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Abstract: Orders and types of entire functions have been actively investigated by
many authors. In this paper, we investigate some basic properties in connection
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1. Introduction and Definitions

Let h (z) =
∞∑
n=0

cnz
n be analytic in the unit disc U = {z : |z| < 1} and Mh (r)

be the maximum of |h (z)| on |z| = r. In [12], Sons defined the order ϱ (h) and the
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lower order λ (h) as

ϱ(h) = lim sup
r→1

log[2] Mh (r)

− log (1− r)
and λ(h) = lim inf

r→1

log[2]Mh (r)

− log (1− r)
.

However during the last several years many authors have investigated different
properties of analytic function in the unit disc U and derived so many great results
e.g. [7, 8, 9, 10, 11]. The notion of relative order was first introduced by Bernal [2,
3].

An entire function h is said to have Property (D), if for any δ > 1, γ > 0 and
for all r (0 < r < 1) sufficiently close to 1,(

Mh

(
β

(
1

1− r

)γ))2

≤ Mh

((
β

(
1

1− r

)γ)δ
)
.

Now let L be a class of continuous non-negative functions α defined on (−∞,∞)
such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ ∞ as x → ∞. Further we assume
that throughout the present paper α, β ∈ L. Now considering this, Biswas et al.
[4] have introduced the definitions of the generalized order (α, β) and generalized
lower order (α, β) of an entire function h in the unit disc U which are as follows:

Definition 1. [4] The generalized order (α, β) denoted by ϱ(α,β)[h] and generalized
lower order (α, β) denoted by λ(α,β)[h] of an entire function h in the unit disc U
are defined as:

ϱ(α,β)[h] = lim sup
r→1

α (Mh(r))

β((1− r)−1)
and λ(α,β)[h] = lim inf

r→1

α (Mh(r))

β((1− r)−1)
.

Now for making some progresses about the works of relative order, one can
introduce the definitions of generalized relative order (α, β) and generalized relative
lower order (α, β) of an entire functions in the unit disc U with respect to another
entire function in the following way:

Definition 2. Let h and k be entire functions defined in the unit disc U , the
quantities ϱ(α,β)[h]k and λ(α,β)[h]k respectively called generalized relative order (α, β)
and generalized relative lower order (α, β) of h with respect to k, are defined as:

ϱ(α,β)[h]k = lim sup
r→1

α(M−1
k (Mh(r)))

β((1− r)−1)
and λ(α,β)[h]k = lim inf

r→1

α(M−1
k (Mh(r)))

β((1− r)−1)
.

Further if ϱ(α,β)[h]k and λ(α,β)[h]k are the same, then we call h as a function of
regular generalized relative growth (α, β) with respect to k. Otherwise, we call h
as a function of irregular generalized relative growth (α, β) with respect to k.
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Now in order to refine the growth scale namely the generalized relative order
(α, β), we introduce the definitions of another growth indicators, called generalized
relative type (α, β) and generalized relative lower type (α, β) respectively of an
entire function h with respect to an entire function k in the unit disc U which are
as follows:

Definition 3. Let h and k be entire functions defined in the unit disc U with
h have finite positive generalized relative order (α, β) with respect to k (i.e., 0 <
ϱ(α,β)[h]k < ∞), then the quantities σ(α,β)[h]k and σ(α,β)[h]k respectively called gen-
eralized relative type (α, β) and generalized relative lower type (α, β) of h with
respect to k, are defined as:

σ(α,β)[h]k = lim sup
r→1

exp(α(M−1
k (Mh(r))))

(β((1− r)−1))ϱ(α,β)[h]k
and

σ(α,β)[h]k = lim inf
r→1

exp(α(M−1
k (Mh(r))))

(β((1− r)−1))ϱ(α,β)[h]k
.

It is obvious that 0 ≤ σ(α,β)[h]k ≤ σ(α,β)[h]k ≤ ∞.
Analogously, to determine the relative growth of two entire functions in the

unit disc U having same non zero finite generalized relative lower order (α, β), one
can introduce the definitions of generalized relative weak type (α, β) denoted by
τ(α,β)[h]k and generalized relative upper weak type (α, β) denoted by τ (α,β)[h]k of
an entire function h with respect to entire function k in the unit disc U in the
following way:

Definition 4. Let h and k be entire functions defined in the unit disc U with h
have finite positive generalized relative lower order (α, β) (i.e., 0 < λ(α,β)[h]k < ∞),
then the quantities τ(α,β)[h]k and τ (α,β)[h]k respectively called generalized relative
weak type (α, β) and generalized relative upper weak type (α, β) of h with respect to
k, are defined as:

τ(α,β)[h]k = lim inf
r→1

exp(α(M−1
k (Mh(r))))

(β((1− r)−1))λ(α,β)[h]k
and

τ (α,β)[h]k = lim sup
r→1

exp(α(M−1
k (Mh(r))))

(β((1− r)−1))λ(α,β)[h]k
.

It is obvious that 0 ≤ τ(α,β)[h]k ≤ τ (α,β)[h]k ≤ ∞.
We finally remind the following definition which is needed in the sequel.

Definition 5. Let h and k be entire functions defined in the unit disc U . Then
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they are said to have mutually Property (X) in U if for all r, 0 < r < 1, sufficiently
close to 1,

Mh·k(r) > Mh(r) and Mh·k(r) > Mk(r)

hold simultaneously.
Here, in this paper, our aim is to investigate some basic properties of entire

functions in the unit disc U connected to generalized relative order (α, β), gener-
alized relative type (α, β) and generalized relative weak type (α, β) with respect
to another entire function under somewhat different conditions. In this paper, we
suppose that all the growth indicators are nonzero finite.We do not explain the
standard definitions and notations in the theory of entire functions as those are
available in [1], [5], [6], [13] and [14].

2. Main Results
In this section, we present the main results of the paper.

Theorem 1. Let h1, h2 and k1 be entire functions defined in the unit disc U such
that at least h1 or h2 is of regular generalized relative growth (α, β) with respect to
k1. Then

λ(α,β)[h1 ± h2]k1 ≤ max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1}.

The equality holds when λ(α,β)[hi]k1 > λ(α,β)[hj]k1 with at least hj is of regular
generalized relative growth (α, β) with respect to k1 where i, j = 1, 2 and i ̸= j.
Proof. If λ(α,β)[h1±h2]k1 = 0 then theorem is trivially true. So we take λ(α,β)[h1±
h2]k1 > 0. Clearly λ(α,β)[hk]k1 is finite for k = 1, 2. Also let
max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1} = ∆ and h2 is of regular generalized relative growth
(α, β) with respect to k1. Now for any arbitrarily chosen η > 0 from the definition
of λ(α,β)[h1]k1 , we get for a sequence of r tending to 1 that

Mh1 (r) ≤ Mk1(α
−1[(λ(α,β)[h1]k1 + η)β((1− r)−1)])

i.e., Mh1 (r) ≤ Mk1(α
−1[(∆ + η)β((1− r)−1)]). (2.1)

Also for any arbitrarily chosen η > 0 and from the definition of ϱ(α,β)[h2]k1(=
λ(α,β)[h2]k1), we obtain for all r, 0 < r < 1, sufficiently close to 1 that

Mh2(r) ≤ Mk1(α
−1[(λ(α,β)[h2]k1 + η)β((1− r)−1)])

i.e., Mh2(r) ≤ Mk1(α
−1[(∆ + η)β((1− r)−1)]). (2.2)

So from (2.1) and (2.2), we have for a sequence of r tending to 1 that

Mh1±h2(r) < 2Mk1(α
−1[(∆ + η)β((1− r)−1)]).
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Mh1±h2(r) < 2Mk1(α
−1[log(exp β((1− r)−1))(∆+η)]).

i.e.,Mh1±h2(r) < Mk1(α
−1[log(exp β((1− r)−1))(∆+2ε)])

i.e.,
α(M−1

k1
(Mh1±h2(r)))

β((1− r)−1)
< (∆ + 2ε).

Hence

lim inf
r→1

α(M−1
k1

(Mh1±h2(r)))

β((1− r)−1)
≤ ∆+ 2ε.

i.e., λ(α,β)[h1 ± h2]k1 ≤ ∆+ 2ε.

Since η > 0 is arbitrary, we get above

λ(α,β)[h1 ± h2]k1 ≤ ∆ = max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1}.

Similarly, if we take h1 as a function of regular generalized relative growth (α, β)
with respect to k1 or both h1 and h2 are of regular generalized relative growth
(α, β) with respect to k1, then we can verify that

λ(α,β)[h1 ± h2]k1 ≤ ∆ = max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1}. (2.3)

Moreover without loss of any generality, let λ(α,β)[h1]k1 < λ(α,β)[h2]k1 and h = h1 ±
h2. Then in view of (2.3) we get that λ(α,β)[h]k1 ≤ λ(α,β)[h2]k1 . As, h2 = ±(h− h1)
and in this case we obtain that λ(α,β)[h2]k1 ≤ max{λ(α,β)[h]k1 , λ(α,β)[h1]k1} . As we
assume that λ(α,β)[h1]k1 < λ(α,β)[h2]k1 , therefore we have λ(α,β)[h2]k1 ≤ λ(α,β)[h]k1
and
hence λ(α,β)[h]k1 = λ(α,β)[h2]k1 =max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1}. Therefore, λ(α,β)[h1±
h2]k1 = λ(α,β)[hi]k1 | i = 1, 2 provided λ(α,β)[h1]k1 ̸= λ(α,β)[h2]k1 . Thus the theorem
follows.

Theorem 2. Let h1, h2, k1 be all entire functions defined in the unit disc U such
that ϱ(α,β)[h1]k1 and ϱ(α,β)[h2]k1 exist. Then

ϱ(α,β)[h1 ± h2]k1 ≤ max{ϱ(α,β)[h1]k1 , ϱ(α,β)[h2]k1}.

The equality holds when ϱ(α,β)[h1]k1 ̸=, ϱ(α,β)[h2]k1 .
We omit the proof of Theorem 2 as easily it can be derived in view of Theorem

1.

Theorem 3. Let h1, k1, k2 be all entire functions defined in the unit disc U such
that λ(α,β)[h1]k1 and λ(α,β)[h1]k2 exist. Then

λ(α,β)[h1]k1±k2 ≥ min{λ(α,β)[h1]k1 , λ(α,β)[h1]k2}.
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The equality holds when λ(α,β)[h1]k1 ̸= λ(α,β)[h1]k2 .
Proof. If λ(α,β)[h1]k1±k2 = ∞ then the theorem is trivially true. So we suppose that
λ(α,β)[h1]k1±k2 < ∞. We can clearly assume that λ(α,β)[h1]kk is finite for k = 1, 2.
Also let Ψ = min{λ(α,β)[h1]k1 , λ(α,β)[h1]k2}. Now for any arbitrary η > 0 from the
definition of λ(α,β)[h1]kk where k = 1, 2, we have for all r, 0 < r < 1, sufficiently
close to 1

Mkk(α
−1[(λ(α,β)[h1]kk − η)β((1− r)−1)]) ≤ Mh1(r)

i.e, Mkk(α
−1[(Ψ− η)β((1− r)−1)]) ≤ Mh1(r)

Hence, we obtain from above for all r, 0 < r < 1, sufficiently close to 1 that

Mk1±k2(α
−1[(Ψ− η)β((1− r)−1)])

< Mk1(α
−1[(Ψ− η)β((1− r)−1)]) +Mk2(α

−1[(Ψ− η)β((1− r)−1)])

i.e., Mk1±k2(α
−1[(Ψ− η)β((1− r)−1)]) < 2Mh1(r)

i.e., Mk1±k2(α
−1[log(exp β((1− r)−1))(Ψ−η)]) < 2Mh1(r)

i.e.,
1

2
Mk1±k2(α

−1[log(exp β((1− r)−1))(Ψ−η)]) < Mh1(r)

i.e., Mk1±k2(α
−1[log(exp β((1− r)−1))(Ψ−2ε)]) < Mh1(r)

i.e.,
α(M−1

k1±k2
(Mh1(r)))

β((1− r)−1)
> Ψ− 2ε.

Since η > 0 is arbitrary, we get from above that

λ(α,β)[h1]k1±k2 ≥ Ψ = min{λ(α,β)[h1]k1 , λ(α,β)[h1]k2}. (2.4)

Now without loss of any generality, we can take that λ(α,β)[h1]k1 < λ(α,β)[h1]k2 and
k = k1 ± k2. Then in view of (2.4) we get that λ(α,β)[h1]k ≥ λ(α,β)[h1]k1 . Further,
k1 = (k ± k2) and in this case we obtain that λ(α,β)[h1]k1 ≥
min{λ(α,β)[h1]k, λ(α,β)[h1]k2} . As we assume that λ(α,β)[h1]k1 < λ(α,β)[h1]k2 , there-
fore we have λ(α,β)[h1]k1 ≥ λ(α,β)[h1]k and hence
λ(α,β)[h1]k = λ(α,β)[h1]k1 = min{λ(α,β)[h1]k1 , λ(α,β)[h1]k2}. Therefore, λ(α,β)[h1]k1±k2 =
λ(α,β)[h1]ki | i = 1, 2 provided λ(α,β)[h1]k1 ̸= λ(α,β)[h1]k2 . Thus the theorem follows.

Theorem 4. Let h1, k1, k2 be all entire functions defined in the unit disc U such
that h1 is of regular generalized relative growth (α, β) with respect to at least any
one of k1 or k2. Then

ϱ(α,β)[h1]k1±k2 ≥ min{ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2}.
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The equality holds when ϱ(α,β)[h1]ki < ϱ(α,β)[h1]kj with at least h1 is of regular
generalized relative growth (α, β) with respect to kj where i = j = 1, 2 and i ̸= j.

We omit the proof of Theorem 4 as it can be easily derived in view of Theorem
3.

Theorem 5. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U ,
then

ϱ(α,β)[h1 ± h2]k1±k2

≤ max[min{ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2},min{ϱ(α,β)[h2]k1 , ϱ(α,β)[h2]k2}]

when the following two conditions holds:
(i) ϱ(α,β)[h1]ki < ϱ(α,β)[h1]kj with at least h1 is of regular generalized relative growth
(α, β) with respect to kj for i = 1, 2, j = 1, 2 and i ̸= j; and
(ii) ϱ(α,β)[h2]ki < ϱ(α,β)[h2]kj with at least h2 is of regular generalized relative growth
(α, β) with respect to kj for i = 1, 2, j = 1, 2 and i ̸= j.
The equality holds when both ϱ(α,β)[hi]k1 < ϱ(α,β)[hj]k1 and ϱ(α,β)[hi]k2 < ϱ(α,β)[hj]k2
hold for i = 1, 2; j = 1, 2 and i ̸= j.
Proof. Let both the conditions (i) and (ii) hold. Then from Theorem 2 and
Theorem 4, we get

max[min{ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2},min{ϱ(α,β)[h2]k1 , ϱ(α,β)[h2]k2}]
= max[ϱ(α,β)[h1]k1±k2 , ϱ(α,β)[h2]k1±k2 ]

≥ ϱ(α,β)[h1 ± h2]k1±k2 . (2.5)

As ϱ(α,β)[hi]k1 < ϱ(α,β)[hj]k1 and ϱ(α,β)[hi]k2 < ϱ(α,β)[hj]k2 hold simultaneously for
i = 1, 2; j = 1, 2 and i ̸= j, we obtain that

either min{ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2} > min{ϱ(α,β)[h2]k1 , ϱ(α,β)[h2]k2} or

min{ϱ(α,β)[h2]k1 , ϱ(α,β)[h2]k2} > min{ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2} holds.

Hence from the conditions (i) and (ii), we have from above that

either ϱ(α,β)[h1]k1±k2 > ϱ(α,β)[h2]k1±k2 or ϱ(α,β)[h2]k1±k2 > ϱ(α,β)[h1]k1±k2

which is the condition for holding equality in (2.5). Hence the theorem follows.

Theorem 6. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U ,
then

λ(α,β)[h1 ± h2]k1±k2

≥ min[max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1},max{λ(α,β)[h1]k2 , λ(α,β)[h2]k2}]
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when the following two conditions hold:
(i) λ(α,β)[hi]k1 > λ(α,β)[hj]k1 with at least hj is of regular generalized relative growth
(α, β) with respect to k1 for i = 1, 2, j = 1, 2 and i ̸= j; and
(ii) λ(α,β)[hi]k2 > λ(α,β)[hj]k2 with at least hj is of regular generalized relative growth
(α, β) with respect to k2 for i = 1, 2, j = 1, 2 and i ̸= j.
The sign of equality holds when both the conditions λ(α,β)[h1]ki < λ(α,β)[h1]kj and
λ(α,β)[h2]ki < λ(α,β)[h2]kj hold for i = 1, 2; j = 1, 2 and i ̸= j.
Proof. Let both the conditions (i) and (ii) hold. Then from Theorem 1 and
Theorem 3, we get that

min[max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1},max{λ(α,β)[h1]k2 , λ(α,β)[h2]k2}]
= min[λ(α,β)[h1 ± h2]k1 , λ(α,β)[h1 ± h2]k2 ]

≤ λ(α,β)[h1 ± h2]k1±k2 . (2.6)

Since λ(α,β)[h1]ki < λ(α,β)[h1]kj and λ(α,β)[h2]ki < λ(α,β)[h2]kj hold simultaneously
for i = 1, 2; j = 1, 2 and i ̸= j, we get that

either max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1} < max{λ(α,β)[h1]k2 , λ(α,β)[h2]k2} or

max{λ(α,β)[h1]k2 , λ(α,β)[h2]k2} < max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1} holds.

Since conditions (i) and (ii) hold, we get from above that

either λ(α,β)[h1 ± h2]k1 < λ(α,β)[h1 ± h2]k2 or λ(α,β)[h1 ± h2]k2 < λ(α,β)[h1 ± h2]k1

which is the condition for holding the equality in (2.6).
This completes the theorem.

Theorem 7. Let h1, h2, k1 be all entire functions defined in the unit disc U such
that at least h1 or h2 is of regular generalized relative growth (α, β) with respect to
k1 where k1 satisfy the Property (D) and h1, h2 satisfy the Property (X), then

λ(α,β)[h1 · h2]k1 = max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1}.

Proof. Suppose that λ(α,β)[h1 · h2]k1 > 0. Otherwise if λ(α,β)[h1 · h2]k1 = 0 then the
theorem is trivially true. Let us consider that h2 is of regular generalized relative
growth (α, β) with respect to k1. Also let max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1}
= ∆. We can clearly assume that λ(α,β)[hk]k1 is finite for k = 1, 2. Now for any
arbitrarily chosen η

2
> 0, it follows from the definition of λ(α,β)[h1]k1 , for a sequence

of r tending to 1 that

Mh1(r) ≤ Mk1(α
−1[(λ(α,β)[h1]k1 +

η

2
)β((1− r)−1)])
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i.e., Mh1(r) ≤ Mk1(α
−1[(∆ +

η

2
)β((1− r)−1)]). (2.7)

Also for any arbitrarily chosen η
2
> 0, we obtain from the definition of ϱ(α,β)[h2]k1

(= λ(α,β)[h2]k1), for all r, 0 < r < 1, sufficiently close to 1 that

Mh2(r) ≤ Mk1(α
−1[(ϱ(α,β)[h2]k1 +

η

2
)β((1− r)−1)])

i.e., Mh2(r) ≤ Mk1(α
−1[(λ(α,β)[h2]k1 +

η

2
)β((1− r)−1)])

i.e., Mh2(r) ≤ Mk1(α
−1[(∆ +

η

2
)β((1− r)−1)]). (2.8)

Observe that
∆ + η

∆+ η
2

> 1.

Therefore we consider the expression log[α−1[(∆+η)β((1−r)−1)]]
log[α−1[(∆+ η

2
)β((1−r)−1)]]

for all r, 0 < r < 1,

sufficiently close to 1. Thus for any δ > 1, it follows from the above that there is
r0 such that, 0 < r0 < 1, for which

log[α−1[(∆ + η)β(r0)]]

log[α−1[(∆ + η
2
)β(r0)]]

= δ. (2.9)

Hence from (2.7) and (2.8), we have for a sequence of r tending to 1 that

Mh1·h2(r) < [Mk1(α
−1[(∆ +

η

2
)β((1− r)−1)])]2.

Now we obtain from above for a sequence of r tending to 1 that

Mh1·h2(r) < Mk1((α
−1[(∆ +

η

2
)β((1− r)−1)])δ),

since k1 has the Property (D) and δ > 1. Therefore from (2.9), we get from above
for a sequence of r tending to 1 that

Mh1·h2(r) < Mk1(α
−1[(∆ + η)β((1− r)−1)]).

Since η > 0 is arbitrary, we get from above that

λ(α,β)[h1 · h2]k1 ≤ ∆ = max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1}.
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Similarly, if we take h1 as a function of regular generalized relative growth (α, β)
with respect to k1 or both h1 and h2 as functions of regular generalized relative
growth (α, β) with respect to k1, then we can easily show that

λ(α,β)[h1 · h2]k1 ≤ ∆ = max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1}.

Let us now show that λ(α,β)[h1 · h2]k1 ≥ ∆. Since h1, h2 satisfy the Property (X),
we have Mh1·h2(r) > Mh1(r) for all r, 0 < r < 1, sufficiently close to 1 and therefore

α(M−1
k1

(Mh1·h2(r)))

β((1− r)−1)
>

α(M−1
k1

(Mh1(r)))

β((1− r)−1)

since M−1
k1

(r) is an increasing function of r. So λ(α,β)[h1 · h2]k1 ≥ λ(α,β)[h1]k1 and
similarly, λ(α,β)[h1 · h2]k1 ≥ λ(α,β)[h2]k1 .

This completes the proof.
Now we state the next theorem which can be easily followed in view of Theorem

7 and so its proof is omitted.

Theorem 8. Let h1, h2, k1 be all entire functions defined in the unit disc U such
that ϱ(α,β)[h1]k1, ϱ(α,β)[h1]k2 exist where k1 satisfies the Property (D) and h1 , h2

satisfy the Property (X), then

ϱ(α,β)[h1 · h2]k1 = max{ϱ(α,β)[h1]k1 , ϱ(α,β)[h2]k1}.

Theorem 9. Let h1, k1, k2 be all entire functions defined in the unit disc U such
that λ(α,β)[h1]k1, λ(α,β)[h1]k2 exist where k1· k2 satisfies the Property (D) and k1, k2
satisfy the Property (X), then

λ(α,β)[h1]k1·k2 = min{λ(α,β)[h1]k1 , λ(α,β)[h1]k2}.

Proof. Suppose that λ(α,β)[h1]k1·k2 < ∞. Otherwise if λ(α,β)[h1]k1·k2 = ∞ then the
theorem is trivially true. Also let min{λ(α,β)[h1]k1 , λ(α,β)[h1]k2} = Ψ. We can clearly
assume that λ(α,β)[h1]kk is finite for k = 1, 2. Now for any arbitrary η > 0, with
η < Ψ, we obtain for all r, 0 < r < 1, sufficiently close to 1 that

Mkk(α
−1[(λ(α,β)[h1]kk −

η

2
)β((1− r)−1)]) ≤ Mh1(r),

i.e., Mkk(α
−1[(Ψ− η

2
)β((1− r)−1)]) ≤ Mh1(r).
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Hence we have

Mk1·k2(α
−1[(Ψ− η

2
)β((1− r)−1)]) < [Mh1(r)]

2,

i.e., [Mk1·k2(α
−1[(Ψ− η

2
)β((1− r)−1)])]

1
2 < Mh1(r),

i.e., [Mk1·k2(α
−1[log(exp β((1− r)−1))(Ψ− η

2
)])]

1
2 < Mh1(r).

We have from above for all r, 0 < r < 1, sufficiently close to 1 that

Mk1·k2(α
−1[log(exp β((1− r)−1))(Ψ− η

2
)])

1
δ < Mh1(r)

since k1· k2 has the Property (D) and δ > 1.
Therefore taking δ → 1+, we have

Mk1·k2(α
−1[(Ψ− η

2
)β((1− r)−1)]) < Mh1(r).

It follows from above for all r, 0 < r < 1, sufficiently close to 1 that

α(M−1
k1·k2

(Mh1(r)))

β((1− r)−1)
> Ψ− η

2
.

Since η > 0 is arbitrary, from above we get that

λ(α,β)[h1]k1·k2 ≥ Ψ = min{λ(α,β)[h1]k1 , λ(α,β)[h1]k2}.

Let us now show that λ(α,β)[h1]k1·k2 ≤ Ψ. Since k1, k2 satisfy the Property (X), we
have Mk1·k2(r) > Mk1(r) for all r, 0 < r < 1, sufficiently close to 1 and therefore
M−1

k1·k2(r) < M−1
k1

(r). Hence

α(M−1
k1·k2(Mh1(r)))

β((1− r)−1)
<

α(M−1
k1

(Mh1(r)))

β((1− r)−1)
.

So λ(α,β)[h1]k1·k2 ≤ λ(α,β)[h1]k1 and similarly, λ(α,β)[h1]k1·k2 ≤ λ(α,β)[h1]k2 .
Hence the theorem follows.

Theorem 10. Let h1, k1, k2 be all entire functions defined in the unit disc U such
that h1 is of regular generalized relative growth (α, β) with respect to at least any
one of k1 or k2 and k1 · k2 satisfy the Property (D) and k1, k2 satisfy the Property
(X), then

ϱ(α,β)[h1]k1·k2 = min{ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2}.
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We omit the proof of Theorem 10 as it can easily be followed from Theorem 9.

Now we state the next two theorems without their proofs as one can easily
derived their proofs from Theorem 5 and Theorem 6 respectively.

Theorem 11. Let h1, h2, k1, k be all entire functions defined in the unit disc U
such that k1 · k2 be satisfies the Property (D), h1, h2 satisfy the Property (X) and
k1, k2 satisfy the Property (X), then,

ϱ(α,β)[h1 · h2]k1·k2
= max[min{ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2},min{ϱ(α,β)[h2]k1 , ϱ(α,β)[h2]k2}],

when the following two conditions hold:
(i) h1 is of regular generalized relative growth (α, β) with respect to at least any one
of k1 or k2; and
(ii) h2 is of regular generalized relative growth (α, β) with respect to at least any
one of k1 or k2.

Theorem 12. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U
such that k1 · k2, k1, k2 be satisfy the Property (D), h1, h2 satisfy the Property (X)
and k1, k2 satisfy the Property (X), then,

λ(α,β)[h1 · h2]k1·k2
= min[max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1},max{λ(α,β)[h1]k2 , λ(α,β)[h2]k2}]

when the following two conditions hold:
(i) At least h1 or h2 is of regular generalized relative growth (α, β) with respect to
k1; and
(ii) At least h1 or h2 is of regular generalized relative growth (α, β) with respect to
k2.

Next we find out the sum and product related theorems with generalized relative
type (α, β) ( respectively generalized relative lower type (α, β)) and generalized
relative weak type (α, β) of an entire functions in the unit disc U with respect to
an entire function taking into consideration of the above theorems.

Theorem 13. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U
such that ϱ(α,β)[h1]k1, ϱ(α,β)[h2]k1, ϱ(α,β)[h1]k2 and ϱ(α,β)[h2]k2 are all non-zero and
finite.
(A) If ϱ(α,β)[hi]k1 > ϱ(α,β)[hj]k1 for i, j = 1, 2 and i ̸= j, then

σ(α,β)[h1 ± h2]k1 = σ(α,β)[hi]k1 and σ(α,β)[h1 ± h2]k1 = σ(α,β)[hi]k1 .



Some Results in Connection with Sum and Product Theorems Related to ... 59

(B) If ϱ(α,β)[h1]ki < ϱ(α,β)[h1]kj with at least h1 is of regular generalized relative
growth (α, β) with respect to kj for i, j = 1, 2 and i ̸= j, then

σ(α,β)[h1]k1±k2 = σ(α,β)[h1]ki and σ(α,β)[h1]k1±k2 = σ(α,β)[h1]ki .

(C) Assume the functions h1, h2, k1 and k2 satisfy the following conditions:
(i) ϱ(α,β)[h1]ki < ϱ(α,β)[h1]kj with at least h1 is of regular generalized relative growth
(α, β) with respect to kj for i = 1, 2, j = 1, 2 and i ̸= j;
(ii) ϱ(α,β)[h2]ki < ϱ(α,β)[h2]kj with at least h2 is of regular generalized relative growth
(α, β) with respect to kj for i = 1, 2, j = 1, 2 and i ̸= j;
(iii) ϱ(α,β)[hi]k1 < ϱ(α,β)[hj]k1 and ϱ(α,β)[hi]k2 < ϱ(α,β)[hj]k2 hold simultaneously for
i = 1, 2; j = 1, 2 and i ̸= j;
(iv)ϱ(α,β)[hl]km =
max[min{ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2},min{ϱ(α,β)[h2]k1 , ϱ(α,β)[h2]k2}] | l = m = 1, 2;
then we have

σ(α,β)[h1 ± h2]k1±k2 = σ(α,β)[hl]km | l,m = 1, 2

and
σ(α,β)[h1 ± h2]k1±k2 = σ(α,β)[hl]km | l,m = 1, 2.

Proof. From the definitions of generalized relative type (α, β) and generalized
relative lower type (α, β), we get for all r, 0 < r < 1, sufficiently close to 1 that

Mhk
(r) ≤ Mkl(α

−1(log{(σ(α,β)[hk]kl + η)[exp(β((1− r)−1))]ϱ(α,β)[hk]kl}), (2.10)

Mhk
(r) ≥ Mkl [α

−1(log{(σ(α,β)[hk]kl − η)[exp(β((1− r)−1))]ϱ(α,β)[hk]kl}] (2.11)

i.e., Mkl(r) ≤ Mhk
(β−1(log((

exp(α(r))

(σ(α,β)[hk]kl − η)
)

1
ϱ(α,β)[hk]kl ))), (2.12)

and for a sequence of values of r tending to 1, we obtain that

Mhk
(r) ≥ Mkl(α

−1(log{(σ(α,β)[hk]kl − η)[exp(β((1− r)−1))]ϱ(α,β)[hk]kl}) (2.13)

i.e., Mkl(r) ≤ Mhk
(β−1(log((

exp(α(r))

(σ(α,β)[hk]kl − η)
)

1
ϱ(α,β)[hk]kl ))), (2.14)

and

Mhk
(r) ≤ Mkl(α

−1(log{(σ(α,β)[hk]kl + η)[exp(β((1− r)−1))]ϱ(α,β)[hk]kl}), (2.15)

where η > 0 is any arbitrary positive number, k = 1, 2 and l = 1, 2.
Case I. Suppose that ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 holds. Also let η(> 0) be arbitrary.
Now in view of (2.10), we get for all r , 0 < r < 1, sufficiently close to 1 that

Mh1±h2(r) ≤ Mk1(α
−1(log{(σ(α,β)[h1]k1 + η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}) · (1 +A),

(2.16)
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whereA =
Mk1

(α−1(log{(σ(α,β)[h2]k1+η)[exp(β((1−r)−1))]
ϱ(α,β)[h2]k1 })

Mk1
(α−1(log{(σ(α,β)[h1]k1+η)[exp(β((1−r)−1))]

ϱ(α,β)[h1]k1 })
, and in view of ϱ(α,β)[h1]k1

> ϱ(α,β)[h2]k1 , and for all r, 0 < r < 1, sufficiently close to 1, we can make the term
A sufficiently small.

Hence for any ξ = 1+η1, where η1 = A, it follows from (2.16) for all r, 0 < r < 1,
sufficiently close to 1 that

Mh1±h2(r) ≤ Mk1(α
−1(log{(σ(α,β)[h1]k1 + η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}) · (1 + η1)

i.e., Mh1±h2(r) ≤ Mk1 [α
−1(log{(σ(α,β)[h1]k1 + η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}] · ξ.

Hence making ξ → 1+, we get in view of Theorem 2 , ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 and
above for all r, 0 < r < 1, sufficiently close to 1 that

lim sup
r→1

exp(α(M−1
k1

(Mh1±h2(r))))

[exp(β((1− r)−1))]ϱ(α,β)[h1±h2]k1
≤ σ(α,β)[h1]k1

i.e., σ(α,β)[h1 ± h2]k1 ≤ σ(α,β)[h1]k1 . (2.17)

Now we may consider that h = h1 ± h2. Since ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 holds, then
σ(α,β)[h]k1 = σ(α,β)[h1 ± h2]k1 ≤ σ(α,β)[h1]k1 . Further, let h1 = (h ± h2). Therefore
in view of Theorem 2 and ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 , we obtain that ϱ(α,β)[h]k1 >
ϱ(α,β)[h2]k1 holds. Hence in view of (2.17) σ(α,β)[h1]k1 ≤ σ(α,β)[h]k1 = σ(α,β)[h1±h2]k1 .
Therefore σ(α,β)[h]k1 = σ(α,β)[h1]k1 ⇒ σ(α,β)[h1 ± h2]k1 = σ(α,β)[h1]k1 .

Similarly, if we consider ϱ(α,β)[h1]k1 < ϱ(α,β)[h2]k1 , then one can easily verify that
σ(α,β)[h1 ± h2]k1 = σ(α,β)[h2]k1 .

Case II. Let us consider that ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 holds. Also let η(> 0) be
arbitrary. By (2.10) and (2.15), we have for a sequence of values of r tending to 1
that

Mh1±h2(r) ≤ Mk1(α
−1(log{(σ(α,β)[h1]k1 + η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}) · (1 +B),

(2.18)

whereB =
Mk1

(α−1(log{(σ(α,β)[h2]k1+η)[exp(β((1−r)−1))]
ϱ(α,β)[h2]k1 })

Mk1
(α−1(log{(σ(α,β)[h1]k1+η)[exp(β((1−r)−1))]

ϱ(α,β)[h1]k1 })
, and in view of ϱ(α,β)[h1]k1

> ϱ(α,β)[h2]k1 , we can make the term B sufficiently small by taking r ( where
0 < r < 1) sufficiently close to 1 and therefore by the same technique of the
proof of Case I, we have from (2.18) that σ(α,β)[h1 ± h2]k1 = σ(α,β)[h1]k1 when
ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 holds.

Likewise, if we consider ϱ(α,β)[h1]k1 < ϱ(α,β)[h2]k1 , then one can easily verify that
σ(α,β)[h1 ± h2]k1 = σ(α,β)[h2]k1 .

Hence from Case I and Case II, we get the first part of the theorem.
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Case III. Let us consider that ϱ(α,β)[h1]k1 < ϱ(α,β)[h1]k2 with at least h1 is of regular
generalized relative growth (α, β) with respect to k2. Hence from (2.11) and (2.13),
we obtain for a sequence of values of r tending to 1 that

Mk1±k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

≤ Mk1(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

+Mk2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

i.e.,Mk1±k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}) ≤ Mh1(r)(1 + C)

(2.19)

where C =
Mk2

(α−1(log{(σ(α,β)[h1]k1−η)[exp(β((1−r)−1))]
ϱ(α,β)[h1]k1 })

Mk2
(α−1(log{(σ(α,β)[h1]k2−η)[exp(β((1−r)−1))]

ϱ(α,β)[h1]k2 })
, and since

ϱ(α,β)[h1]k1 < ϱ(α,β)[h1]k2 , we can make the term C sufficiently small for a sequence
of values of r sufficiently close to 1. Hence for any ξ = 1 + η1, where η1 = C, we
get from (2.19) and Theorem 4, for a sequence of values of r tending to 1 that

Mk1±k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}) ≤ Mh1(r)(1 + η1)

i.e.,Mk1±k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}) ≤ Mh1(r)ξ.

Hence, making ξ → 1+, we obtain from above for a sequence of values of r tending
to 1 that

(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1±k2 < exp(α(M−1
k1±k2

(Mh1(r)))).

Since η > 0 is arbitrary, we find that

σ(α,β)[h1]k1±k2 ≥ σ(α,β)[h1]k1 . (2.20)

Now we may consider that k = k1 ± k2. Also ϱ(α,β)[h1]k1 < ϱ(α,β)[h1]k2 and at
least h1 is of regular generalized relative growth (α, β) with respect to k2. Then
σ(α,β)[h1]k = σ(α,β)[h1]k1±k2 ≥ σ(α,β)[h1]k1 . Further let k1 = (k ± k2). Therefore
in view of Theorem 4 and ϱ(α,β)[h1]k1 < ϱ(α,β)[h1]k2 , we obtain that ϱ(α,β)[h1]k <
ϱ(α,β)[h1]k2 as at least h1 is of regular generalized relative growth (α, β) with respect
to k2. Hence in view of (2.20), σ(α,β)[h1]k1 ≥ σ(α,β)[h1]k = σ(α,β)[h1]k1±k2 . Therefore
σ(α,β)[h1]k = σ(α,β)[h1]k1
⇒ σ(α,β)[h1]k1±k2 = σ(α,β)[h1]k1 .

Similarly if we consider ϱ(α,β)[h1]k1 > ϱ(α,β)[h1]k2 with at least h1 is of reg-
ular generalized relative growth (α, β) with respect to k1, then σ(α,β)[h1]k1±k2 =
σ(α,β)[h1]k2 .
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Case IV. In this case suppose that ϱ(α,β)[h1]k1 < ϱ(α,β)[h1]k2 with at least h1 is of
regular generalized relative growth (α, β) with respect to k2. Therefore in view of
(2.11), we have for all r, 0 < r < 1, sufficiently close to 1 that

Mk1±k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

≤ Mk1(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

+Mk2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

Mk1±k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}) ≤ Mh1(r)(1 +D),

(2.21)

whereD =
Mk2

(α−1(log{(σ(α,β)[h1]k1−η)[exp(β((1−r)−1))]
ϱ(α,β)[h1]k1 })

Mk2
(α−1(log{(σ(α,β)[h1]k2−η)[exp(β((1−r)−1))]

ϱ(α,β)[h1]k2 })
and in view of ϱ(α,β)[h1]k1

< ϱ(α,β)[h1]k2 , we can make the term D sufficiently small by taking r sufficiently
close to 1 and hence by the similar way of the proof of Case III we have from (2.21)
that σ(α,β)[h1]k1±k2 = σ(α,β)[h1]k1 where ϱ(α,β)[h1]k1 < ϱ(α,β)[h1]k2 and at least h1 is
of regular generalized relative growth (α, β) with respect to k2.

Similarly if we take ϱ(α,β)[h1]k1 > ϱ(α,β)[h1]k2 with at least h1 is of regular gener-
alized relative growth (α, β) with respect to k1, then σ(α,β)[h1]k1±k2 = σ(α,β)[h1]k2 .

Thus from Case III and Case IV, we get the second part of the theorem.
The third part of the theorem is a natural consequence of Theorem 5 and the

first part and second part of the theorem. So its proof is omitted.

Theorem 14. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U
such that λ(α,β)[h1]k1, λ(α,β)[h2]k1, λ(α,β)[h1]k2 and λ(α,β)[h2]k2 are all non-zero and
finite.
(A) If λ(α,β)[hi]k1 > λ(α,β)[hj]k1 with at least hj is of regular generalized relative
growth (α, β) with respect to k1 for i, j = 1, 2 and i ̸= j, then

τ(α,β)[h1 + h2]k1 = τ(α,β)[hi]k1 and τ (α,β)[h1 + h2]k1 = τ (α,β)[hi]k1 .

(B) If λ(α,β)[h1]ki < λ(α,β)[h1]kj for i = j = 1, 2 and i ̸= j, then

τ(α,β)[h1]k1±k2 = τ(α,β)[h1]ki and τ (α,β)[h1]k1±k2 = τ (α,β)[h1]ki .

(C) Assume the functions h1, h2, k1 and k2 satisfy the following conditions:
(i)λ(α,β)[hi]k1 > λ(α,β)[hj]k1 with at least hj is of regular generalized relative growth
(α, β) with respect to k1 for i,j = 1, 2 and i ̸= j;
(ii) λ(α,β)[hi]k2 > λ(α,β)[hj]k2 with at least hj is of regular generalized relative growth
(α, β) with respect to k2 for i, j = 1, 2 and i ̸= j;
(iii) Both of λ(α,β)[h1]ki < λ(α,β)[h1]kj and λ(α,β)[h2]ki < λ(α,β)[h2]kj hold for i,
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j = 1, 2 and i ̸= j;
(iv)λ(α,β)[hl]km =
min[max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1},max{λ(α,β)[h1]k2 , λ(α,β)[h2]k2}] | l = m = 1, 2;
then we have

τ(α,β)[h1 ± h2]k1±k2 = τ(α,β)[hl]km | l,m = 1, 2

and
τ (α,β)[h1 ± h2]k1±k2 = τ (α,β)[hl]km | l,m = 1, 2.

Proof. We obtain for any η(> 0) and for all r with 0 < r < 1, sufficiently close to
1 that

Mhk
(r) ≤ Mkl(α

−1(log{(τ (α,β)[hk]kl + η)[exp(β((1− r)−1))]λ(α,β)[hk]kl}), (2.22)

Mhk
(r) ≥ Mkl(α

−1(log{(τ(α,β)[hk]kl − η)[exp(β((1− r)−1))]λ(α,β)[hk]kl}) (2.23)

i.e., Mkl(r) ≤ Mhk
(β−1(log((

exp(α(r))

(τ(α,β)[hk]kl − η)
)

1
λ(α,β)[hk]kl )), (2.24)

and for a sequence of values of r → 1, we get that

Mhk
(r) ≥ Mkl(α

−1(log{(τ (α,β)[hk]kl − η)[exp(β((1− r)−1))]λ(α,β)[hk]kl}) (2.25)

i.e., Mkl(r) ≤ Mhk
(β−1(log((

exp(α(r))

(τ (α,β)[hk]kl − η)
)

1
λ(α,β)[hk]kl )), (2.26)

and

Mhk
(r) ≤ Mkl(α

−1(log{(τ(α,β)[hk]kl + η)[exp(β((1− r)−1))]λ(α,β)[hk]kl}), (2.27)

where k = 1, 2 and l = 1, 2.

Case I. Let λ(α,β)[h1]k1 > λ(α,β)[h2]k1 with at least h2 is of regular generalized
relative growth (α, β) with respect to k1. Also let η(> 0) be arbitrary. Now we
obtain from (2.22) and (2.27), for a sequence of values of r tending to 1 that

Mh1±h2(r)(r) ≤ Mk1(α
−1(log{(τ(α,β)[h1]k1+η)[exp(β((1−r)−1))]λ(α,β)[h1]k1})·(1+E).

(2.28)

where E =
Mk1

(α−1(log{(τ (α,β)[h2]k1+η)[exp(β((1−r)−1))]
λ(α,β)[h2]k1 })

Mk1
(α−1(log{(τ(α,β)[h1]k1+η)[exp(β((1−r)−1))]

λ(α,β)[h1]k1 })
and in view of λ(α,β)[h1]k1

> λ(α,β)[h2]k1 , we can make the term E sufficiently small by taking r sufficiently
close to 1. Hence with the help of Theorem 1 and using the same technique of Case
I of Theorem 13, we have from (2.28) that

τ(α,β)[h1 + h2]k1 ≤ τ(α,β)[h1]k1 . (2.29)
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Further, we may consider that h = h1 ± h2. Also suppose that λ(α,β)[h1]k1 >
λ(α,β)[h2]k1 and at least h2 is of regular generalized relative growth (α, β) with re-
spect to k1. Then τ(α,β)[h]k1 = τ(α,β)[h1+h2]k1 ≤ τ(α,β)[h1]k1 . Now let h1 = (h±h2).
Therefore in view of Theorem 1,
λ(α,β)[h1]k1 > λ(α,β)[h2]k1 and at least h2 is of regular generalized relative growth
(α, β) with respect to k1, we obtain that λ(α,β)[h]k1 > λ(α,β)[h2]k1 holds. Hence in
view of (2.29), τ(α,β)[h1]k1 ≤ τ(α,β)[h]k1 = τ(α,β)[h1 + h2]k1 . Therefore τ(α,β)[h]k1 =
τ(α,β)[h1]k1 i.e., τ(α,β)[h1 + h2]k1 = τ(α,β)[h1]k1 .

Similarly, if we consider λ(α,β)[h1]k1 < λ(α,β)[h2]k1 with at least h1 is of regular
generalized relative growth (α, β) with respect to k1 then we can easily verify that
τ(α,β)[h1 + h2]k1 = τ(α,β)[h2]k1 .

Case II. Let us consider that λ(α,β)[h1]k1 > λ(α,β)[h2]k1 with at least h2 is of regular
generalized relative growth (α, β) with respect to k1. Also let η(> 0) be arbitrary.
Hence we get from (2.22) for all r, 0 < r < 1, sufficiently close to 1 that

Mh1±h2(r)(r) ≤ Mk1(α
−1(log{(τ (α,β)[h1]k1+η)[exp(β((1−r)−1))]λ(α,β)[h1]k1})·(1+K) .

(2.30)

whereK =
Mk1

(α−1(log{(τ (α,β)[h2]k1+η)[exp(β((1−r)−1))]
λ(α,β)[h2]k1 })

Mk1
(α−1(log{(τ (α,β)[h1]k1+η)[exp(β((1−r)−1))]

λ(α,β)[h1]k1 })
, and in view of λ(α,β)[h1]k1

> λ(α,β)[h2]k1 , we can make the term K sufficiently small by taking r sufficiently
close to 1 and therefore for similar reasoning of Case I we get from (2.30) that
τ (α,β)[h1 ± h2]k1 = τ (α,β)[h1]k1 when λ(α,β)[h1]k1 > λ(α,β)[h2]k1 and at least h2 is of
regular generalized relative growth (α, β) with respect to k1.

Similarly, if we take λ(α,β)[h1]k1 < λ(α,β)[h2]k1 with at least h1 is of regular
generalized relative growth (α, β) with respect to k1 then we can easily verify that
τ (α,β)[h1 + h2]k1 = τ (α,β)[h2]k1

Thus from Case I and Case II, we get the first part of the theorem.

Case III. Let us consider that λ(α,β)[h1]k1 < λ(α,β)[h1]k2 . Hence we get from (2.23)
for all r, 0 < r < 1, sufficiently close to 1 that

Mk1±k2(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

≤ Mk1(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

+Mk2(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

i.e.,Mk1±k2(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

≤ Mh1(r)(1 + L) (2.31)

where L =
Mk2

(α−1(log{(τ(α,β)[h1]k1−η)[exp(β((1−r)−1))]
λ(α,β)[h1]k1 })

Mk2
(α−1(log{(τ(α,β)[h1]k2−η)[exp(β((1−r)−1))]

λ(α,β)[h1]k2 })
, and since

λ(α,β)[h1]k1 < λ(α,β)[h1]k2 , we can make the term L sufficiently small by taking r
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sufficiently closed to 1. Therefore observing Theorem 3 and by the same way of
Case III of Theorem 13, we obtain from (2.31) that

τ(α,β)[h1]k1±k2 ≥ τ(α,β)[h1]k1 . (2.32)

Further, we may consider that k = k1 ± k2. As λ(α,β)[h1]k1 < λ(α,β)[h1]k2 , so
τ(α,β)[h1]k = τ(α,β)[h1]k1±k2 ≥ τ(α,β)[h1]k1 . Further let k1 = (k ± k2). Therefore
in view of Theorem 3 and λ(α,β)[h1]k1 < λ(α,β)[h1]k2 we obtain that λ(α,β)[h1]k <
λ(α,β)[h1]k2 holds. Hence in view of (2.32) τ(α,β)[h1]k1 ≥ τ(α,β)[h1]k = τ(α,β)[h1]k1±k2 .
Therefore τ(α,β)[h1]k = τ(α,β)[h1]k1
i.e., τ(α,β)[h1]k1±k2 = τ(α,β)[h1]k1 .

Likewise, if we consider that λ(α,β)[h1]k1 > λ(α,β)[h1]k2 , then one can easily verify
that τ(α,β)[h1]k1±k2 = τ(α,β)[h1]k2 .

Case IV. In this case further we consider λ(α,β)[h1]k1 < λ(α,β)[h1]k2 .Therefore we
obtain from (2.23) and (2.25), for a sequence of r tending to 1, that

Mk1±k2(α
−1(log{(τ (α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

≤ Mk1(α
−1(log{(τ (α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

+Mk2(α
−1(log{(τ (α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

Mk1±k2(α
−1(log{(τ (α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

≤ Mh1(r)(1 +H), (2.33)

where H =
Mk2

(α−1(log{(τ (α,β)[h1]k1−η)[exp(β((1−r)−1))]
λ(α,β)[h1]k1 })

Mk2
(α−1(log{(τ(α,β)[h1]k2−η)[exp(β((1−r)−1))]

λ(α,β)[h1]k2 })
. Now in view of

λ(α,β)[h1]k1 < λ(α,β)[h1]k2 , we can make the term H sufficiently small by taking r
sufficiently close to 1 and therefore using the similar technique for as executed in the
proof of Case IV of Theorem 13, we get from (2.33) that τ (α,β)[h1]k1±k2 = τ (α,β)[h1]k1
when λ(α,β)[h1]k1 < λ(α,β)[h1]k2 .

Similarly, if we consider that λ(α,β)[h1]k1 > λ(α,β)[h1]k2 , then one can easily verify
that τ (α,β)[h1]k1±k2 = τ (α,β)[h1]k2 .

Thus from Case III and Case IV, we get the second part of the theorem.
The proof of the third part of the Theorem is omitted as it can be followed from

Theorem 6 and the above cases.
In the following two theorems we retake the equalities in Theorem 1 to Theorem

4 under somewhat different conditions.

Theorem 15. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U .
(A) The following condition is assumed to be satisfied:
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(i) If either σ(α,β)[h1]k1 ̸= σ(α,β)[h2]k1 or σ(α,β)[h1]k1 ̸= σ(α,β)[h2]k1 holds, then

ϱ(α,β)[h1 ± h2]k1 = ϱ(α,β)[h1]k1 = ϱ(α,β)[h2]k1 .

(B) The following conditions are assumed to be satisfied:
(i) Either σ(α,β)[h1]k1 ̸= σ(α,β)[h1]k2 or σ(α,β)[h1]k1 ̸= σ(α,β)[h1]k2 holds;
(ii) If h1 is of regular generalized relative growth (α, β) with respect to at least any
one of k1 or k2, then

ϱ(α,β)[h1]k1±k2 = ϱ(α,β)[h1]k1 = ϱ(α,β)[h1]k2 .

Proof. Case I. Suppose that ϱ(α,β)[h1]k1 = ϱ(α,β)[h2]k1
(0 < ϱ(α,β)[h1]k1 , ϱ(α,β)[h2]k1 < ∞). Now in view of Theorem 2 it is easy to see that
ϱ(α,β)[h1 ± h2]k1 ≤ ϱ(α,β)[h1]k1 = ϱ(α,β)[h2]k1 . If possible let

ϱ(α,β)[h1 ± h2]k1 < ϱ(α,β)[h1]k1 = ϱ(α,β)[h2]k1 . (2.34)

Let σ(α,β)[h1]k1 ̸= σ(α,β)[h2]k1 . Then from the first part of Theorem 13 and (2.34) we
obtain that σ(α,β)[h1]k1 = σ(α,β)[h1±h2∓h2]k1 = σ(α,β)[h2]k1 which is a contradiction.
Hence ϱ(α,β)[h1 ± h2]k1 = ϱ(α,β)[h1]k1 = ϱ(α,β)[h2]k1 . Similarly by the first part of
Theorem 13, one can obtain the same conclusion under the hypothesis σ(α,β)[h1]k1 ̸=
σ(α,β)[h2]k1 . This completes the proof of the first part of the theorem.

Case II. Let us assume that ϱ(α,β)[h1]k1 = ϱ(α,β)[h1]k2 (0 < ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2
< ∞) and h1 is of regular generalized relative growth (α, β) with respect to at least
any one of k1 or k2 and (k1 ± k2). Therefore in view of Theorem 4, it follows that
ϱ(α,β)[h1]k1±k2 ≥ ϱ(α,β)[h1]k1 = ϱ(α,β)[h1]k2 and if possible let

ϱ(α,β)[h1]k1±k2 > ϱ(α,β)[h1]k1 = ϱ(α,β)[h1]k2 . (2.35)

Let us take σ(α,β)[h1]k1 ̸= σ(α,β)[h1]k2 . Then from the proof of second part of The-
orem 13 and (2.35) we have σ(α,β)[h1]k1 = σ(α,β)[h1]k1±k2∓k2 = σ(α,β)[h1]k2 which
is a contradiction. Hence ϱ(α,β)[h1]k1±k2 = ϱ(α,β)[h1]k1 = ϱ(α,β)[h1]k2 . Also from
the proof of second part of Theorem 13 we can get the same conclusion under the
condition σ(α,β)[h1]k1 ̸= σ(α,β)[h1]k2 and hence the second part of the theorem is
established.

Theorem 16. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U .
(A) The following conditions are assumed to be satisfied:
(i) (h1 ± h2) is of regular generalized relative growth (α, β) with respect to at least
any one of k1 or k2;
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(ii) Either σ(α,β)[h1±h2]k1 ̸= σ(α,β)[h1±h2]k2 or σ(α,β)[h1±h2]k1 ̸= σ(α,β)[h1±h2]k2;
(iii) Either σ(α,β)[h1]k1 ̸= σ(α,β)[h2]k1 or σ(α,β)[h1]k1 ̸= σ(α,β)[h2]k1;
(iv) Either σ(α,β)[h1]k2 ̸= σ(α,β)[h2]k2 or σ(α,β)[h1]k2 ̸= σ(α,β)[h2]k2; then

ϱ(α,β)[h1 ± h2]k1±k2 = ϱ(α,β)[h1]k1 = ϱ(α,β)[h2]k1 = ϱ(α,β)[h1]k2 = ϱ(α,β)[h2]k2 .

(B) The following conditions are assumed to be satisfied:
(i) h1 and h2 are of regular generalized relative growth (α, β) with respect to at least
any one of k1 or k2;
(ii) Either σ(α,β)[h1]k1±k2 ̸= σ(α,β)[h2]k1±k2 or σ(α,β)[h1]k1±k2 ̸= σ(α,β)[h2]k1±k2;
(iii) Either σ(α,β)[h1]k1 ̸= σ(α,β)[h1]k2 or σ(α,β)[h1]k1 ̸= σ(α,β)[h1]k2;
(iv) Either σ(α,β)[h2]k1 ̸= σ(α,β)[h2]k2 or σ(α,β)[h2]k1 ̸= σ(α,β)[h2]k2; then

ϱ(α,β)[h1 ± h2]k1±k2 = ϱ(α,β)[h1]k1 = ϱ(α,β)[h2]k1 = ϱ(α,β)[h1]k2 = ϱ(α,β)[h2]k2 .

The proof of Theorem 16 is similar to Theorem 15, so we neglect it.

Theorem 17. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U .
(A) The following conditions are assumed to be satisfied:
(i) At least any one of h1 or h2 is of regular generalized relative growth (α, β) with
respect to k1;
(ii) Either τ(α,β)[h1]k1 ̸= τ(α,β)[h2]k1 or τ (α,β)[h1]k1 ̸= τ (α,β)[h2]k1 holds, then

λ(α,β)[h1 ± h2]k1 = λ(α,β)[h1]k1 = λ(α,β)[h2]k1 .

(B) The following conditions are assumed to be satisfied:
(i) h1, k1 and k2 be any three entire functions such that λ(α,β)[h1]k1 and λ(α,β)[h1]k2
exists;
(ii) Either τ(α,β)[h1]k1 ̸= τ(α,β)[h1]k2 or τ (α,β)[h1]k1 ̸= τ (α,β)[h1]k2 holds, then

λ(α,β)[h1]k1±k2 = λ(α,β)[h1]k1 = λ(α,β)[h1]k2 .

Proof. Case I. Let λ(α,β)[h1]k1 = λ(α,β)[h2]k1 (0 < λ(α,β)[h1]k1 , λ(α,β)[h2]k1 < ∞)
and at least h1 or h2 and (h1 ± h2) are of regular generalized relative growth
(α, β) with respect to k1. Now, from seeing Theorem 1, it is easy to say that
λ(α,β)[h1 ± h2]k1 ≤ λ(α,β)[h1]k1 = λ(α,β)[h2]k1 . If possible let

λ(α,β)[h1 ± h2]k1 < λ(α,β)[h1]k1 = λ(α,β)[h2]k1 . (2.36)

Let τ(α,β)[h1]k1 ̸= τ(α,β)[h2]k1 . Then from the proof of the first part of Theorem
14 and (2.36) we have τ(α,β)[h1]k1 = τ(α,β)[h1 ± h2 ∓ h2]k1 = τ(α,β)[h2]k1 which is a
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contradiction. Hence λ(α,β)[h1 ± h2]k1 = λ(α,β)[h1]k1 = λ(α,β)[h2]k1 . Similarly from
the proof of the first part of Theorem 14, we can get the same conclusion under
the hypothesis τ (α,β)[h1]k1 ̸= τ (α,β)[h2]k1 . This completes the proof of the first part
of the theorem.

Case II. Let us consider that λ(α,β)[h1]k1 = λ(α,β)[h1]k2
(0 < λ(α,β)[h1]k1 , λ(α,β)[h1]k2 < ∞). Therefore from Theorem 3, we get that
λ(α,β)[h1]k1±k2 ≥ λ(α,β)[h1]k1 = λ(α,β)[h1]k2 and if possible let

λ(α,β)[h1]k1±k2 > λ(α,β)[h1]k1 = λ(α,β)[h1]k2 . (2.37)

Suppose τ(α,β)[h1]k1 ̸= τ(α,β)[h1]k2 . Then from the second part of Theorem 14 and
(2.37), we have τ(α,β)[h1]k1 = τ(α,β)[h1]k1±k2∓k2 = τ(α,β)[h1]k2 which is a contradic-
tion. Hence λ(α,β)[h1]k1±k2 = λ(α,β)[h1]k1 = λ(α,β)[h1]k2 . Similarly with the help of
the second part of Theorem 14, we can get the same conclusion under the con-
dition τ (α,β)[h1]k1 ̸= τ (α,β)[h1]k2 and therefore the second part of the theorem is
established.

Theorem 18. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U .
(A) The following conditions are assumed to be satisfied:
(i) At least any one of h1 or h2 is of regular generalized relative growth (α, β) with
respect to k1 and k2;
(ii) Either τ(α,β)[h1+h2]k1 ̸= τ(α,β)[h1±h2]k2 or τ (α,β)[h1+h2]k1 ̸= τ (α,β)[h1±h2]k2;
(iii) Either τ(α,β)[h1]k1 ̸= τ(α,β)[h2]k1 or τ (α,β)[h1]k1 ̸= τ (α,β)[h2]k1;
(iv) Either τ(α,β)[h1]k2 ̸= τ(α,β)[h2]k2 or τ (α,β)[h1]k2 ̸= τ (α,β)[h2]k2; then

λ(α,β)[h1 ± h2]k1±k2 = λ(α,β)[h1]k1 = λ(α,β)[h2]k1 = λ(α,β)[h1]k2 = λ(α,β)[h2]k2 .

(B) The following conditions are assumed to be satisfied:
(i) At least any one of h1 or h2 are of regular generalized relative growth (α, β) with
respect to k1 ± k2;
(ii) Either τ(α,β)[h1]k1±k2 ̸= τ(α,β)[h2]k1±k2 or τ (α,β)[h1]k1±k2 ̸= τ (α,β)[h2]k1±k2 holds;
(iii) Either τ(α,β)[h1]k1 ̸= τ(α,β)[h1]k2 or τ (α,β)[h1]k1 ̸= τ (α,β)[h1]k2 holds;
(iv) Either τ(α,β)[h2]k1 ̸= τ(α,β)[h2]k2 or τ (α,β)[h2]k1 ̸= τ (α,β)[h2]k2 holds, then

λ(α,β)[h1 ± h2]k1±k2 = λ(α,β)[h1]k1 = λ(α,β)[h2]k1 = λ(α,β)[h1]k2 = λ(α,β)[h2]k2 .

The proof of Theorem 18 is similar as of Theorem 17, so we neglect it.

Theorem 19. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U
such that ϱ(α,β)[h1]k1, ϱ(α,β)[h2]k1, ϱ(α,β)[h1]k2 and ϱ(α,β)[h2]k2 are all non-zero.
(A) The following conditions are assumed to be satisfied:
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(i) k1 satisfies the Property (D);
(ii) h1, h2 satisfy the Property (X), then

σ(α,β)[h1 · h2]k1 = σ(α,β)[hi]k1 and σ(α,β)[h1 · h2]k1 = σ(α,β)[hi]k1 .

(B) The following conditions are assumed to be satisfied:
(i) h1 is of regular generalized relative growth (α, β) with respect to at least any one
of k1 or k2 ;
(ii) k1 · k2 satisfies the Property (D);
(iii) k1, k2 satisfy the Property (X), then,

σ(α,β)[h1]k1·k2 = σ(α,β)[h1]ki and σ(α,β)[h1]k1·k2 = σ(α,β)[h1]ki .

(C) The following conditions are assumed to be satisfied:
(i) k1 · k2, k1 and k2 satisfy the Property (D);
(ii) h1, h2 satisfy the Property (X) and k1, k2 satisfy the Property (X);
(iii) h1 is of regular generalized relative growth (α, β) with respect to at least any
one of k1 or k2;
(iv) h2 is of regular generalized relative growth (α, β) with respect to at least any
one of k1 or k2;
(v) ϱ(α,β)[hl]km =
max[min{ϱ(α,β)[h1]k1 , ϱ(α,β)[h1]k2},min{ϱ(α,β)[h2]k1 , ϱ(α,β)[h2]k2}] | l,m = 1, 2; then

σ(α,β)[h1 · h2]k1·k2 = σ(α,β)[hl]km and σ(α,β)[h1 · h2]k1·k2 = σ(α,β)[hl]km .

Proof. Case I. Suppose that ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 . Also let k1 be satisfy the
Property (D). Now from (2.10), we have for any η > 0 and for all r with 0 < r < 1
and sufficiently close to 1 that

Mh1·h2(r) ≤ Mk1(α
−1(log{(σ(α,β)[h1]k1 +

η

2
)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}))

×Mk1(α
−1(log{(σ(α,β)[h2]k1+

η

2
)[exp(β((1−r)−1))]ϱ(α,β)[h2]k1})). (2.38)

Since ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 , we get that

lim
r→+∞

(σ(α,β)[h1]k1 +
η
2
)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1

(σ(α,β)[h2]k1 +
η
2
)[exp(β((1− r)−1))]ϱ(α,β)[h2]k1

= ∞.

Therefore we get from (2.38) for all r, 0 < r < 1, sufficiently close to 1 that

Mh1·h2(r) < [Mk1(α
−1(log{(σ(α,β)[h1]k1+

η

2
)[exp(β((1−r)−1))]ϱ(α,β)[h1]k1})]2. (2.39)
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Let us observe that
σ(α,β)[h1]k1 + η

σ(α,β)[h1]k1 +
η
2

> 1

⇒
log(α−1(log(σ(α,β)[h1]k1 + η)))[exp(β((1− r)−1))]ϱ(α,β)[h1]k1

log(α−1(log(σ(α,β)[h1]k1 +
η
2
)))[exp(β((1− r)−1))]ϱ(α,β)[h1]k1

= δ(say) > 1.

(2.40)
Since k1 satisfies the Property (D), we get from (2.40) and (2.39) for all r with
0 < r < 1 and sufficiently close to 1 that

Mh1·h2(r) < Mk1 [α
−1(log{(σ(α,β)[h1]k1 +

η

2
)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})]δ

i.e., Mh1·h2(r) < Mk1 [α
−1(log{(σ(α,β)[h1]k1 + η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})].

for δ → 1+

Now in view of Theorem 8, we get from above for all r with 0 < r < 1 and
sufficiently close to 1 that

Mh1·h2(r) < Mk1 [α
−1(log{(σ(α,β)[h1]k1 + η)[exp(β((1− r)−1))]ϱ(α,β)[h1·h2]k1})].

i.e.,
exp(α(M−1

k1
(Mh1·h2(r))))

[exp(β((1− r)−1))]ϱ(α,β)[h1·h2]k1
< (σ(α,β)[h1]k1 + η)

i.e., σ(α,β)[h1 · h2]k1 ≤ σ(α,β)[h1]k1 . (2.41)

Now we establish the equality of (2.41). Since h1, h2 satisfy the Property (X), we
have Mh1·h2(r) > Mh1 for all r with 0 < r < 1 and sufficiently close to 1 and
therefore

exp(α(M−1
k1

(Mh1·h2(r))))

[exp(β((1− r)−1))]ϱ(α,β)[h1·h2]k1
>

exp(α(M−1
k1

(Mh1(r))))

[exp(β((1− r)−1))]ϱ(α,β)[h1]k1

as M−1
k1

(r) is an increasing function of r. So σ(α,β)[h1 · h2]k1 ≥ σ(α,β)[h1]k1 . Hence
σ(α,β)[h1 · h2]k1 ≤ σ(α,β)[h1]k1 .

Similarly, if we consider ϱ(α,β)[h1]k1 < ϱ(α,β)[h2]k1 , then one can verify that
σ(α,β)[h1 · h2]k1 = σ(α,β)[h2]k1 .
Case II. Let ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 and k1 be satisfy the Property (D). Now we
get from (2.10) and (2.15) for any η > 0 and for a sequence of values of r tending
to infinity that

Mh1·h2(r) ≤ Mk1 [α
−1(log{(σ(α,β)[h1]k1 +

η

2
)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})]

×Mk1 [α
−1(log{(σ(α,β)[h2]k1 +

η

2
)[exp(β((1− r)−1))]ϱ(α,β)[h2]k1})]. (2.42)
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Now in view of ϱ(α,β)[h1]k1 > ϱ(α,β)[h2]k1 , we get that

lim
r→1

(σ(α,β)[h1]k1 +
η
2
)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1

(σ(α,β)[h2]k1 +
η
2
)[exp(β((1− r)−1))]ϱ(α,β)[h2]k1

= ∞.

Hence we get from (2.42) for a sequence of values of r → 1 that

Mh1·h2(r) < [Mk1 [α
−1(log{(σ(α,β)[h1]k1 +

η

2
)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})]]2.

Now by the same technique of the proof of Case I, we can easily show for a sequence
of values of r → 1 that σ(α,β)[h1 · h2]k1 = σ(α,β)[h1]k1 under the conditions specified
in the theorem.

In the same way, assuming ϱ(α,β)[h1]k1 < ϱ(α,β)[h2]k1 we can verify that σ(α,β)[h1 ·
h2]k1 = σ(α,β)[h2]k1 .

Hence the first part of theorem follows from Case I and Case II.

Case III. Let k1 ·k2 be satisfy the Property (D) and ϱ(α,β)[h1]k1 < ϱ(α,β)[h1]k2 with
h1 is of regular generalized relative growth (α, β) with respect to at least any one
of k1 or k2. So by (2.11) and (2.13), we get for a sequence of values of r → 1, that

Mk1·k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

≤ Mk1(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

×Mk2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}). (2.43)

Now in view of ϱ(α,β)[h1]k1 < ϱ(α,β)[h1]k2 , we obtain that

lim
r→1

Mk2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

Mk2(α
−1(log{(σ(α,β)[h1]k2 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k2})

= ∞.

Now from (2.43) we have for a sequence of values of r → 1, that

Mk1·k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

≤ Mh1(r)×Mh2(r)

i.e., [Mk1·k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})]

1
2 ≤ Mh1(r)

(2.44)

Since k1 · k2 satisfies the Property (D), we get from (2.44) for a sequence of values
of r → 1, that

i.e., [Mk1·k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

1
δ ] ≤ Mh1(r)
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Now letting δ → 1+ we have from above and Theorem 10 for a sequence of values
of r → 1, that

Mk1·k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1·k2}) ≤ Mh1(r)

exp(α(M−1
k1·k2(Mh(r))))

(exp β((1− r)−1))ϱ(α,β)[h1]k1·k2
> σ(α,β)[h1]k1 − η

Since η > 0 is arbitrary, it follows from above that

σ(α,β)[h1]k1·k2 ≥ σ(α,β)[h1]k1 . (2.45)

Now we establish the equality of (2.45). Since k1, k2 satisfy the Property (X), we
have Mk1·k2(r) > Mk1(r) for all r, 0 < r < 1, sufficiently close to 1 and therefore
M−1

k1·k2(r) < M−1
k1

(r). Hence

exp(α(M−1
k1·k2(Mh1(r))))

[exp(β((1− r)−1))]ϱ(α,β)[h1]k1·k2
<

exp(α(M−1
k1

(Mh1(r)))

[exp(β((1− r)−1))]ϱ(α,β)[h1]k1

as Mh1(r) is an increasing function of r. So σ(α,β)[h1]k1·k2 = σ(α,β)[h1]k1 .

Case IV. Suppose k1 · k2 be satisfy the Property (D). Also let ϱ(α,β)[h1]k1 <
ϱ(α,β)[h1]k2 where h1 is of regular generalized relative growth (α, β) with respect
to at least any one of k1 or k2. Therefore in view of (2.11), we obtain for all r,
0 < r < 1, sufficiently close to 1 that

Mk1·k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

≤ Mk1(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

×Mk2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}). (2.46)

Now in view of ϱ(α,β)[h1]k1 < ϱ(α,β)[h1]k2 , we obtain that

lim
r→1

Mk2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1})

Mk2(α
−1(log{(σ(α,β)[h1]k2 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k2})

= ∞.

Therefore it follows from (2.46) for all r, 0 < r < 1, sufficiently close to 1 that

Mk1·k2(α
−1(log{(σ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]ϱ(α,β)[h1]k1}) ≤ [Mh1(r)]

2.

Now by the similar technique of the proof of Case III, we can show, for all r with
0 < r < 1 and sufficiently close to 1, that σ(α,β)[h1]k1·k2 = σ(α,β)[h1]k1 under the
given conditions.
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Similarly, if we take ϱ(α,β)[h1]k1 > ϱ(α,β)[h1]k2 where at least h1 is of regu-
lar generalized relative growth (α, β) with respect to k1, then we can show that
σ(α,β)[h1]k1·k2 = σ(α,β)[h1]k2 .

Hence Case III and Case IV completes the second part of theorem.
The proof of the third part can be easily carried out from Theorem 11 and the

above cases.

Theorem 20. Let h1, h2, k1, k2 be all entire functions defined in the unit disc U
such that λ(α,β)[h1]k1, λ(α,β)[h2]k1, λ(α,β)[h1]k2 and λ(α,β)[h2]k2 are all non-zero and
finite.
(A) The following conditions are assumed to be satisfied:
(i) At least h1 or h2 is of regular generalized relative growth (α, β) with respect to
k1 for i, j = 1, 2 and i ̸= j;
(ii) k1 satisfies the Property (D) and h1, h2 satisfy the Property (X), then

τ(α,β)[h1 · h2]k1 = τ(α,β)[hi]k1 and τ (α,β)[h1 · h2]k1 = τ (α,β)[hi]k1 .

(B) The following condition is assumed to be satisfied:
(i) k1 · k2 satisfies the Property (D) and k1, k2 satisfy the Property (X),

τ(α,β)[h1]k1·k2 = τ(α,β)[h1]ki and τ (α,β)[h1]k1·k2 = τ (α,β)[h1]ki .

(C) The following conditions are assumed to be satisfied:
(i) k1 · k2, k1 and k2 be satisfy the Property (D);
(ii) h1, h2 satisfy the Property (X) and k1, k2 satisfy the Property (X);
(iii) At least h1 or h2 is of regular generalized relative growth (α, β) with respect to
k1 for i = 1, 2, j = 1, 2 and i ̸= j;
(iv) At least h1 or h2 is of regular generalized relative growth (α, β) with respect to
k2 for i = 1, 2, j = 1, 2 and i ̸= j;
(v) λ(α,β)[hl]km =
min[max{λ(α,β)[h1]k1 , λ(α,β)[h2]k1},max{λ(α,β)[h1]k2 , λ(α,β)[h2]k2}] | l,m = 1, 2 ; then

τ(α,β)[h1 · h2]k1·k2 = τ(α,β)[hl]km and τ (α,β)[h1 · h2]k1·k2 = τ (α,β)[hl]km .

Proof. Case I. Suppose λ(α,β)[h1]k1 > λ(α,β)[h2]k1 where at least h1 or h2 is of
regular generalized relative growth (α, β) with respect to k1 and k1 satisfies the
Property (D). Now we get from (2.22) and (2.25) for any η > 0, for a sequence of
r → 1 that

Mh1·h2(r) ≤ Mk1(α
−1(log{(τ(α,β)[h1]k1 +

η

2
)[exp(β((1− r)−1))]λ(α,β)[h1]k1}))

×Mk1(α
−1(log{(τ (α,β)[h2]k1 +

η

2
)[exp(β((1− r)−1))]λ(α,β)[h2]k1})). (2.47)
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Now in view of λ(α,β)[h1]k1 > λ(α,β)[h2]k1 , we get that

lim
r→1

(τ(α,β)[h1]k1 +
η
2
)[exp(β((1− r)−1))]λ(α,β)[h1]k1

(τ (α,β)[h2]k1 +
η
2
)[exp(β((1− r)−1))]λ(α,β)[h2]k1

= ∞.

As Mk1(r) increases with r, so we obtain from (2.47) for a sequence of values of
r → 1 that

Mh1·h2(r) < [Mk1(α
−1(log{(τ(α,β)[h1]k1+

η

2
)[exp(β((1−r)−1))]λ(α,β)[h1]k1}))]2. (2.48)

Now by similar proof of Case I of Theorem 19 we have from (2.48) that

τ(α,β)[h1 · h2]k1 = τ(α,β)[h1]k1 .

Similarly, if we consider λ(α,β)[h1]k1 < λ(α,β)[h2]k1 with at least h1 or h2 is of reg-
ular generalized relative growth (α, β) with respect to k1, then we can show that
τ(α,β)[h1 · h2]k1 = τ(α,β)[h2]k1 .

Case II. Let λ(α,β)[h1]k1 > λ(α,β)[h2]k1 where at least h1 or h2 is of regular gener-
alized relative growth (α, β) with respect to k1 and k1 which satisfy the Property
(D). Now we get from (2.22) for any η > 0 and for all r with 0 < r < 1, sufficiently
close to 1 that

Mh1·h2(r) ≤ Mk1(α
−1(log{(τ (α,β)[h1]k1 +

η

2
)[exp(β((1− r)−1))]λ(α,β)[h1]k1}))

×Mk1(α
−1(log{(τ (α,β)[h2]k1 +

η

2
)[exp(β((1− r)−1))]λ(α,β)[h2]k1})). (2.49)

Now in view of λ(α,β)[h1]k1 > λ(α,β)[h2]k1 , we get that

lim
r→1

(τ (α,β)[h1]k1 +
η
2
)[exp(β((1− r)−1))]λ(α,β)[h1]k1

(τ (α,β)[h2]k1 +
η
2
)[exp(β((1− r)−1))]λ(α,β)[h2]k1

= ∞.

As Mk1(r) increases with r, so we obtain from (2.49) for all r, 0 < r < 1, sufficiently
close to 1 that

Mh1·h2(r) < [Mk1(α
−1(log{(τ (α,β)[h1]k1+

η

2
)[exp(β((1−r)−1))]λ(α,β)[h1]k1})]2. (2.50)

Now by similar argument of the proof of Case I of Theorem 20 we get from (2.50)
that τ (α,β)[h1 · h2]k1 = τ (α,β)[h1]k1 under the conditions specified in the theorem.

Likewise, if we take λ(α,β)[h1]k1 < λ(α,β)[h2]k1 where at least h1 or h2 is of
regular generalized relative growth (α, β) with respect to k1, then we can show
that τ (α,β)[h1 · h2]k1 = τ (α,β)[h2]k1 .
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Therefore from Case I and Case II, the first part of theorem follows.
Case III. Let λ(α,β)[h1]k1 < λ(α,β)[h1]k2 and k1 · k2 be satisfy the Property (D). We
get for all r, 0 < r < 1, sufficiently close to 1 that

Mk1·k2(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

≤ Mk1(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

×Mk2(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1}). (2.51)

Now in view of λ(α,β)[h1]k1 < λ(α,β)[h1]k2 , we get that

lim
r→1

Mk2(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

Mk2(α
−1(log{(τ(α,β)[h1]k2 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k2})

= ∞.

Hence it follows from (2.51) and (2.23) for all r, 0 < r < 1, sufficiently close to 1
that

Mk1·k2(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

≤ Mh1(r)×Mh2(r)

i.e., [Mk1·k2(α
−1(log{(τ(α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})]

1
2 ≤ Mh1(r)

(2.52)

Now by the similar technique of the proof of Case III of Theorem 19 we get from
(2.52) that τ(α,β)[h1]k1·k2 = τ(α,β)[h1]k1 . If λ(α,β)[h1]k1 > λ(α,β)[h1]k2 , then one can
easily verify that τ(α,β)[h1]k1·k2 = τ(α,β)[h1]k2 .

Case IV. Suppose k1 ·k2 be satisfy the Property (D) and λ(α,β)[h1]k1 < λ(α,β)[h1]k2 ,
where h1 is of regular generalized relative growth (α, β) with respect to at least
any one of k1 or k2. Now we obtain for a sequence of values of r tending to 1, that

Mk1·k2(α
−1(log{(τ (α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

≤ Mk1(α
−1(log{(τ (α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

×Mk2(α
−1(log{(τ (α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1}) (2.53)

Now in view of λ(α,β)[h1]k1 < λ(α,β)[h1]k2 , we get that

lim
r→1

Mk2(α
−1(log{(τ (α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1})

Mk2(α
−1(log{(τ (α,β)[h1]k2 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k2})

= ∞.

Hence it follows from (2.53), (2.23) and (2.25), for a sequence of values of r tending
to 1, that

Mk1·k2(α
−1(log{(τ (α,β)[h1]k1 − η)[exp(β((1− r)−1))]λ(α,β)[h1]k1}) ≤ [Mh1(r)]

2 (2.54)
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Now by the similar argument of the proof of Case III of Theorem 20, we get
from (2.54) that τ (α,β)[h1]k1·k2 = τ (α,β)[h1]k1 . Similarly if we take λ(α,β)[h1]k1 >
λ(α,β)[h1]k2 , then we can easily verify that τ (α,β)[h1]k1·k2 = τ (α,β)[h1]k2 . Hence from
Case III and Case IV, the second part of the theorem follows.

Proof of the third part of the Theorem can be easily followed from Theorem 12
and the above cases.
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[2] Bernal-González L., Crecimiento relativo de funciones enteras, Aportaciones
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