U such
that hy is of reqular generalized relative growth (o, B) with respect to at least any
one of ky or ky and ky - ko satisfy the Property (D) and k1, ko satisfy the Property
(X), then

0(a,8) [P k1 ke = Min{ 0(a,8) [Pk 0(a,8) [P1] ks }-
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We omit the proof of Theorem 10 as it can easily be followed from Theorem 9.
Now we state the next two theorems without their proofs as one can easily
derived their proofs from Theorem 5 and Theorem 6 respectively.

Theorem 11. Let hy, ho, ki, k be all entire functions defined in the unit disc U
such that ky - ko be satisfies the Property (D), hy, he satisfy the Property (X) and
ki, ko satisfy the Property (X), then,

(a1 * h2lky
= max(min{o,g 1]k, s (a8 [Pk, > Min{ 0(a,p) [Pty > 0(a,8) P2l 1],

when the following two conditions hold:

(1) hy is of reqular generalized relative growth (o, ) with respect to at least any one
of k1 or ky; and

(19) ho is of reqular generalized relative growth («, ) with respect to at least any
one of k1 or ky.

Theorem 12. Let hy, hs, k1, ko be all entire functions defined in the unit disc U
such that ky - ko, ki, ke be satisfy the Property (D), hy, he satisfy the Property (X)
and ki, ko satisfy the Property (X), then,

/\(a,ﬂ) [hl : h2]k1~k2
= minmax{ A, [Pk, M) [P2)k }, max{Aa,p) [Pk, Ma.s) [Pk, }]

when the following two conditions hold:

(1) At least hy or hy is of reqular generalized relative growth (o, B) with respect to
ki; and

(17) At least hy or hy is of reqular generalized relative growth (a, B) with respect to
k’g.

Next we find out the sum and product related theorems with generalized relative
type (a, 8) ( respectively generalized relative lower type («,3)) and generalized
relative weak type («, ) of an entire functions in the unit disc U with respect to
an entire function taking into consideration of the above theorems.

Theorem 13. Let hy, hs, ki, ko be all entire functions defined in the unit disc U
such that 0wy [Mlk s 0.p)Pelks 0Pk and 0w gylholr, are all non-zero and
finate.

(A) If o@a)[hilky > 0(a,p)[Pslky fori, j = 1,2 and i # j, then

O (a,B) [hl + hg]/ﬂ = 0(a,p) [hz]kl and E(Qﬂ) [hl + hQ]kl = 5((1”3) [hz]k’l
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(B) If 0(aphlr, < 0(a.8)[h], with at least hy is of reqular generalized relative
growth (o, B) with respect to k; fori, j = 1,2 and i # j, then

O(ap) [ P1lkithy = 0o [Plr; and Ty [Palrythy = O(a,8) [Pk -

(C) Assume the functions hy, he, k1 and ko satisfy the following conditions:
(1) Oa.p) M)k < 0(a,8)[P1]k; with at least hy is of reqular generalized relative growth
(o, B) wzth respect to kj fori=1,2,j =1,2 and i # j;
(i1) 0(a,p) 2]k < 0(a,8) [hQ]k with at least hy is of reqular generalized relative growth
(o, B) with respect to kj fori =1,2, j = 1,2 and i # j;
(411) 0(a,)[Pilk, < O(ayp)[Pslky and 0(a p)[hi ]kz < () [Njlk, hold simultaneously for
1=1,2,5=1,2 and i # j;
(19)0(0 ik = |
max(min{g(a.g) [hlk; Q) (Ml }, min{o(a,p) [holk, s lhelk, ] [ 1 =m = 1,2;
then we have

(e [h1 £ holktr, = 00 [Mulk,, | 1, =1,2

and
O (a,8) M1 £ holky ik, = O(a,p) [Pilk,, | L, =1,2.

Proof. From the definitions of generalized relative type (a, ) and generalized
relative lower type (a, ), we get for all r, 0 < r < 1, sufficiently close to 1 that

My (r) < My, (o™ (log{(0a,) [l +m)exp(B((1 —7)~1))|2ealtelay), - (2.10)
M, (r) = My o™ (1og{ (T (a0 [Pl — m)lexp(B((1 —r)~1)j2enPuley](2.11)

e M (r) < M (37 (o (R T, 212

and for a sequence of values of r tending to 1, we obtain that

My (r) = My, (e~ (log{(0a,) [, — m)lexp(B((L —r)~1))|een e} (2.13)

o M (r) < My (57 g ()T ), 2.14)

and

M, (r) < M, (o (10g{ (T (o) [l + m)exp(B((1 =)~ lulu})  (2.15)

where 1 > 0 is any arbitrary positive number, k =1, 2 and [ = 1, 2.
Case I. Suppose that (a8 [k > 0(a,p)[h2)k, holds. Also let n(> 0) be arbitrary.
Now in view of (2.10), we get for all » , 0 < r < 1, sufficiently close to 1 that

My, (r) < My, (@ (log{ (00 ) [Pak, +n)[exp(B((1 —r)~))|2en M) - (14 A),
(2.16)
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M, (0~ (log{(0 (a5 (2], +)exp(B((1—r)~1))) () "2k 1)
My (0= (10g{(0(a, g [T 1, +)exp(B((1—r)~1))] () "1k 1)
> 0(a,8)[P2)k,, and for all r, 0 < r < 1, sufficiently close to 1, we can make the term
A sufficiently small.

Hence for any £ = 1+, where n; = A, it follows from (2.16) for all v, 0 < r < 1,
sufficiently close to 1 that

Mp, sy (r) < My, (o (log{(0/a,) [halk, + m)[exp(B((1 — r)~)]een b}y (1 4 ny)
ie.; My, (r) < My, [ (log{(0a,) ]k, +n)lexp(B((1 —r)~h))jeenPilul]. ¢

where A = , and in view of 0 gy [P ]k,

Hence making £ — 1+, we get in view of Theorem 2, o(a,8)[P1]k, > 0(a,8)[h2]k, and
above for all r, 0 < r < 1, sufficiently close to 1 that

T exp(a( M, (M, ry(1))))
r—1 P lexp(B((1 — r)*l))]é’(a,ﬁ)[hlihz]kl

< 0l

i.e., 0’(&75) [h1 + hg]kl S O‘(Oéﬂ) [hl]kl- (2.17)

Now we may consider that h = hy & hy. Since g(a,8)[P1]k, > 0(a,)[h2]k, holds, then
)Mk = 0@plhi £ holk, < 0,p)hi]k, - Further, let hy = (h & hy). Therefore
in view of Theorem 2 and ¢ g)[h1]k, > 0(a,)[h2)k,, We obtain that o g |hlk, >
Q(a,g) [hZ]kl holds. Hence in view of (2.17) O(a,B) [hl]kl S O(a,B) [h]kl = O(a,B) [hlﬂ:hg]kl.
Therefore O(a,B) [h]kl = O(a,B) [hl]kl = O(a,B) [hl + hQ]kl = O(a,8) [hl]kl-

Similarly, if we consider o g)[h1]r, < 0(a,8)[P2)k,, then one can easily verify that
O(aph £ hale, = 0(ap) [halk, -

Case II. Let us consider that o(.g)[h1]e, > 0(a,p) P2k, holds. Also let n(> 0) be
arbitrary. By (2.10) and (2.15), we have for a sequence of values of r tending to 1
that

M,y (1) < My (@ (log{ () [Pl + ) [exp(B((1 —r)~1)))eea ). (14 B),
(2.18)
M, (0~ (log{ (0. 2]k, +m)lexp(B((1—r)~1))) 2 "2lk1 })
M, (a1 (108{(@ a3y 11 ], +) [exp(B((1—-r) ~1))] () "1l )
> 0(a,8) 2]k, we can make the term B sufficiently small by taking r ( where
0 < r < 1) sufficiently close to 1 and therefore by the same technique of the
proof of Case I, we have from (2.18) that T [h & holk, = T(a,)[h1]r, When
O(a,B) [hl]kl > 0(a,8) [h2]k1 holds.
Likewise, if we consider g(a,) (1], < 0(a,8)[P2]k, , then one can easily verify that
(a0 £ holr, =T (o, o]k, -
Hence from Case I and Case II, we get the first part of the theorem.

where B = , and in view of 04 gy [P ]k,
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Case III. Let us consider that o) 1]k, < 0(a,s)[h1]k, With at least by is of regular
generalized relative growth (o, ) with respect to ky. Hence from (2.11) and (2.13),
we obtain for a sequence of values of r tending to 1 that

Mg, 1, (0 (log{ (0, [Pk, — m)exp(B((1 — 7)) e@mliali )

< My, (@ (log{ (00, ) [P ]y = m)[exp(B((L = 7)) 2l })
+ Mp, (o™ (log{(0(a,5) [Pl — mexp(B((1 — 7))oty
i.e.y My i (@7 (log{ (00 ) [ ]k, = m)exp(B((1 —r)~"))jeen i}y < My, (r)(1 4 C)

(2.19)

where (' — Moo <log{<j<a,m[h11k1fn>[exp(ﬁ((lfv«)-l))]jmmE’:ikl 2
My (a1 (10g{(T (0, 3y [P ]y, =) [exp(B((1—1) ~1))] (@A) T 2 })
0,8 P1]ky < 0(a,8)[M1 ]k, We can make the term C sufficiently small for a sequence
of values of r sufficiently close to 1. Hence for any & = 1 4 n;, where n; = C, we
get from (2.19) and Theorem 4, for a sequence of values of r tending to 1 that

M sry (0 (log{ (000 [Pl — m)lexp(B((1 — r)~1)) eI}y < My, (r) (1 +m)

e, My (0 (og{(0(a ) [Pl — m)lexp(B((L — 7))ol ) < My, (r)e.

Hence, making & — 1+, we obtain from above for a sequence of values of r tending
to 1 that

(e [hlry = mexp(B((1 = r)~"))Jeentihaste < exp(a(M; Ly, (M, (1))).

Since n > 0 is arbitrary, we find that

and since

(a8 [Pk hy = T(a,8) [P, - (2.20)

Now we may consider that k = ki £ ky. Also 0@ p)[hile, < 0wp)hi]r, and at
least hy is of regular generalized relative growth (o, 5) with respect to k. Then
OapPile = 0@p)hlktrs > 0 Mk, . Further let &y = (k £ k3). Therefore
in view of Theorem 4 and 0. g)[h1]k, < 0(a,8)[P1]k,, We obtain that o, g [hi]r <
O(a,8) M1k, as at least hy is of regular generalized relative growth (o, 5) with respect
to ky. Hence in view of (2.20), 0(ap) [k, = 0(a,8)[P1]k = 0(a,8) 1]k 4k, Therefore
(a8)[Palk = (o) [Py
= 0(a,8) [P1lkiths = O(a,8) [Pk, -

Similarly if we con81der O, P1lky > Oa,p)lP1]r, With at least hy is of reg-
ular generalized relative growth (o, B) with respect to ki, then o g)[hilk 4k, =

0 (a,8) 1] ks
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Case IV. In this case suppose that o( g)[h1]k, < 0(a,8)[P1]k, With at least hy is of
regular generalized relative growth (a, ) with respect to ky. Therefore in view of
(2.11), we have for all r, 0 < r < 1, sufficiently close to 1 that

Miy ik, (@ (10g{(F(a,5) [Py — m)exp(B((1 — 7)) eemPily)
< My, (@™ (10g{(@ (o) [T ], — m)[exp(B((1 =) 1))Jeen Pl })
+ Mi, (o™ (10g{ (7 (.5 [P ], — m)[exp(B((1 — 7)) 2t Pilin}y)
Miy sk, (@ (10g{(F(a,3) [P )iy = mexp(B((1 = 7)) eem i}y < My, (r)(1+ D),

(2.21)

Miy (o (10g{(F a3y [P )1, =) [exp(B((1—r) 1)) %) "1k )
Miy (=1 (10g{(3 a3y (11 ]y =) lex(B((1—r) ~1))] “(8) " Ik2 })
< 0(a,8)[M]ks, We can make the term D sufficiently small by taking r sufficiently

close to 1 and hence by the similar way of the proof of Case III we have from (2.21)
that 7 g [k ks = O(a,8)[P1]k, Where (a8 [h1]e, < 0(a,8)[P1]k, and at least hy is
of regular generalized relative growth (o, ) with respect to k.

Similarly if we take o(a,8)[P1]k, > 0(a,8)[h1 ]k, With at least hy is of regular gener-
alized relative growth (o, §) with respect to ky, then 7. g) [Pk, £k = T (a,8)[P1] ks

Thus from Case III and Case IV, we get the second part of the theorem.

The third part of the theorem is a natural consequence of Theorem 5 and the
first part and second part of the theorem. So its proof is omitted.

Theorem 14. Let hy, hs, k1, ko be all entire functions defined in the unit disc U
such that Ao, [hlk s Mag)holis Aas)ilre and Nagylholk, are all non-zero and
finite.

(A) If Map)lhilke > Aap)lhile, with at least hj is of reqular generalized relative
growth («, B) with respect to ky for i, j = 1,2 and i # j, then

where D =

and in view of 9(a ) [M1] 5,

Tap)h + halky = Taplhiley and Tiap)[ha + halr = Ta,s) [hilk -
(B) If Mapylhilr, < Mapylhalr, fori=j = 1,2 and i # j, then

T(a,8) [P1lkythy = Tap) [Pk, and Tap) [Palkitr, = T8 [Palk,-

(C) Assume the functions hy, ha, k1 and ko satisfy the following conditions:
DA, [Pk > Na,y[hjle, with at least hj is of reqular generalized relative growth
a, f) wzth respect to ky fori,j = 1,2 and 1#£ g

i) Na,g)[Pilks > Na,gylPjlk, with at least h; is of reqular generalized relative growth
oz,ﬁ) wzth respect to ko fori, 3 = 1,2 cmd 147

iii) Both of Aapg)lhilk, < MNap)lhile, and Aapglholr, < Naglhalr, hold for i,

7

(
(
(
(
(
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j=1,2andi # j;
(10) Ao, [Pk, =
min[max{)\(a,g) [hl]/ﬂ? )‘(a,ﬁ) [hZ]kl}v maX{)‘(a,ﬁ) [hl]k27 >‘(a75) [hQ]k’Q }] | l=m=1,2;
then we have
s [M £ halkytky = Tam) [k | Lm =1,2

and
?(a:ﬁ) [h’l j: h2]k1j:k2 — ?(ohﬁ) [hl]k;m | l, m = ]_7 2

Proof. We obtain for any n(> 0) and for all » with 0 < r < 1, sufficiently close to
1 that

My (r) < My, (™ (1og{ (T(a,) [l +m)exp(B((1 — 7)) Pemlel}) - (2.22)
My, (r) = My, (@ (1og{ (70, [l — m)[exp(B((L —r)~"))Pen i}y (2.23)

o () < M5 ) (2.24)

and for a sequence of values of r — 1, we get that

My (r) = My, (o™ (log{(T(a,p [hali, — mexp(B((L —r) 1)) e e}y (2.25)

e M) < My (5 g (2T sl

(2.26)

and

My, (r) < My, (@™ (0g{ (T(a,5) [l + m)[exp(B((1 = ) 71))Pemludia}) - (2.27)
where k =1,2 and [ =1, 2.

Case I. Let Aapg)hile, > A@p)lholr, with at least hy is of regular generalized
relative growth (a, ) with respect to k;. Also let n(> 0) be arbitrary. Now we
obtain from (2.22) and (2.27), for a sequence of values of r tending to 1 that

My (1) () < My, (@7 (10g{ (710, [P}y +0) [exp(B((1—r) 1)) Pl }). (14 E).
(2.28)

where E = Mkl<a-1(log{m,m{hﬂkl+n)[exp(ﬂ((l—rrl))}ja@[[:zjkl})
My (@ (log{(T(a, 3) [h1]ky +) lexp(B((1—r) 1)) (@A) k1Y)

> A(a,8)[h2)k,, we can make the term E sufficiently small by taking r sufficiently

close to 1. Hence with the help of Theorem 1 and using the same technique of Case
I of Theorem 13, we have from (2.28) that

and in view of A4 ) [ ],

Tlas) [l + haliy < Tiap) [halk, - (2.29)
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Further, we may consider that h = hy & hy. Also suppose that A g, >
Aoy [holk, and at least hy is of regular generalized relative growth (a, 3) with re-
spect to k1. Then 7(4.8) 7]k, = T(a,8) M1+ halk, < T(a,8) M1k, - Now let hy = (h £ hy).
Therefore in view of Theorem 1,
Nag) Pilky > Aap)lhe)k, and at least hy is of regular generalized relative growth
(o, B) with respect to ki, we obtain that Aag)[h]r, > A,s)lhe)r, holds. Hence in
view of (2.29), T(ag)[P1]e, < Tap)[hlk, = T(a,8)[h1 + holk,. Therefore 74 g)[R]k,
Ts Ml e Taplh + helk, = 708 [Pl

Similarly, if we consider A g)[h1lr, < Aa,g)[holr, With at least hy is of regular
generalized relative growth (o, 5) with respect to k; then we can easily verify that
(a8 [P + hole, = T(a,)[h2]k, -

Case II. Let us consider that Aq,g) [k, > Aa,p) 2]k, With at least hs is of regular
generalized relative growth (a, #) with respect to k;. Also let n(> 0) be arbitrary.
Hence we get from (2.22) for all r, 0 < r < 1, sufficiently close to 1 that

Mp, iy () (r) < My, (0™ (10g{ (Ta ) [l +0) [exp(B((1—r) 1)) Peolda }). (14 K) .

(2.30)

My, (0™ (108{(F(a 5) (2, +m)[exp(B((1—r) ~1 )] () "2k ) .

here K = —1 Sl , and fAap P

Mo K = e os{( e pfle, +nxp(B((1—) Py 21 10 VIEW of Ao

> A(a,8) 2]k, we can make the term K sufficiently small by taking r sufficiently

close to 1 and therefore for similar reasoning of Case I we get from (2.30) that

T(a,8) [hl + hQ]kl = T(a,) [hl]kl when )\(a,ﬁ) [hl]kl > )\(aﬁ) [hQ]kl and at least hq is of
regular generalized relative growth (a, 8) with respect to k;.

Similarly, if we take A g)[Ri]k, < Aa,p)lhe)e, With at least hy is of regular
generalized relative growth (a, §) with respect to k; then we can easily verify that
T(aplh1 + holk, = T(aglho]k,

Thus from Case I and Case II, we get the first part of the theorem.

Case III. Let us consider that A4 g)[R1]r, < A(a,g)[P1]k,. Hence we get from (2.23)
for all r, 0 < r < 1, sufficiently close to 1 that

My, 1k, (0 l(log{( aﬁ)[h Ik, — ) lexp(B((1 )
< My, (a7 (log{(T(a.p) [P1]k — )[exp(B((1 — r)~1))Pren il y)
+ My, (™ log{ (T(a,p) [P ]ky — m)[exp(B((1 — r) 1)) M ltali )y

i€y My, (a7 (log{ (T 1]k — n)[exp(B((1 — r) 7)) PemlPaliy)

< My, (r)(1 + L) (2.31)
My, (@~ (10g{ (7(a ) [P ] =) [exp(B((1=r) ~1))] *(>-) 111 })

My (a1 (10g{ ({5 11 Iy —m) [exp(B((1—r) = 1)) ) P2k 37
Mag) [k < Mgk, we can make the term L sufficiently small by taking r

1

=) Pl )

where L = and since
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sufficiently closed to 1. Therefore observing Theorem 3 and by the same way of
Case III of Theorem 13, we obtain from (2.31) that

T(a,8) [hl]lﬁﬂ:l@ > T(a,B) [hl}kl- (232)

Further, we may consider that & = ki & ka. As Al < ANag)lPilks, so
Tap) Pl = TaplPilktr > T@p)lhilr . Further let &k = (k £ ky). Therefore
in view of Theorem 3 and A gyl < Aa,g)[h1]r, We obtain that A g [hi]e <
A(a,ﬁ) [hl]kz holds. Hence in view of (232) T(a,B) [hl]kl > T(a,) [hl]k = T(a,8) [hl]klikg-
Therefore T(a,) [hl]k = T(a”g) [hl]kl
i.e., T(aﬁ) [hl]klikg = T(aﬁ) [hl]kl'

Likewise, if we consider that Aq,g)[h1]k, > Aa,5)[P1]k,, then one can easily verify
that T(a,B) [hl]klikg = T(a,f) [hl]kg‘

Case IV. In this case further we consider A gl < A(a,8)[P1]k, - Therefore we
obtain from (2.23) and (2.25), for a sequence of r tending to 1, that

My, (a7 (10g{ (Fap) [Pa]k, — ) [exp(B((1 — r) 1)) Men il ])
< My, (o™ 1<10g{<?a6)[ 1k —n)exp(B((1 —7r)~ 1))])‘(a,/3)[h1]k1}>
+ My, (a—l(log{(? [ ey — ) ]exp(B((1 —7)~ 1))]A(a,5)[h1]kl})
Mg, 1, (@ (log{ (T a9 [P ]k, — 1) [exp(B((1 =)~ ) Pres i)
< My, (r)(1+ H), (2.33)

where H — ng(a_l(log{(?(a,ﬁ)[hl]m—77)[exp(ﬁ((l—r)_1))11(“’[3)[[:1]]’“1})‘
M, (a1 (10g{(T(a,g)[h1]ky —n) [exp(B((1—r)~1))] (@A) 1 Ik2 })
Mag) [Pk, < M) [Pk, We can make the term H sufficiently small by taking r

sufficiently close to 1 and therefore using the similar technique for as executed in the
proof of Case IV of Theorem 13, we get from (2.33) that T, ) [h1 ]k, 4k = T(a,8)[P1]k,
when A,g) [ha]k, < Aag)[har,-

Similarly, if we consider that A g)[R1]k, > A(a,)[P1]k,, then one can easily verify
that T (o, 8) [hl]kl:l:k'z = T(a,8) [hl]l@-

Thus from Case III and Case IV, we get the second part of the theorem.

The proof of the third part of the Theorem is omitted as it can be followed from
Theorem 6 and the above cases.

In the following two theorems we retake the equalities in Theorem 1 to Theorem
4 under somewhat different conditions.

Theorem 15. Let hy, ho, ki, ko be all entire functions defined in the unit disc U.
(A) The following condition is assumed to be satisfied:

Now in view of
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(i) If either o(a.p Mk, # . helk 07 TaplPile, # Tiap)lholr, holds, then
0(a.8)[P1 £ halk, = 0(p)[Milk = 0(a.8)[Palk,-

(B) The following conditions are assumed to be satisfied:

(2) Fither O (a,B) [hl]kl #+ O (a,B) [hl]k,‘g or 0 (a,B) [hl]kl #* 0 (a,p) [hl]kg holds;

(12) If hq is of reqular generalized relative growth (o, B) with respect to at least any
one of ki or ko, then

O(a,B) [hl]klikg = O(a,8) [hl]k1 = O(a,8) [h1]k2-

Proof. Case I. Suppose that o g)[R1]k, = 0(a,8) 2]k
(0 < 0(a8)[M]krs 0(a)[h2]k, < 00). Now in view of Theorem 2 it is easy to see that
O, [P1 £ hali, < 0(a,p)[P1]ky = 0(a,)[h2]k, - If possible let

0,81 £ halky, < 0(a,8) M)k, = 0(a,8) [P2]k, - (2.34)

Let o(a,8)[P1]k, # 0(a,8)[h2)k, - Then from the first part of Theorem 13 and (2.34) we
obtain that o(a,g)[h1lk, = 0(a,8) [M1Eh2TFholk, = 0(a,8)[h2)k, Which is a contradiction.
Hence o(a,p) (M £ holk, = 0(a,p)[P1]k, = 0(a,p)[h2lr, - Similarly by the first part of
Theorem 13, one can obtain the same conclusion under the hypothesis 74 gy [h1 ]k, 7#
T (a,8)[h2]k, - This completes the proof of the first part of the theorem.

Case II. Let us assume that o g)[P1]k, = 0.8 [Pk (0 < 0(a,8)[P1]k1> 0(a,8)[P1]ks
< 00) and h; is of regular generalized relative growth (o, 5) with respect to at least
any one of ky or ks and (k; + ky). Therefore in view of Theorem 4, it follows that
OB [P1)ki ke = Oap)[P1)ky = 0(a8)[M1]k, and if possible let

0(a,8) 1]k 2ky > Oy [Pk = 0(cu [P ]ks- (2.35)

Let us take o(q5 [k, 7 (a8 [M1]k,- Then from the proof of second part of The-
orem 13 and (2.35) we have o g)[hi]k, = O(a,p)[M]kithorts = O(a,8) 1]k, Which
is a contradiction. Hence o(ag)[P1]ki+k: = 0@ Mlen = 0wap) 1]k, - Also from
the proof of second part of Theorem 13 we can get the same conclusion under the
condition 7 g)[h1lk, # T(a,8) 1]k, and hence the second part of the theorem is
established.

Theorem 16. Let hy, ho, ky, ko be all entire functions defined in the unit disc U.
(A) The following conditions are assumed to be satisfied:

(1) (hy & ho) is of reqular generalized relative growth («, ) with respect to at least
any one of ki or ko,
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(ZZ) FEither O (a,B) [hl + hQ]kl 7é O (a,B) [hl =+ hg]k2 or 6(04,,8) [hl + hQ]kl 7'é 5((17/3) [hl + h2]k2 ;
(ZZZ) Either O (a,p) [hl]kl 7§ O (a,B) [hg]kl or 5((175) [hl]kl 7§ E(Qﬂ) [h2]k1 ;
(iv) Either T (a,B) [hl]kz #+ O (a,B) [hg]k2 Or T (a,p) [hl]k2 +# 0 (a,f) [hg]]€2 ; then

O(a,B) [hl + h2]k1ik2 = O(a,8) [hl]k1 = O(a,8) [hz]k1 = O(a,8) [hl]kg = O(a,8) [hz]kQ-

(B) The following conditions are assumed to be satisfied:

(1) hy and hy are of reqular generalized relative growth (c, 5) with respect to at least
any one of ki or ko,

(i) Either 0(a,p)[hlitk, # Oaplholkitre 07 T, [hilkth, # Ta,6)[halktr.;

(ZZZ) FEither T (a,B) [hl]kl #+ T (a,B) [hl]l@ 0T T (a,p) [hl]kzl #* 0 (a,p) [hl]k2 ;

(Z’U) Fither O(a,B) [hQ]kl 7é O(a,B) [hg]kQ or E(a’g) [hQ]kl 7é E(Q,g) [hg]k2 5 then

O(a,8)lP1 £ holiy ks = 0(a8) [Pk = 0(a,8)[P2)ky = 0(a,8)[P1]ks = 0(a,)[P2]ks-

The proof of Theorem 16 is similar to Theorem 15, so we neglect it.

Theorem 17. Let hy, ho, ki, ko be all entire functions defined in the unit disc U.
(A) The following conditions are assumed to be satisfied:

(1) At least any one of hy or hy is of reqular generalized relative growth (o, 3) with
respect to ky;

(i) Bither Ta,p)P1lk, 7 Tap)[h2le 07 T(a,g)[Palk 7# T(a,p)lhe]k, holds, then

Mag)[P1 £ holiy = Aoy [Pl = Aoy (P2l -

(B) The following conditions are assumed to be satisfied:

() ha, k1 and ky be any three entire functions such that A gy[h1lk, and Xa.g)[P1]k,
exists;

(id) Either Tia,p Mk # T Mk 07 Tag)[Pilk 7 TPl holds, then

M) [P1lkythy = Mgy [P1ler = Aoy [Pa]ks-

Proof. Case I. Let )\(a,ﬁ)[hl]lq = )\(a,ﬁ)[hZ]kl (0 < A(a,ﬁ)[hl]kj))\(a,ﬂ)[hQ]kl < OO)
and at least h; or hg and (hy & hy) are of regular generalized relative growth
(av, B) with respect to k. Now, from seeing Theorem 1, it is easy to say that
A(a,ﬁ) [hl + h2]k1 S )\(a,ﬂ) [hl]kl = )\(a,ﬂ) [hﬂkl- If possible let

Aol £ holky < Aap[lali = Aaglh2]k - (2.36)
Let T(a.p)[hle # T(a,)[ho)k, - Then from the proof of the first part of Theorem
14 and (2.36) we have 7(q,) [k, = T(a,8)[M1 £ ho F holk, = T(a,p)[h2]r, which is a
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contradiction. Hence (a1 & hole, = A@)[P1]ke = Na,p)lh2lr, - Similarly from
the proof of the first part of Theorem 14, we can get the same conclusion under
the hypothesis T(a,5)[P1]k, 7 T(a,8)[h2)k,. This completes the proof of the first part
of the theorem.

Case II. Let us consider that A g)[h1]k, = Ao, 1]k,
(0 < Aa,)[P1]kys Mgy [Pk, < 00). Therefore from Theorem 3, we get that
Mag) [Pl ke = Aoy [Pl = Aa,8) 1]k, and if possible let

AMag) Mlkithy > Moy [Pl = Aoy [Pk, (2.37)

Suppose T g)[P1]k, # T(a,8)[P1]k,- Then from the second part of Theorem 14 and
(2.37), we have 7(q g)[P1]k, = T(a,8) [Pk tkoths = T(a,8)[P1]k, Which is a contradic-
tion. Hence Aa)[P1]kitk: = Aap)[P1]e, = Aa,g)lPa]k, - Similarly with the help of
the second part of Theorem 14, we can get the same conclusion under the con-
dition 7a g [Plk, # T(a,8) 1]k, and therefore the second part of the theorem is
established.

Theorem 18. Let hy, ho, k1, ko be all entire functions defined in the unit disc U.
(A) The following conditions are assumed to be satisfied:

(1) At least any one of hy or hy is of reqular generalized relative growth (o, 8) with
respect to ki and ko;

(ZZ) FEither T(a,B) [hl + hg]kl #* T(a,f) [hl + hQ]kQ 0T T (a,p) [hl + hQ]kl #* T (o, 8) [hl + hQ]kQ ;
(iii) Either T(a,p) [k, # Ta,p hele, or Tiap[hlk # Tap helk,;

(ZU) FEither T(a,) [hl]kg # T(a,) [hg]k2 or ?(a,ﬁ) [hl]kg # ?(a,ﬁ) [h2]k2;' then

Nag) [P1 £ holi sk = Aag) [Pk, = Nap) [Pl = Nap)[Pi)ks = Na,g)[P2)k,-

(B) The following conditions are assumed to be satisfied:

(1) At least any one of hy or hy are of reqular generalized relative growth (v, B) with
respect to ki1 £ ks;

(i) Either 7(a,g)[hlktk, 7# Tap Polithe 07 T(apPalki ke # Tap)[helktr, holds;
(’LZZ) Either T(a,p) [hl]k1 + T(a,p) [hl]kz OT T (a,p) [hl]kl + T(a,B) [hl]k‘g holds;

(iv) Either T(a,p)[hale, 7 T(a,g)[h2lks 07 T(a,p)[P2lky 7 T(a,8)[h2lk, holds, then

Mag)[Pn £ holky 2k, = Ao M)k, = M) [Pl = Nagy [Pk = Aa,s) [P2)k,-

The proof of Theorem 18 is similar as of Theorem 17, so we neglect it.

Theorem 19. Let hy, ho, ki, ko be all entire functions defined in the unit disc U
such that o) [hilk, s 0,82k s 0.8 [Mlk, and 0w pylhelk, are all non-zero.
(A) The following conditions are assumed to be satisfied:
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(1) k1 satisfies the Property (D);
(13) hy, ho satisfy the Property (X), then

O(a,p) P - halk, = 0@ gyl and Tpylhi - hale, = T(a,p) ik, -

(B) The following conditions are assumed to be satisfied:

(1) hy is of reqular generalized relative growth (o, ) with respect to at least any one
of k1 or ko ;

(17) ky - ko salisfies the Property (D);

(13i) ky, ko satisfy the Property (X), then,

O(a,8) Pk ke = O(ap) [Pk and Tap [Pk = O(a,p) [Pk -

(C) The following conditions are assumed to be satisfied:

(1) k1 - k2, k1 and ko satisfy the Property (D);

(13) hi, hy satisfy the Property (X) and ki, ko satisfy the Property (X);

(1ii) hy is of reqular generalized relative growth (cv, B) with respect to at least any
one of ki or ks;

(iv) ho is of reqular generalized relative growth (c, ) with respect to at least any
one of ki or ko;

(v) 0,6 [Mulk,, =

max[min{oa,s)[flk;; 0(a,5) [h1lr: }, min{ o s holk,s 0@ lhalr, 3] [ 1,m = 1,2; then

Taplht - halky ke = O,y [k and T(a g1 - holky ke = T(a,8) [Pk, -

Proof. Case I. Suppose that g g)[Ri]k, > 0(a,8)[P2)r - Also let k; be satisfy the
Property (D). Now from (2.10), we have for any > 0 and for all » with 0 < r < 1
and sufficiently close to 1 that

M1 (r) < Miq (07 (log{ (010 )iy + Dlexp(B(1 — ) 1))l )

x My, (™" (log{(0(ap) [ha]k, + g) [exp(B((1—r)~1)))eenzin})). (2.38)

Since 0(a,8) 1]k, > 0(a,p) P2}k, We get that

i il + Dlexp(B((1—r) )jeen 00
r=+00 (0(a, g [ho)k, + 2)exp(B((1 — r)~1))]|een el

Therefore we get from (2.38) for all 7, 0 < r < 1, sufficiently close to 1 that

Mpy (1) < [Miy (™ (log{(0(a,5) [hl]kl+g)[eXp(B((l—7“)‘1))]9<a*‘3>[h”’“1})]2- (2.39)
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Let us observe that
O(a,B) [hl]kl +1n

(e [hlry + 3

m))lexp(B((1 - r)‘l))]gm,a)[hl]kl

D) [exp(B((1 —r)=1))] el
(2.40)

Since k; satisfies the Property (D), we get from (2.40) and (2.39) for all r with
0 < r < 1 and sufficiently close to 1 that

Mp, 1 (r) < My, [0 (log{ (00 [, + g)[exp(ﬁ((l =) e

€.y Myay(r) < My, o (log{(o(a,s ]k + n)lexp(B((1 —r)~H))| el y)),
ford — 1+

> 1

log(a™ (log(0(a,) (M ]k,

+
=
log(a=t(log(o(a,p)[P1]k, +

= §(say) > 1.

Now in view of Theorem 8, we get from above for all » with 0 < r < 1 and
sufficiently close to 1 that

Miy (r) < M, [07" (log{(0(a,) [, +m)[exp(B((1 — r)~1)Jtemlirtiehia )],
O V@)
“ Toxp (A1 = r) ) em oty < (pliule
i.e., 0(ap)lh1 - halr, < (o) [Pk (2.41)
Now we establish the equality of (2.41). Since hy, hy satisfy the Property (X), we

have My, .p,(r) > My, for all r with 0 < r < 1 and sufficiently close to 1 and
therefore

xpla(M, (M, (1) expla(My! (Mi, (1))
exp(B((1 — r)=1))]entrhali ™ Jexp(B((1 — r)~1))]en il

as Mk’ll( ) is an increasing function of r. So o g)[h1 - holk, > 0(a,8) 1]k, - Hence
O(am [ - halky < 0o [P,

Similarly, if we consider o(a,g) [Pl < 0(a)[h2)k, then one can verify that
(a8 - ol = o(a,8) [halk, -
Case II. Let 0(ag) 1]k, > 0(a,p) 2]k, and ki be satisfy the Property (D). Now we
get from (2.10) and (2.15) for any n > 0 and for a sequence of values of r tending

to infinity that
My () < My [0 (08 { @[, + ) exp(B((1 = 7)) Pl )

x My, [0~ (log{ (0 lhalis + DIexp(B(1 — ) )]sl )] (2.42)
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Now in view of 0(ag)[P1]k, > 0(a,8)[h2]k,, We get that

b @ap il + Dlesp(B((1 =) eesta
r=1(0(q,) halk, + 1)[exp(B((1 — r)=1))]e@mh2li

Hence we get from (2.42) for a sequence of values of r — 1 that

exp(B((1 — ) e )

M,y (r) < [My, [0 (10g{ (T (a.p) [P ]k, +

Now by the same technique of the proof of Case I, we can easily show for a sequence
of values of r — 1 that & (a1 - holk, = T(a,8)[h1]r, under the conditions specified
in the theorem.

In the same way, assuming o(a,5)[P1]k, < 0(a,8)[h2]k, We can verify that T, ) [h -
holk, = T(ap)lholk, -

Hence the first part of theorem follows from Case I and Case II.

Case III. Let k; - k; be satisfy the Property (D) and o(a,) [k < 0(a,8)[P1]k, With
hy is of regular generalized relative growth («, 5) with respect to at least any one
of k1 or ke. So by (2.11) and (2.13), we get for a sequence of values of r — 1, that

My (@ (108{ (009 [P ]y — ) exp(B((1 —7)~1))] e mlalis })
< My, (o™ (Log{((ap [Pl — m)exp(B((L —r)~")) el
X My (o™ (log{ (a0 [Py — m)lexp(B((L — 7)) e i), (2.43)

Now in view of 0 g)[h1]k, < 0(a,8)[P1]ks, We obtain that

My, (0~ (log{ (9109 [1a]1s — m)lexp(B((1 — )=l })

P N (@ (108 (0w rliy — M) [exp(B((T = ) 1) el

Now from (2.43) we have for a sequence of values of r — 1, that
M1 (@™ (log{ (0o [Py — m)exp(B((1 — ) 1))]2en il })
< Mhl(r) X MhQ(T)

ieey [ My (07 (10g{ (00, [Py, — m)lexp(B((1 — ) ™)) 2em il ]2 < My, (r)
(2.44)

Since ky - ko satisfies the Property (D), we get from (2.44) for a sequence of values
of r — 1, that

i€, [My iy (0 (10g{ (00 ) [Pk, — m)[exp(B((1 = 7) 1)) Ml })5) < My, ()
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Now letting 6 — 14 we have from above and Theorem 10 for a sequence of values
of r — 1, that

Mgty (0 (l0g{ (00, [Ty — m)[exp(B((1 —r) 1)) esr btz }) < My, ()

exp My, (M3 (1))
(exp B((1 — r)=1))etenlley by
Since i > 0 is arbitrary, it follows from above that

O(a,B) [hl]kl'kz > O(a,B) [hl]kl . (245)

Now we establish the equality of (2.45). Since ky, ks satisfy the Property (X), we
have My, r,(r) > My, (r) for all , 0 < r < 1, sufficiently close to 1 and therefore
M, (r) < M *(r). Hence

exp(a(My i, (M (1)) exp(a(My, (M, (1))
[exp(B((1 — r)=1))]eemtliir ~ fexp(B((1 — r)=1)))2@s Pl

as My, (r) is an increasing function of r. So 0(q.g)[P1]ki ks = T(a,8)[P1]k,

Case IV. Suppose ki - ko be satisfy the Property (D). Also let o g, <
O(a,8) Mk, Where hy is of regular generalized relative growth (o, 8) with respect
to at least any one of k; or ky. Therefore in view of (2.11), we obtain for all r,
0 < r < 1, sufficiently close to 1 that

Miy k(@ (10g{(@ a0y [P, — m)[exp(B((1 —r)~1))Jetemlilia})
< My, (0 (10g{ (@ a0 ], — m)[exp(B((1 —7)7H)))2temlilia})
x My (o™ (log{(T(a, [, — m)exp(B((1 — 7))o i}, (2.46)

Now in view of 0 g)[P1]k, < 0(a,8)[P1]k,, We obtain that
My (0™ (08{(Fa sy — m)lexp(A(1L— 1)~ ]en )
r—1 Mk2 (a—l(log{(ﬁ(aﬂ) [hl]k2 — n)[exp(ﬁ((l — r)—l))}g(a,g)[hl]kz})

Therefore it follows from (2.46) for all r, 0 < r < 1, sufficiently close to 1 that

My, (@7 (108 {(F (o, [, — m)exp(B((1 = )71 i}y < [My, (1)),

Now by the similar technique of the proof of Case III, we can show, for all r with
0 < r < 1 and sufficiently close to 1, that @(a,g)[h1]k ks = T(a,p)[h1]k, under the
given conditions.

0(a,B) [hl]k’l -1

= OQ.
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Similarly, if we take o[l > 0(a,8)[h1]r, Where at least h; is of regu-
lar generalized relative growth (a, ) with respect to ki, then we can show that
T hliks = T bk,

Hence Case III and Case IV completes the second part of theorem.

The proof of the third part can be easily carried out from Theorem 11 and the
above cases.

Theorem 20. Let hy, ho, ki, ko be all entire functions defined in the unit disc U
such that Mo, [k, Aag)[h2lk s Ao [Mlke and A gy[holk, are all non-zero and
finite.

(A) The following conditions are assumed to be satisfied:

(1) At least hy or hy is of regular generalized relative growth (o, B) with respect to
ky fori, 3 =1,2 and i # j;

(17) ky satisfies the Property (D) and hy, hy satisfy the Property (X), then

TP - holk, = TPk, and Tl - bl = T(a,p) [Pk, -

(B) The following condition is assumed to be satisfied:
(1) k1 - ko satisfies the Property (D) and kq, ke satisfy the Property (X),

Ta,8) [Pk = Teag) Ml and Tiap) [Pk ke = T(a,8) [Pk -

(C) The following conditions are assumed to be satisfied:

(1) k1 - k2, k1 and ko be satisfy the Property (D);

(17) hy, he satisfy the Property (X) and ki, ks satisfy the Property (X);

(13i) At least hy or hy is of reqular generalized relative growth («, 3) with respect to
ky fori=1,2,j5=1,2 and 1 # j;

(iv) At least hy or hs is of reqular generalized relative growth (o, B) with respect to
ko fori=1,2,7=1,2 and i # j;

) Aaplulkn =

min[max{A,g)[h1]k, A, [Pe)k, b max{Aa.g)[P1]kss Aa,p)[h2lr }] | 1,m = 1,2 ; then

T - halky ks = TPk and Tiaplha - holky ko = T(a8) [Tk, -

Proof. Case I. Suppose Ag)[hile, > Ap)lholr, where at least hy or hy is of
regular generalized relative growth («, 3) with respect to k; and k; satisfies the
Property (D). Now we get from (2.22) and (2.25) for any n > 0, for a sequence of
r — 1 that

Mhl'hz (T) < Mk1 (a_l(log{(T(Oéﬂ) [hl]lﬂ + g)[exP(ﬂ((l - T)_l))]k(a’m[hl]kl }))

x M, (0 (og{ (e lhalls + ) exp(B((1 = r)  YPessltehn ). (2.47)
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Now in view of Ao, M1k > Aa,p) P2k, we get that

i (el + Dlexp(B(1 =) ) Peslls
1 (T, (ol + Plexp(B((1 = r)~1)Penlely :

As My, (r) increases with r, so we obtain from (2.47) for a sequence of values of
r — 1 that

M) < (M, (o7 (108 (7t [y +5) loxp(B((1—r) e P )2 (248)

Now by similar proof of Case I of Theorem 19 we have from (2.48) that

T [ - Pl = Tia,) [Pk, -

Similarly, if we consider A g1k, < Aa,p)[ho)r, With at least hy or hs is of reg-
ular generalized relative growth (a, 3) with respect to ky, then we can show that
T - halk, = T(a) o]k -

Case II. Let Aag)[h1]e, > Aa,p)[he]r, Where at least hy or hy is of regular gener-
alized relative growth («, #) with respect to ki and k; which satisfy the Property
(D). Now we get from (2.22) for any n > 0 and for all » with 0 < r < 1, sufficiently
close to 1 that

My (1) < My, (07 (08 {(Fia ) [y + Dlexp(B((1 = r) 7)) e P )

x My, (o (log{ (F(a,p) [h2lk, + g)[exp(ﬂ((l —r) )Pl ) (2.49)

Now in view of A g)[R1]k; > Aa,8)[P2]k;, We get that
L (Tl + Blep(F((L—r)~)Peal
r=1(T(a,0) [h2]k, + 5)[exp(B((1 — r)=1)) e raliy

As My, (r) increases with r, so we obtain from (2.49) for all r, 0 < r < 1, sufficiently
close to 1 that

Mp, 1y (r) < [Mk1(a_l(log{(ﬂaﬁ)[hl]m+g)[eXp(ﬁ((l—7“)_1))]“’@[“]’@1})]2- (2.50)

Q.

Now by similar argument of the proof of Case I of Theorem 20 we get from (2.50)
that T(a,8) M1 - holk, = T(a,8)[h1]k, under the conditions specified in the theorem.

Likewise, if we take Ao [k < Aa,p)lhelr, where at least hy or hy is of
regular generalized relative growth (o, ) with respect to ki, then we can show
that T(a,B) [hl . hQ]kl = T(a,p) [hQ]kl-
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Therefore from Case I and Case II, the first part of theorem follows.
Case IIIL. Let Ao [k, < Aa,p)[h1]k, and &y - k2 be satisfy the Property (D). We
get for all r, 0 < r < 1, sufficiently close to 1 that
My, 1, (0™ (10g{ (70 ) [P, — m)[exp(B((1 = r) 1)) emllay)
< My, (o™ (log{ (e, [Pale, = m)[exp(B((1 —r) =) Nem i)
X My (0™ (108 (T [y = )lexp(B((1 =) ) Penlla}).  (251)

Now in view of A g)[R1]k, < A(a,8)[P1]k,, We get that

1]
1 Mia(0” (og{ (T p [y = mlexp(B((1 = 1)~ )Pl })
r=1 My, (o= (log{ (T(a,8) [11] ks — exp(B((1 — r)~)) Pz}

Hence it follows from (2.51) and (2.23) for all r, 0 < r < 1, sufficiently close to 1
that

My, (0 (108 (o [, — ) exp(B((L — ) 7)) PPl })
< My (r) X My, (1)

i, [y, 1 (07 (l0g{ (7(a,p) [t — m)[exp(B((1 — 7)) M lia})]2 < My, (1)
(2.52)

A

= OQ.

/—\

Now by the similar technique of the proof of Case III of Theorem 19 we get from
(2.52) that T(a”g) [hl]k1~k2 = T(awg) [hl]kl- If A(a,ﬁ) [hl]kl > )\(a,fg) [hl]k27 then one can
easily verify that 74 ) [k ke = T(a,8)[P1]k, -

Case IV. Suppose k; - k; be satisfy the Property (D) and A, (1], < Aa,8) [P ]kss
where h; is of regular generalized relative growth («, ) with respect to at least
any one of k; or ko. Now we obtain for a sequence of values of r tending to 1, that

My gy (0™ (10g{ (T (a9 [Py — m)exp(B((1 —r)~")) el })
< My (o (og{(T(a,p [Pl — m)lexp(B((1 —r)~h)) el y)
X My, (e (log{(F(a,p [l — m)exp(B((1 — r)~H)) N il (2.53)

Now in view of A\ g)[R1]e, < Aa,)[h1]k,, We get that
‘m My, (o (log{ (T (a8 M)k, — n)[exp(B((1 — 7)) Pemlinlin 1)
P My (@ (108 (Pt s — 1) exp(B((L — 1)) e P )

Hence it follows from (2.53), (2.23) and (2.25), for a sequence of values of r tending
to 1, that

My (@ (108 { (oo [P ]y = m)exp(B((L — r)~H)Nem il ) < [0y, (7)) (2.54)

= Q.
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Now by the similar argument of the proof of Case III of Theorem 20, we get
from (2.54) that T(ap) [Pk ke = T(a,p) [Pk - Similarly if we take A g)[hi]e, >
Aa,8) [Pk, , then we can easily verify that 7, g [P1]k, ke = T(a,8)[P1]k,- Hence from
Case III and Case IV, the second part of the theorem follows.

Proof of the third part of the Theorem can be easily followed from Theorem 12
and the above cases.
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