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1. Introduction
Fuzzy mathematics forms a branch of mathematics related to fuzzy set the-

ory and fuzzy logic. It started in 1965 after the publication of Zadeh’s seminal
work Fuzzy sets [41]. Usually, a fuzzification of mathematical concepts is based
on a generalization of these concepts from characteristic functions to membership
functions. Fuzzy subgroupoids and fuzzy subgroups were introduced in 1971 by
Rosenfeld [39]. Hundreds of papers on related topics have been published. Recent
results and references can be found in [10] and [4]. In mathematics, a t-norm (also
T -norm or, unabbreviated, triangular norm) is a kind of binary operation used in
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the framework of probabilistic metric spaces and in multi-valued logic, specifically
in fuzzy logic. A t-norm generalizes intersection in a lattice and conjunction in
logic. The name triangular norm refers to the fact that in the framework of proba-
bilistic metric spaces t-norms are used to generalize triangle inequality of ordinary
metric spaces. The author by using norms, investigated some properties of fuzzy
algebraic structures [15-38]. In this work, we introduce the concept of fuzzy sub-
bigroups of a bigroup G by using t-norm T (T -fuzzy subbigroups of bigroup G).
We investigate some properties of them and show the relationship between T -fuzzy
subbigroups of bigroup G and subgroups of G. Next, we define the intersection of
two T -fuzzy subbigroups of bigroup G and prove that intersection of any family of
T -fuzzy subbigroups of bigroup G is also T -fuzzy subbigroup of bigroup G. Also
we define normal of two T -fuzzy subbigroups of bigroup G and we obtain that in-
tersection of any family of normal T -fuzzy subbigroups of bigroup G is also normal
T -fuzzy subbigroup of bigroup G. Finally, we investigate T -fuzzy subbigroups of
bigroup G and normal T -fuzzy subbigroups of bigroup G under homomorhisms of
groups and we prove that image and pre-image of T -fuzzy subbigroups of bigroup G
(normal T -fuzzy subbigroups of bigroup G) is also T -fuzzy subbigroups of bigroup
G (normal T -fuzzy subbigroups of bigroup G).

2. Preliminaries

In this section we recall some of the fundamental concepts and definition, which
are necessary for this paper. For details we refer readers to [1, 2, 3, 6, 7, 8, 9, 11,
13, 14, 15, 39, 40].

Proposition 2.1. Let (G, •) be a group and H be a non-empty subset of G. Then
H is a subgroup of G if and only if x, y ∈ H implies x • y−1 ∈ H for all x, y.

Definition 2.2. it Let G be a group and H be subgroup of G. We say that H is
a normal subgroup of G, if we have gH = Hg for all g ∈ G.
Definition 2.3. A set (G,+, ◦) with two binary operations + and ◦ is called a
bigroup if there exist two proper subsets G1 and G2 of G such that
(1) G = G1 ∪G2,
(2) (G1,+) is a group and
(3) (G2, ◦) is a group.

Definition 2.4. A non-empty subset H of a bigroup (G,+, ◦) is called a sub-
bigroup if H itself is a bigroup under the operations + and ◦ defined on G.

Definition 2.5. A t-norm T is a function T : [0, 1] × [0, 1] → [0, 1] having the
following four properties:
(T1) T (x, 1) = x (neutral element),
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(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),
(T3) T (x, y) = T (y, x) (commutativity),
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),
for all x, y, z ∈ [0, 1].

It is clear that if x1 ≥ x2 and y1 ≥ y2, then T (x1, y1) ≥ T (x2, y2).

Example 2.6. (1) Standard intersection T -norm Tm(x, y) = min{x, y}.
(2) Bounded sum T -norm Tb(x, y) = max{0, x+ y − 1}.
(3) algebraic product T -norm Tp(x, y) = xy.
(4) Drastic T -norm

TD(x, y) =


y if x = 1
x if y = 1
0 otherwise.

(5) Nilpotent minimum T -norm

TnM(x, y) =

{
min{x, y} if x+ y > 1

0 otherwise.

(6) Hamacher product T -norm

TH0(x, y) =

{
0 if x = y = 0

xy
x+y−xy

otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the
pointwise largest t-norm: TD(x, y) ≤ T (x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1].

We say that T is idempotent if for all x ∈ [0, 1],T (x, x) = x.

Lemma 2.7. Let T be a t-norm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.8. Let X be a non–empty set. A fuzzy subset µ of X is a function
µ : X → [0, 1].

Definition 2.9. Let µ be a fuzzy subset of a group (G, •). Then µ is called a fuzzy
subgroup of (G, •) under a t-norm T iff for all x, y ∈ G
(1) µ(x • y) ≥ T (µ(x), µ(y))
(2) µ(x−1) ≥ µ(x).
Denote by T -fuzzy subgroup of (G, •), the set of all fuzzy subgroups of (G, •) under
a t-norm T.
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Definition 2.10. Let µ1, µ2 be two T -fuzzy subgroups of (G, •) and x ∈ G. We
define
(1) µ1 ⊆ µ2 iff µ1(x) ≤ µ2(x),
(2) µ1 = µ2 iff µ1(x) = µ2(x),
(3)(µ1 ∩ µ2)(x) = T (µ1(x), µ2(x)).

Proposition 2.11. Let µ1, µ2 be two T -fuzzy subgroups of G. Then µ1 ∩µ2 will be
T -fuzzy subgroup of G.

Definition 2.12. Let f : G→ H be a map and µ : G→ [0, 1] and ν : H → [0, 1].
Following [12] f(µ) : H → [0, 1] and f−1(ν) : G → [0, 1], defined by ∀y ∈ H,
f(µ)(y) = sup{µ(x) | x ∈ G, f(x) = y} if f−1(y) 6= ∅ and f(µ)(y) = 0 if f−1(y) =
∅. Also ∀x ∈ G, f−1(ν)(x) = ν(f(x)).

3. Main Results

Definition 3.1. Let G = (G1 ∪ G2,+, ◦) be a bigroup. Then a fuzzy set µ : G →
[0, 1] is said to be a T -fuzzy subbigroup of bigroup G if there exist two fuzzy subsets
µ1 : G1 → [0, 1] and µ2 : G2 → [0, 1] such that:
(1) µ1 is a T -fuzzy subgroup of (G1,+),
(2) µ2 is a T -fuzzy subgroup of (G2, ◦) and
(3) µ = µ1 ∪ µ2.

Example 3.2. Consider the bigroup G = {±i, 0,±1,±2,±3, ...} under the binary
operation + and ◦ where G1 = {0,±1,±2,±3, ...} and G2 = {±1,±i}. Define
µ : G→ [0, 1] by

µ(x) =


0.65 if x = ±i

1 if x ∈ {0,±2,±4, ...}
0.50 if x ∈ {±1,±3, ...}

and µ1 : G1 → [0, 1] by

µ1(x) =

{
1 if x ∈ {0,±2,±4, ...}

0.50 if x ∈ {±1,±3, ...}.

and
µ2 : G2 → [0, 1] by

µ2(x) =

{
0.65 if x = ±i
0.50 if x ∈ ±1.

Let T be an algebraic product T -norm Tp(a, b) = ab for all a, b ∈ [0, 1]. Then
µ1 and µ2 will be T -fuzzy subgroup of (G1,+) and (G2, ◦) respectively. Thus
µ = µ1 ∪ µ2 will be a T -fuzzy subbigroup of bigroup G = (G1 ∪G2,+, ◦).
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Proposition 3.3. If µ = µ1 ∪ µ2 be a T -fuzzy subbigroup of a bigroup G =
(G1 ∪G2,+, ◦). Then
(1) µ1(−x1) = µ1(x1) such that −x1 is an inverse element of x1 in (G1,+).
(2) If T be idempotent t-norm, then µ1(x1) ≤ µ1(eG1),
(3) µ2(x

−1
2 ) = µ2(x2) and

(4) If T be idempotent t-norm, then µ2(x2) ≤ µ2(eG2)
for all x1 ∈ G1 and x2 ∈ G2.
Proof. Let x1 ∈ G1, x2 ∈ G2 and µ1 and µ2 be two T -fuzzy subgroups of (G1,+)
and (G2, ◦) respectively. Then
(1) µ1(x1) = µ1(−(−x1)) ≥ µ1(−x1) ≥ µ1(x1) and so µ1(−x1) = µ1(x1).
(2) Let T be idempotent t-norm. Now

µ1(eG1) = µ1(x1 − x1)
= µ1(x1 + (−x1))
≥ T (µ1(x1), µ1(−x1))
= T (µ1(x1), µ1(x1))

= µ1(x1).

Thus µ1(x1) ≤ µ1(eG1).
(3) µ2(x2) = µ2((x

−1
2 )−1) ≥ µ2(x

−1
2 ) ≥ µ2(x2) and then µ2(x

−1
2 ) = µ2(x2).

(4) If T be idempotent t-norm, then

µ2(eG2) = µ2(x2 ◦ x−1
2 )

≥ T (µ2(x2), µ2(x
−1
2 ))

= T (µ2(x2), µ2(x2))

= µ2(x2).

Then µ2(x2) ≤ µ2(eG2).

Proposition 3.4. If µ = µ1 ∪ µ2 be a T -fuzzy subbigroup of bigroup G = (G1 ∪
G2,+, ◦) and T be idempotent t-norm. Then
(1) µ1(x1 − y1) = µ1(eG1) gives us that µ1(x1) = µ1(y1) for all x1, y1 ∈ G1.
(2) µ2(x2 ◦ y−1

2 ) = µ2(eG2) implies that µ2(x2) = µ2(y2) for all x2, y2 ∈ G2.
Proof. (1) Let x1, y1 ∈ G1 and µ1 be T -fuzzy subgroup of (G1,+) such that T be
idempotent t-norm. Then

µ1(x1) = µ1(x1 − y1 + y1)

≥ T (µ1(x1 − y1), µ1(y1))

= T (µ1(eG1), µ1(y1))

≥ T (µ1(y1), µ1(y1))
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= µ1(y1)

= µ1(y1 − x1 + x1)

= µ1(x1 − (x1 − y1))
≥ T (µ1(x1), µ1(x1 − y1))
= T (µ1(x1), µ1(eG1))

≥ T (µ1(x1), µ1(x1))

= µ1(x1).

Then µ1(x1) = µ1(y1).
(2) Let x2, y2 ∈ G2 and µ2 be T -fuzzy subgroup of (G2, ◦) and T be idempotent
t-norm. Now

µ2(x2) = µ2(x2 ◦ y−1
2 ◦ y2)

≥ T (µ2(x2 ◦ y−1
2 ), µ2(y2))

= T (µ2(eG2), µ2(y2))

≥ T (µ2(y2), µ2(y2))

= µ2(y2)

= µ2(y2 ◦ x−1
2 ◦ x2)

= µ2((x2 ◦ y−1
2 )−1 ◦ x2)

≥ T (µ2((x2 ◦ y−1
2 )−1), µ2(x2))

= T (µ2(x2 ◦ y−1
2 ), µ2(x2))

= T (µ2(eG2), µ2(x2))

≥ T (µ2(x2), µ2(x2))

= µ2(x2).

Therefore µ2(x2) = µ2(y2).

Proposition 3.5. Let µ = µ1 ∪ µ2 be a T -fuzzy subbigroup of a bigroup G =
(G1 ∪G2,+, ◦).
(1) If µ1(x1 − y1) = 1, then µ1(x1) = µ1(y1) for all x1, y1 ∈ G1.
(2) If µ2(x2 ◦ y−1

2 ) = 1, then µ2(x2) = µ2(y2) for all x2, y2 ∈ G2.
Proof. (1) Let x1, y1 ∈ G1. Then

µ1(x1) = µ1(x1 − y1 + y1)

≥ T (µ1(x1 − y1), µ1(y1))

= T (1, µ1(y1))

= µ1(y1)
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= µ1(−y1)
= µ1(−x1 + x1 − y1)
≥ T (µ1(−x1), µ1(x1 − y1))
= T (µ1(−x1), 1)

= µ1(−x1)
= µ1(x1).

Thus µ1(x1) = µ1(y1).
(2) If x2, y2 ∈ G2, then

µ2(x2) = µ2(x2 ◦ y−1
2 ◦ y2)

≥ T (µ2(x2 ◦ y−1
2 ), µ2(y2))

= T (1, µ2(y2))

= µ2(y2)

= µ2(y
−1
2 )

= µ2(x
−1
2 ◦ x2 ◦ y−1

2 )

≥ T (µ2(x
−1
2 ), µ2(x2 ◦ y−1

2 ))

= T (µ2(x
−1
2 ), 1)

= µ2(x
−1
2 )

= µ2(x2).

Thus µ2(x2) = µ2(y2).

Proposition 3.6. If µ = µ1 ∪ µ2 be a T -fuzzy subbigroup of bigroup G = (G1 ∪
G2,+, ◦). Then
(1) H1 = {x1 ∈ G1 | µ1(x1) = 1} is either empty or a subgroup of (G1,+).
(2) H2 = {x2 ∈ G2 | µ2(x2) = 1} is either empty or a subgroup of (G2, ◦).
(3) H = H1 ∪H2 is either empty or a subbigroup of G.
Proof. If H1 and H2 be empty, then H = H1 ∪H2 will be empty.
(1) Let x1, y1 ∈ H1 then µ1(x1) = µ1(y1) = 1. As µ1 is a T -fuzzy subgroup of
(G1,+), so µ1(x1 − y1) ≥ T (µ1(x1), µ1(−y1)) = T (µ1(x1), µ1(y1)) = T (1, 1) = 1.
Thus µ1(x1 − y1) = 1 and then x1 − y1 ∈ H1 and then H1 will be subgroup of
(G1.+).
(2) If x2, y2 ∈ H2, then µ2(x2) = µ2(y2) = 1. Since µ2 is a T -fuzzy subgroup of
(G2, ◦), so µ2(x2 ◦ y−1

2 ) ≥ T (µ2(x2), µ2(y
−1
1 )) = T (µ2(x2), µ2(y2)) = T (1, 1) = 1.

This implies that µ2(x2 ◦ y−1
2 ) = 1 and so x2 ◦ y−1

2 ∈ H2 and H2 will be subgroup
of G2.
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(3) From (1) and (2) we have that H1 and H2 are subgroup of (G1,+) and (G2, ◦)
respectively. Then H = H1 ∪H2 will be a subbigroup of G = (G1 ∪G2,+, ◦).
Proposition 3.7. If µ = µ1 ∪ µ2 be a T -fuzzy subbigroup of a bigroup G =
(G1 ∪G2,+, ◦) and T be idempotent t-norm. Then
(1) H1 = {x1 ∈ G1 | µ1(x1) = µ1(eG1)} is a subgroup of (G1,+).
(2) H2 = {x2 ∈ G2 | µ2(x2) = µ2(eG2)} is a subgroup of (G2, ◦).
(3) H = H1 ∪H2 is a subbigroup of G.
Proof. (1) Since eG1 ∈ H1 so H1 is not empty. Let x1, y1 ∈ H1 then µ1(x1) =
µ1(y1) = µ1(eG1). From part(2) Proposition 3.3 we get that µ1(x1 − y1) ≤ µ1(eG1).
Now as µ1 is a T -fuzzy subgroup of (G1,+), so µ1(x1− y1) ≥ T (µ1(x1), µ1(−y1)) =
T (µ1(x1), µ1(y1)) = T (µ1(eG1), µ1(eG1)) = µ1(eG1) and then µ1(x1− y1) ≥ µ1(eG1).
Therefore µ1(x1−y1) = µ1(eG1) so that x1−y1 ∈ H1 and then H1 will be subgroup
of (G1,+).
(2) We know that eG2 ∈ H2 then H2 is not empty. If x2, y2 ∈ H2, then µ2(x2) =
µ2(y2) = µ2(eG2). Part(4) Proposition 3.3 give us that µ2(x2 ◦ y−1

2 ) ≤ µ1(eG1).
Since µ2 is a T -fuzzy subgroup of (G2, ◦), so µ2(x2 ◦ y−1

2 ) ≥ T (µ2(x2), µ2(y
−1
2 )) =

T (µ2(x2), µ2(y2)) = T (µ2(eG2), µ2(eG2)) = µ2(eG2) and then µ2(x2◦y−1
2 ) ≥ µ2(eG2).

Therefore µ2(x2◦y−1
2 ) = µ2(eG2) so that x2◦y−1

2 ∈ H2 and then H2 will be subgroup
of (G2, ◦).
(3) By (1) and (2) we obtained that H1 and H2 are subgroup of (G1,+) and (G2, ◦)
respectively. Then H = H1 ∪H2 will be a subbigroup of G = (G1 ∪G2,+, ◦).
Proposition 3.8. If µ = µ1 ∪ µ2 be a T -fuzzy subbigroup of a bigroup G =
(G1 ∪G2,+, ◦) and T be idempotent t-norm. Then
(1) µ1(x1 + y1) = T (µ1(x1), µ1(y1)) for all x1, y1 ∈ G1 such that µ1(x1) 6= µ1(y1).
(2) µ2(x2 ◦ y2) = T (µ2(x2), µ2(y2)) for all x2, y2 ∈ G2 such that µ2(x2) 6= µ2(y2).
Proof. (1) Let x1 ∈ G1 such that for all y1 ∈ G1 we have that µ1(y1) < µ1(x1) ≤ 1.
Then

µ1(y1) = T (µ1(y1), µ1(y1)) ≤ T (µ1(x1), µ1(y1)) ≤ T (µ1(y1), 1) = µ1(y1)

and so µ1(y1) = T (µ1(x1), µ1(y1)). Now

µ1(y1) = µ1(−x1 + x1 + y1)

≥ T (µ1(−x1), µ1(x1 + y1))

= T (µ1(x1), µ1(x1 + y1))

≥ T (µ1(x1 + y1), µ1(x1 + y1))

= µ1(x1 + y1)

≥ T (µ1(x1), µ1(y1))
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= µ1(y1).

Therefore µ1(x1 + y1) = µ1(y1) = T (µ1(x1), µ1(y1)).
(2) Let x2 ∈ G2 such that for all y2 ∈ G2 we have that µ2(y2) < µ2(x2) ≤ 1.
Then µ2(y2) = T (µ2(y2), µ2(y2)) ≤ T (µ2(x2), µ2(y2)) ≤ T (µ2(y2), 1) = µ2(y2) and
so µ2(y2) = T (µ2(x2), µ2(y2)). Then

µ2(y2) = µ2(x
−1
2 ◦ x2 ◦ y2)

≥ T (µ2(x
−1
2 ), µ2(x2 ◦ y2))

= T (µ2(x2), µ2(x2 ◦ y2))
≥ T (µ2(x2 ◦ y2), µ2(x2 ◦ y2))
= µ2(x2 ◦ y2)
≥ T (µ2(x2), µ2(y2))

= µ2(y2).

Thus µ2(x2 ◦ y2) = µ2(y2) = T (µ2(x2), µ2(y2)).

Proposition 3.9. If µ = µ1 ∪ µ2 be a T -fuzzy subbigroup of a bigroup G =
(G1 ∪G2,+, ◦) and T be idempotent t-norm.
(1) Let x1 ∈ G1 then µ1(x1 + y1) = µ1(y1) if and only if µ1(x1) = µ1(eG1) for all
y1 ∈ G1.
(2) Let x2 ∈ G2 then µ2(x2 ◦ y2) = µ2(y2) if and only if µ2(x2) = µ2(eG2) for all
y2 ∈ G2.
Proof. (1) Necessity: let x1 ∈ G1 and µ1(x1 + y1) = µ1(y1) for all y1 ∈ G1. Now
set y1 = eG1 then µ1(x1 + eG1) = µ1(eG1) and so µ1(x1) = µ1(eG1).
Sufficiency: assume that µ1(x1) = µ1(eG1) for all y1 ∈ G1 then by Proposition 3.3
(part 2) we get that µ1(x1) = µ1(eG1) ≥ µ1(y1), µ1(x1 + y1). Now

µ1(x1 + y1) ≥ T (µ1(x1), µ1(y1))

≥ T (µ1(y1), µ1(y1))

= µ1(y1)

= µ1(−x1 + x1 + y1)

≥ T (µ1(−x1), µ1(x1 + y1))

= T (µ1(x1), µ1(x1 + y1))

≥ T (µ1(x1 + y1), µ1(x1 + y1))

= µ1(x1 + y1).

Thus µ1(x1 + y1) = µ1(y1).
(2) Necessity: assume x2 ∈ G2 and µ2(x2 ◦ y2) = µ2(y2) for all y2 ∈ G2. Now if we
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let y2 = eG2 , then µ2(x2 ◦ eG2) = µ2(eG2) and therefore µ2(x2) = µ2(eG2).
Sufficiency: as µ2(x2) = µ2(eG2) for all y2 ∈ G2 so by Proposition 3.3 (part 4) we
obtain that µ2(x2) = µ2(eG2) ≥ µ2(y2), µ2(x2 ◦ y2). Thus

µ2(x2 ◦ y2) ≥ T (µ2(x2), µ2(y2))

≥ T (µ2(y2), µ2(y2))

= µ2(y2)

= µ2(x
−1
2 ◦ x2 ◦ y2)

≥ T (µ2(x
−1
2 ), µ2(x2 ◦ y2))

= T (µ2(x2), µ2(x2 ◦ y2))
≥ T (µ2(x2 ◦ y2), µ2(x2 ◦ y2))
= µ2(x2 ◦ y2).

Thus µ2(x2 ◦ y2) = µ2(y2).

Definition 3.10. Let µ = µ1 ∪ µ2 and ν = ν1 ∪ ν2 be two T -fuzzy subbigroups
of bigroup G = (G1 ∪ G2,+, ◦). Define the intersection µ and ν by β = µ ∩ ν =
(µ1∪µ2)∩(ν1∪ν2) = (µ1∩ν1)∪(µ2∩ν2) = β1∪β2 such that β1 = µ1∩ν1 : G1 → [0, 1]
and β2 = µ2 ∩ ν2 : G2 → [0, 1].

Now we prove that the intersection of two T -fuzzy subbigroups is also T -fuzzy
subbigroup.

Proposition 3.11. Let µ = µ1 ∪ µ2 and ν = ν1 ∪ ν2 be two T -fuzzy subbigroups of
bigroup G = (G1∪G2,+, ◦). Then β = µ∩ν = β1∪β2 will be T -fuzzy subbigroup of
bigroup G = (G1 ∪G2,+, ◦) such that β1 = µ1 ∩ ν1 : G1 → [0, 1] and β2 = µ2 ∩ ν2 :
G2 → [0, 1].
Proof. (1) We prove that β1 = µ1∩ν1 : G1 → [0, 1] is T -fuzzy subgroup of (G1,+).
Now for all x1, y1 ∈ G1 we have that
(a)

β1(x1 + y1) = (µ1 ∩ ν1)(x1 + y1)

= T (µ1(x1 + y1), ν1(x1 + y1))

≥ T (T (µ1(x1), µ1(y1)), T (ν1(x1), ν1(y1)))

= T (T (µ1(x1), ν1(x1)), T (µ1(y1), ν1(y1)))

= T ((µ1 ∩ ν1)(x1), (µ1 ∩ ν1)(y1))
= T (β1(x1), β1(y1)).

Then β1(x1 + y1) ≥ T (β1(x1), β1(y1)).
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(b)

β1(−x1) = (µ1 ∩ ν1)(−x1)
= T (µ1(−x1), ν1(−x1))
≥ T (µ1(x1), ν1(x1))

= (µ1 ∩ ν1)(x1)
= β1(x1).

So β1(−x1) ≥ β1(x1).
Therefore (a) and (b) give us that β1 will be T -fuzzy subgroup of (G1,+).

(2) We show that β2 = µ2 ∩ ν2 : G2 → [0, 1] can be T -fuzzy subgroup of (G2, ◦). If
x2, y2 ∈ G2, then
(a)

β2(x2 ◦ y2)) = (µ2 ∩ ν2)(x2 ◦ y2)
= T (µ2(x2 ◦ y2), ν2(x2 ◦ y2))
≥ T (T (µ2(x2), µ2(y2)), T (ν2(x2), ν2(y2)))

= T (T (µ2(x2), ν2(x2)), T (µ2(y2), ν2(y2)))

= T ((µ2 ∩ ν2)(x2), (µ2 ∩ ν2)(y2))
= T (β2(x2), β2(y2)).

Then β2(x2 ◦ y2)) ≥ T (β2(x2), β2(y2)).
(b)

β2(x
−1
2 ) = (µ2 ∩ ν2)(x−1

2 )

= T (µ2(x
−1
2 ), ν2(x

−1
2 ))

≥ T (µ2(x2), ν2(x2))

= (µ2 ∩ ν2)(x2)
= β2(x2)

then β2(x
−1
2 ) ≥ β2(x2). Thus from (a) and (b) we obtain that β2 will be T -fuzzy

subgroup of (G2, ◦).
Corollary 3.12. The intersection of family of T -fuzzy subbigroups of bigroup
G = (G1 ∪G2,+, ◦) is a T -fuzzy subbigroup of G = (G1 ∪G2,+, ◦).
Definition 3.13. Let µ = µ1 ∪ µ2 be a T -fuzzy subbigroups of bigroup G =
(G1 ∪ G2,+, ◦). We say that µ = µ1 ∪ µ2 is normal if for all x1, x2 ∈ G1 and
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x2, x2 ∈ G2 we have that µ1(x1 + y1 − x1) = µ1(y1) and µ2(x2 ◦ y2 ◦ x−1
2 ) = µ2(y2).

Example 3.14. Let G1 = (Z,+) and G2 = (R − 0, ◦) be two groups. Then
G = (G1 ∪G2,+, ◦) will be subbigroup. Define µ1 : G1 → [0, 1] by

µ1(x) =

{
0.60 if x ∈ {0,±2,±4, ...}
0.50 if x ∈ {±1,±3, ...}

and
µ2 : G2 → [0, 1] by

µ2(x) =

{
0.65 if x ∈ {±2,±4, ...}
0.50 if x ∈ {±1,±3, ...}.

Let T be a Bounded sum T -norm Tb(a, b) = max{0, a + b − 1} for all a, b ∈ [0, 1].
Then µ = µ1∪µ2 will be a T -fuzzy subbigroup of bigroup G = (G1∪G2,+, ◦). Also
since for all x1, x2 ∈ G1 and x2, x2 ∈ G2 we have that µ1(x1 + y1 − x1) = µ1(y1)
and µ2(x2 ◦ y2 ◦ x−1

2 ) = µ2(y2) so µ = µ1 ∪ µ2 will be a normal T -fuzzy subbigroup
of bigroup G = (G1 ∪G2,+, ◦).

We claim that the intersection of two normal T -fuzzy subbigroups is also normal
T -fuzzy subbigroup.

Proposition 3.15. Let µ = µ1 ∪ µ2 and ν = ν1 ∪ ν2 be two normal T -fuzzy
subbigroups of bigroup G = (G1 ∪ G2,+, ◦). Then β = µ ∩ ν = β1 ∪ β2 will be
normal T -fuzzy subbigroup of bigroup G = (G1 ∪G2,+, ◦) such that β1 = µ1 ∩ ν1 :
G1 → [0, 1] and β2 = µ2 ∩ ν2 : G2 → [0, 1].
Proof. As Proposition 3.11 β = µ ∩ ν = β1 ∪ β2 is T -fuzzy subbigroup of bigroup
G = (G1 ∪G2,+, ◦). Let x1, y1 ∈ G1. Then

β1(x1 + y1 − x1) = (µ1 ∩ ν1)(x1 + y1 − x1)
= T (µ1(x1 + y1 − x1), ν1(x1 + y1 − x1))
= T (µ1(y1), ν1(y1))

= (µ1 ∩ ν1)(y1)
= β1(y1).

Also if x1, y1 ∈ G2, then

β2(x1 ◦ y1 ◦ x−1
1 ) = (µ2 ∩ ν2)(x1 ◦ y1 ◦ x−1

1 )

= T (µ2(x1 ◦ y1 ◦ x−1
1 ), ν2(x1 ◦ y1 ◦ x−1

1 ))

= T (µ2(y1), ν1(y1))

= (µ2 ∩ ν2)(y1)
= β2(y1).
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Corollary 3.16. The intersection of family of normal T -fuzzy subbigroups of
bigroup G = (G1 ∪G2,+, ◦) is a T -fuzzy subbigroup of G = (G1 ∪G2,+, ◦).
4. Homomorphisms and T -fuzzy Subbigroups of Bigroups

In this section we investigate T -fuzzy subbigroups of bigroups under homomor-
phisms.

Definition 4.1. Let µ = µ1 ∪ µ2 and ν = ν1 ∪ ν2 be two T -fuzzy subbigroups of
bigroup G = (G1 ∪ G2,+, ◦) and H = (H1 ∪ H2,+, ◦) respectively and f : G =
(G1 ∪G2,+, ◦)→ H = (H1 ∪H2,+, ◦) be a mapping. Define

f(µ) = f(µ1 ∪ µ2) = f(µ1) ∪ f(µ2) : (H1 ∪H2,+, ◦)→ [0, 1]

by

f(µ)(y1, y2) = f(µ1 ∪ µ2)(y1, y2)

= (f(µ1) ∪ f(µ2))(y1, y2)

= sup{µ(x1, x2) | x1 ∈ G1, x2 ∈ G2, f(x1) = y1, f(x2) = y2}
= sup{(µ1 ∪ µ2)(x1, x2) | x1 ∈ G1, x2 ∈ G2, f(x1) = y1, f(x2) = y2}
= sup{µ1(x1) ∪ µ2(x2) | x1 ∈ G1, x2 ∈ G2, f(x1) = y1, f(x2) = y2}

for all y1 ∈ H1 and y2 ∈ H2 with f−1(y1), f
−1(y2) 6= ∅.

Also for all x1 ∈ G1 and x2 ∈ G2 define

f−1(ν)(x1, x2) = f−1(ν1 ∪ ν2)(x1, x2)
= f−1(ν1)(x1) ∪ f−1(ν2)(x2)

= ν1(f(x1)) ∪ ν2(f(x2)).

Proposition 4.2. Let µ = µ1 ∪ µ2 be T -fuzzy subbigroup of bigroup G = (G1 ∪
G2,+, ◦) and H = (H1 ∪H2,+, ◦) be a bigroup. If f : G → H be a group epimo-
morphism(surjective homomorphism), then f(µ) = f(µ1) ∪ f(µ2) will be T -fuzzy
subbigroup of bigroup H = (H1 ∪H2,+, ◦).
Proof. Let y1, y2 ∈ H1 and x1, x2 ∈ G1 with f−1(y1), f

−1(y2) 6= ∅ and y1 = f(x1)
and y2 = f(x2).
(1) We must prove that f(µ1) : (H1,+) → [0, 1] is a T -fuzzy subgroup of (H1,+).
As µ1 is T -fuzzy subgroup of (G1,+) so

f(µ1)(y1 + y2) = sup{µ1(x1 + x2) | y1 = f(x1), y2 = f(x2)}
≥ sup{T (µ1(x1), µ1(x2)) | y1 = f(x1), y2 = f(x2)}
= T (sup{µ1(x1) | y1 = f(x1)}, sup{µ1(x2) | y2 = f(x2)})
= T (f(µ1)(y1), f(µ1)(y2))
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and

f(µ1)(−y1) = sup{µ1(−x1) | − y1 = f(−x1)}
= sup{µ1(x1) | − y1 = −f(x1)}
= sup{µ1(x1) | y1 = f(x1)}
= f(µ1)(y1).

Thus f(µ1) will be a T -fuzzy subgroup of (H1,+).
(2) Let y1, y2 ∈ H2 and x1, x2 ∈ G2 with f−1(y1), f

−1(y2) 6= ∅ and y1 = f(x1) and
y2 = f(x2). Now we prove that f(µ2) : (H2, ◦) → [0, 1] is a T -fuzzy subgroup of
(H2, ◦). Since µ2 is T -fuzzy subgroup of (G2, ◦) so we can obtain that

f(µ2)(y1 ◦ y2) = sup{µ2(x1 ◦ x2) | y1 = f(x1), y2 = f(x2)}
≥ sup{T (µ2(x1), µ2(x2)) | y1 = f(x1), y2 = f(x2)}
= T (sup{µ2(x1) | y1 = f(x1)}, sup{µ2(x2) | y2 = f(x2)})
= T (f(µ2)(y1), f(µ2)(y2))

and

f(µ2)(y
−1
1 ) = sup{µ2(x

−1
1 ) | y−1

1 = f(x−1
1 )}

= sup{µ2(x1) | y−1
1 = f(x1)

−1}
= sup{µ2(x1) | y1 = f(x1)}
= f(µ2)(y1).

Then f(µ2) will be a T -fuzzy subgroup of (H2, ◦).
Therefore (1) and (2) will give that f(µ) = f(µ1) ∪ f(µ2) is T -fuzzy subbigroups
of bigroup H = (H1 ∪H2,+, ◦).
Proposition 4.3. Let ν = ν1 ∪ ν2 be T -fuzzy subbigroup of bigroup H = (H1 ∪
H2,+, ◦) and G = (G1 ∪ G2,+, ◦) be a bigroup. If f : G → H be a group ho-
momorphism, then f−1(ν) = ν1(f) ∪ ν2(f) will be T -fuzzy subbigroup of bigroup
G = (G1 ∪G2,+, ◦).
Proof. Let x1, x2 ∈ G1.
(1) We prove that f−1(ν1) = ν1(f) : G1 → [0, 1] is a T -fuzzy subgroup of group
(G1,+). Since ν1 is a T -fuzzy subgroup of group H = (H1,+) so

f−1(ν1)(x1 + x2) = ν1(f(x1 + x2))

= ν1(f(x1) + f(x2))

≥ T (ν1(f(x1)), ν1(f(x2)))

= T (f−1(ν1)(x1), f
−1(ν1)(x2)).
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Also

f−1(ν1)(−x1) = ν1(f(−x1)) = ν1(−f(x1)) = ν1(f(x1)) = f−1(ν1)(x1).

Thus f−1(ν1) = ν1(f) is a T -fuzzy subgroup of group (G1,+).
(2) Now prove that f−1(ν2) = ν2(f) : G2 → [0, 1] is a T -fuzzy subgroup of group
(G2, ◦). Since ν2 is a T -fuzzy subgroup of group H = (H2, ◦) then

f−1(ν2)(x1 ◦ x2) = ν2(f(x1 ◦ x2))
= ν2(f(x1) ◦ f(x2))

≥ T (ν2(f(x1)), ν2(f(x2)))

= T (f−1(ν2)(x1), f
−1(ν2)(x2)).

Also

f−1(ν2)(x
−1
1 ) = ν2(f(x−1

1 )) = ν2(f(x1)
−1) = ν2(f(x1)) = f−1(ν2)(x1).

Thus f−1(ν2) = ν2(f) is a T -fuzzy subgroup of group (G2, ◦).
Now (1) and (2) show that f−1(ν) = ν1(f) ∪ ν2(f) will be T -fuzzy subbigroup of
bigroup G = (G1 ∪G2,+, ◦).
Proposition 4.4. Let µ = µ1 ∪ µ2 be normal T -fuzzy subbigroup of bigroup
G = (G1 ∪ G2,+, ◦) and H = (H1 ∪ H2,+, ◦) be a bigroup. If f : G → H be
a group epimomorphism(surjective homomorphism), then f(µ) = f(µ1) ∪ f(µ2)
will be normal T -fuzzy subbigroup of bigroup H = (H1 ∪H2,+, ◦).
Proof. By Proposition 4.2 we have that f(µ) = f(µ1) ∪ f(µ2) is T -fuzzy sub-
bigroup of bigroup H = (H1 ∪ H2,+, ◦). Let y1, y2 ∈ H1 and x1, x2 ∈ G1 with
f−1(y1), f

−1(y2) 6= ∅ and y1 = f(x1) and y2 = f(x2). Then f(µ1)(y1 + y2 − y1) =
sup{µ1(g1) | g1 ∈ G1, f(g1) = y1 + y2 − y1} = sup{µ1(g1) | g1 ∈ G1, f(g1) =
f(x1) + f(x2) − f(x1)} = sup{µ1(g1) | g1 ∈ G1, f(g1) = f(x1 + x2 − x1)} =
sup{µ1(x1 + x2 − x1) | g1 ∈ G1, f(g1) = f(x2) = y2} sup{µ1(x2) | g1 ∈ G1, f(g1) =
f(x2 = y2)} = f(µ1)(y2). Let y1, y2 ∈ H2 and x1, x2 ∈ G2 with f−1(y1), f

−1(y2) 6= ∅
and y1 = f(x1) and y2 = f(x2). Then

f(µ2)(y1 ◦ y2 ◦ y−1
1 ) = sup{µ2(g2) | g2 ∈ G2, f(g1) = y1 + y2 − y1}

= sup{µ2(g2) | g2 ∈ G2, f(g2) = f(x1) ◦ f(x2) ◦ f(x1)
−1}

= sup{µ2(g2) | g2 ∈ G2, f(g2) = f(x1 ◦ x2 ◦ x−1
1 )}

= sup{µ2(x1 ◦ x2 ◦ x−1
1 ) | g2 ∈ G2, f(g2) = f(x2) = y2}

= sup{µ2(x2) | g2 ∈ G2, f(g2) = f(x2) = y2}
= f(µ2)(y2).
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Thus f(µ) = f(µ1) ∪ f(µ2) will be normal T -fuzzy subbigroup of bigroup H =
(H1 ∪H2,+, ◦).
Proposition 4.5. Let ν = ν1 ∪ ν2 be normal T -fuzzy subbigroup of bigroup H =
(H1 ∪ H2,+, ◦) and G = (G1 ∪ G2,+, ◦) be a bigroup. If f : G → H be a group
homomorphism, then f−1(ν) = f−1(ν1)∪f−1(ν2) will be normal T -fuzzy subbigroup
of bigroup G = (G1 ∪G2,+, ◦).
Proof. From Proposition 4.3 we get that f−1(ν) = f−1(ν1) ∪ f−1(ν2) is T -fuzzy
subbigroup of bigroup G = (G1 ∪G2,+, ◦). Let x1, x2 ∈ G1. Then

f−1(ν1)(x1 + x2 − x1) = ν1(f(x1 + x2 − x1))
= ν1(f(x1) + f(x2)− f(x1))

= ν1(f(x2))

= f−1(ν1)(x2).

Now let x1, x2 ∈ G2 then

f−1(ν2)(x1 ◦ x2 ◦ x−1
1 ) = ν2(f(x1 ◦ x2 ◦ x−1

1 ))

= ν2(f(x1) ◦ f(x2) ◦ f(x1)
−1)

= ν2(f(x2))

= f−1(ν2)(x2).

Therefore f−1(ν) = f−1(ν1)∪f−1(ν2) will be normal T -fuzzy subbigroup of bigroup
G = (G1 ∪G2,+, ◦).
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