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Abstract: Linear error correcting codes associated to higher dimensional algebraic
varieties defined over finite fields have been topical interest. For example codes
associated to Hermitian varieties, Grassman varieties, Schubert varieties and Flag
varieties have been studied quite extensively. The codes associated to these types of
varieties is the central interest. Codes associated with Schubert varieties in G(2, 4)
over F2 have been studied in [16]. In this paper we have defined extended binary
Schubert Code of the length 19, binary Schubert code of the length 18 and some
properties corresponding to these codes.
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1. Introduction
Let q be fixed prime power and l, m with l ≤ m are positive integers. Let

Fq be the field with q elements and Fmq be a m-dimensional linear space over Fq.

Let Gaussian binomial coefficient be given by

[
m
l

]
q

and G(`,m) denotes the

Grassmannian of all `-planes of Fmq . Due to Plücker mapping the Grassmannian
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G(`,m) can be embedded into projective space P(ml )−1. The image of G(`,m) under
this is a projective algebraic variety, due to [15] every subset of a projective space
can associate a linear code. Hence linear code corresponding to Grassmannian
G(`,m) is denoted byC(`,m). These Grassman Codes were introduced by C. T.
Ryan in the series of papers [14, 13] and field used was over F2. Later D Yu Nogin
[10] studied the linear code C(l,m) associated to G(`,m) over any finite field and

proved that C(l,m) is an q-ary [n, k, d] linear code, where n =

[
m
l

]
q

, k =
(
m
l

)
and d = ql(m−l).
Let α = (α1, α2, . . . αl) be increasing sequence of positive integers satisfying the
relations 1 ≤ α1 ≤ α2 ≤ . . . . ≤ αl ≤ m and denote Ωα(`,m) be the Schubert
varieties [16] in the Grassmannian G(`,m). Note that Schubert varieties are sub-
varieties of Grassmannian. As we know that the Grassmannian can be embeddable
in Projective Space P(ml )−1 via Plücker map. Therefore Plücker map also embeds

Schubert Varieties in P(ml )−1. The Linear code corresponding the Schubert variety
Ωα(`,m) is called Schubert code and it is denoted by Cα(l,m). Ghorpade- Lachaud
[2] initiated the study of Schubert Code and conjectured the minimum distance
dα = qδ(α) where δ(α) =

∑l
i=1(αi − 1). Many attempts [1, 4, 5] have been done to

settle this conjecture and it was settled in some special cases. The MDC (Minimum
Distance Conjecture) first proved by Chen [1] and Guerra-Vincenti [5] for l = 2
Gorpade-Tsfasmann [4] proved that the Schubert-Code Cα(l,m) is q-ary [nα, kα]
code where nα =

∑
β≤α q

δ(β), the sum is over al l-touples β = (β1, β2, . . . βl)
integers satisfying 1 ≤ β1 ≤ β2 ≤ . . . ≤ βl ≤ m, βi ≤ αi for i = 1, 2, . . . l with
δ(β) =

∑l
i=1(βi − i)

and the dimension kα=

∣∣∣∣∣∣∣∣∣

(
α1

1

)
1 0 . . . 0(

α2

1

) (
α2−1

1

)
1 . . . 0

...
...(

αl
l

) (
α2−1
l−1

) (
α3−2
l−2

)
. . .

(
αl−l+1

1

)
∣∣∣∣∣∣∣∣∣

Xiang in [17] proved the MDC. An alternative Proof is given in [3]. The codes
associated G(2, 5) over F2 have been studied in [16]. In this paper we have defined
extended binary Schubert code which will be denoted by Ω̄19 and binary Schubert
Code Ω(2,4) along with some properties of these Codes.

2. Preliminaries

2.1. Basic definitions

Let Fq be the finite field with q elements, q = ph, p a prime and denote by Fnq
the n-dimensional vector space over Fq. For any x ∈ Fnq , the support of x, supp(x),
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is the set of nonzero coordinates in x = (x1, x2, · · · , xn). The support weight (or
Hamming norm) of x is defined by,

||x|| = |supp(x)|.

More generally, if D is a subspace of Fnq , the support of D, Supp(D) is the set
of positions where not all the vectors in D are zero and the support weight (or
Hamming norm) of D is defined by,

||D|| = |supp(D)|.

A linear [n, k]q-code is a k-dimensional subspace of Fnq . The parameters n and k
are referred to as the length and the dimension of the corresponding code. The
minimum distance d = d(C) of C is defined by

d = d(C) = min {||x|| : x ∈ C, x 6= 0}

More generally, given any positive integer r, the rth higher weight dr = dr(C) is
defined by

dr = dr(C) = min {||D|| : D is a subspace of C with dimD = r} .

Note that d1(C) = d(C). It also follows that di ≤ dj when i < j and that
dk = |supp(C)|, where k is the dimension of code C. Thus we have 1 ≤ d1 < d2 <
· · · < dk−1 < dk. The first weight d1 is equal to the minimum distance and the last
weight is equal to the length of the code.
An [n, k]q-code is said to be nondegenerate if it is not contained in a coordinate
hyperplane of Fnq . Two [n, k]q-codes are said to be equivalent if one can be obtained
from another by permuting coordinates and multiplying them by nonzero elements
of Fq. It is clear that this gives a natural equivalence relation on the set of [n, k]q-
codes.
The (usual) spectrum (or weight distribution) of a code C ⊆ Fnq is the sequence
{A0, A1, · · · , An} defined by

Ai = Ai(C) = | {c ∈ C : ||c|| 6= 0} |

More generally, the rth higher weight spectrum (or rth support weight distribution)
of a code C is the sequence {Ar0, Ar1, · · · , Arn} defined by

Ari = | {D ⊆ C : dimD = r, ||D|| = i} |
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This naturally allows us to define rth support weight distribution function (or rth
weight enumerator polynomial) as

Ar(Z) = Ar0 + A1
rZ + · · ·+ AnrZ

n

Hence for each 0 ≤ r ≤ k, we have a weight enumerator polynomial. We can also
define the rth higher weight as

dr(C) = min {i : Ari 6= 0} .

Note that A0(Z) = 1. Also note that if x̄ ∈ Fnq , then

||x|| = ||{x̄}|| = || {λx̄ : λ ∈ Fq} ||.

The rth generalized spectrum of a [n, k]q projective system X is double sequence

(Ar0, A
r
1, A

r
2, · · ·Arn)

of integers,where

Ari = Ari (X) := |{Π ⊆ Pk−1 : |X ∩ Π| = n− i, codimensionΠ = r}|

for all i = 0, 1, 2, . . . , n and r = 1, 2, . . . k.

Lemma 2.1. If C is a code with the dimension k over F2 then we have to for
Z = 1

Ar(1) =

[
k
r

]
2

where

[
k
r

]
2

= (2k−1)(2k−2)···(2k−2r−1)
(2r−1)(2r−2)···(2r−2r−1)

, which is the number of subspaces of the di-

mension r in a k dimensional space.

2.2. Dual Codes
The standard inner product on Fnq is defined by

< x, y >:=
n∑
i=1

xiyi

Definition 2.1. The Dual of a code C ⊆ Fnq is the code

C⊥ :=
{
x ∈ Fnq :< x, c >= 0∀ c ∈ Fnq

}
.

2.3. Self Orthogonal and Self Dual Code

Definition 2.2. Let C be a linear code and C⊥be dual over Fq then
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(i) C is said to be Self Orthogonal if C ⊆ C⊥

(ii) C is said to be Self Dual if C = C⊥

2.4. Grassman and Schubert Varieties

2.4.1. Grassmanian

Definition 2.3. The Grassmannian of all l dimensional subspaces of Fmq is denoted
by G(`,m)

G(`,m) := {W ⊆ Fmq : W is Subspace of Fmq and dim(W ) = l}

2.4.2. Plücker Embedding
The aim of this section is to prove that Grassmannian G(`,m) is a projective va-

riety. Let us fix an integer ` such that 1 ≤ ` ≤ m and I(`,m) := {α = (α1, . . . , α`) :
αi ∈ Z+, 1 ≤ α1 < α2 < · · · < α` ≤ m}.
e. g. I(2, 5) = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}. It
is easy to see that |I(`,m)| =

(
m
`

)
.

Let W be an `-dimensional subspace of a vector space V . Hence W ∈ G`,m. As an
element W ∈ G(`,m)can be represented by an `×m matrix A of rank ` [7], we get
a matrix A of rank `. For any α ∈ I(`,m), consider maximal minors of the matrix
A, so let pα(A) be the minor of the matrix whose columns are labeled by α and is
given by

pα(A) =

∣∣∣∣∣∣∣∣∣
a1α1 a1α2 · · · a1α`
a2α1 a2α2 · · · a2α`

...
...

. . .
...

a`α1 a`α2 · · · a`α`

∣∣∣∣∣∣∣∣∣
One can form

(
m
`

)
such minors. Hence we get a map φ : I(`,m) → K, given by

α 7→ pα(A). It may happen that B and A are two matrices representing the same
subspace W , then we know that they are related by the equation , B = CA, for
some C ∈ GL(`,K). But then, pα(B) = det(C). pα(A), ∀ α ∈ I(`,m). Hence,
up to some non-zero scalar in K, we will get a uniquely determined

(
m
`

)
tuple as

(. . . , pα(A), . . .). Note that, the tuple (. . . , pα(A), . . .) is independent of choice of
basis, but it depends only on the subspace with which we have started. As a result
of which, we get a function

π : G`,m → P(m` )−1 which is defined as
π(A) = (. . . , pα(A), . . .),
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where A is an `×m matrix representing subspace W .

Definition 2.4. (Plücker Map) [11, 8, 6] The function π defined above is called
as Plücker Map and the coordinates of π(A) = (. . . , pα(A), . . .) are called as Plücker
coordinates.

2.4.3. Schubert Varieties
Ghorpade and Lachaud in [2] proposed the generalization of Grassmann code

as Schubert code. The Schubert code are indexed by the elements of the set

I(`,m) := {α = (α1, α2, · · · , α`) ∈ Z : 1 ≤ α1 < · · · < α` ≤ m} .

Given any α ∈ I(`,m), the corresponding Schubert code is denoted by Cα(`,m),
and it is the code obtained from the projective system defined by the Schubert va-
riety Ωα(`,m) in G (`,m) with a nondegenerate embedding induced by the Plücker
embedding. We define Ωα as

Ωα = {W ∈ G (`,m) : dim(W ∩ Aαi) ≥ i for i = 1, 2, · · · , `} ,

where Aj denotes the span of the first j vectors in a fixed basis of V , for 1 ≤ j ≤ m.

Definition 2.5. Ωα(`,m) as

Ωα(`,m) = {W ∈ G (`,m) : dim(W ∩ Aαi) ≥ i for i = 1, 2, · · · , `} ,

where Aj denotes the span of the first j vectors in a fixed basis of V , for 1 ≤ j ≤ m.
Ghorpade and Tsfasman in [4], determined the length nα and the dimension kα of
Cα(`,m). It was conjectured by Ghorpade in [2], that

d(Cα(`,m)) = qδα

where

δα :=
∑̀
i=1

(αi − i) = α1 + α2 + · · ·+ α` −
`(`+ 1)

2

.2.4.4. Extended Linear Code [9] [Chapter 5, Section 5.1]

Definition 2.6. Let C be linear code over Fq ,the extended code of C, denoted by
C̄ is given by,

C̄ = {(c1, c2, . . . cn,−
n∑
i=1

ci) : (c1, c2, . . . cn, ) ∈ C}



On some properties of Binary Schubert Code ... 437

here extra coordinate added is known as parity-check coordinate and if q = 2 then
it may say that −

∑n
i=1 ci =

∑n
i=1 ci

Definition 2.7. Generator Matrix of Linear code [9] [Chapter 4, Section
4.5] If C is a linear code over Fq then generator matrix is a such matrix whose row
vectors forms basis for C over Fq.

Definition 2.8. Parity check Matrix of Linear code [9] [Chapter 4, Section
4.5] Let C be a code and C⊥ be its dual. A generator matrix of C⊥ is known as a
parity check matrix of C.

Remark 2.2.

(1) Since basis for any linear code is not unique,so its generator matrix for need
not be unique.

(2) A generator matrix having form [Ik|X] ,is called standard form generator
matrix .

(3) A parity check matrix having form [Y |In−k], is called standard form standard
form parity check matrix.

While certain linear codes may not have a generator matrix in standard form,
after a suitable permutation of the coordinates of the codewords and possibly mul-
tiplying certain coordinates with some nonzero scalars, one can always arrive at a
new code which has a generator matrix in standard form.

Definition 2.3. Equivalence of linear codes [9]
Two [n, k]q-codes are said be equivalent if one can be obtained from the other by a
combination of operations of the following types:

(1) permutation of the n digits of the codewords;

(2) multiplication of the symbols appearing in a fixed position by a nonzero scalar.

Theorem 2.4. [9] [Chapter 4, section 4] If G = [Ik|X] is standard form generator
matrix of [n, k]qlinear code then a parity check matrix for C is H = [−XT |In−k].
Theorem 2.5. [9] [Chapter 4, section 4] Let C be a linear code and let H be a
parity check matrix for C. Then C has the minimum distance d if and only if
any d − 1 columns of H are linearly independent and parity check matrix H has d
columns which are linearly dependent.

The above results and remarks will be used to prove properties of codes defined
in next section. The linear code associated to Schubert Variety associated to
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α = (2, 4) have been studied in [16] with linear code generated we have defined
extended binary Schubert Code of the length 19 and binary Schubert Code of the
length 18 in the next section.

3. Extended binary Schubert Code and Binary Schubert Code

Definition 3.1. Extended Binary Schubert Code Let G=[I5|X]

where X is 5×14 be a matrix given by X=


0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 1 0 1 1 1 1 0 0 1 0 0 0 1
1 0 1 0 1 0 1 1 0 0 1 0 1 0
1 1 0 0 1 0 1 0 0 1 1 1 0 0


The binary linear code whose generator matrix is G is called extended binary Schu-
bert code and it is denoted by Ω̄(2,4)

One can note that the last columns in the matrix G is in a such way that sum of
all 18 coordinates in each row is last element of each row so one can define another
code by defining generator matrix by deleting last coordinates of each rows in G
and we can define binary Schubert Code in following way.

Definition 3.2. Binary Schubert Code Let G1=[I5|Y ],

where Y is 5×13 be a matrix given by Y=


0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 0 0 0 0
0 1 0 1 1 1 1 0 0 1 0 0 0
1 0 1 0 1 0 1 1 0 0 1 0 1
1 1 0 0 1 0 1 0 0 1 1 1 0


The binary linear code whose generator matrix G1 is called binary Schubert code
and it is denoted by Ω(2,4)

We now discus the properties of these two linear codes in the next section.

4. Properties of Extended Binary Schubert code and Binary Schubert
Code

Proposition 4.1. (Properties of Extended Binary Schubert Code)
Let Ω̄(2,4) be the extended binary code generated by matrix G which is defined in a
above section,then following properties holds for the corresponding linear code Ω̄(2,4)

(1) The length of Ω̄(2,4) is 19.

(2) The dimension of Ω̄(2,4) is 5.

(3) A parity check matrix for Ω̄(2,4) is given by [XT |I14] matrix

(4) Ω̄(2,4)is self orthogonal linear code.
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(5) The weight of every codeword in Ω̄(2,4)is multiple of 2

(6) A linear code Ω̄(2,4) is three error correcting code

Proof.

(1) By a generator matrix, one can see easily the length of the code to be 19.
Alternatively one can also see that these are 19 F2-rational points as in a
projective system the number of F2 -rational points corresponding Ω(2,4) is
given by

n =
∑
β≤α

qδ(β)

= 21+2−3 + 21+3−3 + 21+4−3 + 22+3−3 + 22+4−3

= 1 + 2 + 4 + 4 + 8

= 19

(2) The dimension of Ω̄(2,4) is 5 since Generator matrix of consist of I5 the identity
matrix of order 5 Since this generator matrix is in standard form so rank of
this will be the dimension of the extended binary Schubert code Ω̄(2,4).
Alternatively since α = (2, 4)

dim (C) = #{β : β ≤ (2, 4)}
= #{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}
= 5

(3) G = [I5|X] is generator matrix of Ω̄(2,4) where X is 5 × 14 matrix given by

X=


0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 1 0 1 1 1 1 0 0 1 0 0 0 1
1 0 1 0 1 0 1 1 0 0 1 0 1 0
1 1 0 0 1 0 1 0 0 1 1 1 0 0


here G is standard form generator matrix of Ω̄(2,4) using algorithm in [9] to
convert this matrix into the form H1 = [XT |I14]

(4) Note that the rows of G are mutually orthogonal, i.e if Ri and Rj (for i 6= j)
then Ri. Rj = 0 ;this implies that G ⊆ G⊥ thus Ω̄(2,4) is self orthogonal
code.
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(5) Due to [12], let α = (α1,m) be strictly increasing sequence and Cα(2,m) be
the corresponding Schubert code and if α1 is even number then weight of
every codeword in Cα(2,m) is divisible by qα1−1, here q = 2, α1 = 2 implies
that weight of every codeword is divisible by 2 alternatively one can see the
weight of every row vector of generator matrix of Ω̄(2,4) is divisible by 2 and
these row vectors being basis hence weight of every codeword is divisible by
2.

(6) Since H1 = [XT |I14] is parity check matrix for Ω̄(2,4) where

X=


0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 1 0 1 1 1 1 0 0 1 0 0 0 1
1 0 1 0 1 0 1 1 0 0 1 0 1 0
1 1 0 0 1 0 1 0 0 1 1 1 0 0


hence distance of Ω̄(2,4) is 8 and hence Ω̄(2,4) is an 3 error correcting code

Proposition 4.2. (Properties of Binary Schubert Code) Let Ω(2,4) be the binary
code generated by matrix G1 which is defined in a above section then following
properties holds for the corresponding linear code

(1) The length of Ω(2,4) is 18.

(2) The dimension of Ω(2,4) is 5.

(3) The parity check matrix for Ω(2,4) is given by [Y T |I14] matrix

(4) The extension of binary Schubert code is extended binary Schubert Code.

(5) The binary Schubert Code Ω(2,4) is exactly 3 error correcting code.

Proof.

(1) The length is clear from generator matrix of Ω(2,4) i.e. number of columns in
the generator matrix is equal to the length of Ω(2,4) which is 18

(2) since G1=[I5|Y ] is generator matrix of Ω(2,4) where Y is 5× 13 matrix given
by

Y=


0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 0 0 0 0
0 1 0 1 1 1 1 0 0 1 0 0 0
1 0 1 0 1 0 1 1 0 0 1 0 1
1 1 0 0 1 0 1 0 0 1 1 1 0


has rank 5 hence the dimension of Ω(2,4) is equal to rank(G1) i.e. 5.
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(3) G1=[I5|Y ] is generator matrix of Ω(2,4) where Y is 5× 13 matrix given by

Y=


0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 0 0 0 0
0 1 0 1 1 1 1 0 0 1 0 0 0
1 0 1 0 1 0 1 1 0 0 1 0 1
1 1 0 0 1 0 1 0 0 1 1 1 0


G1 is in standard form hence parity check matrix of Ω(2,4) is [Y T |I14]

(4) In the generator matrix G1=[I5|Y ] of Ω(2,4) where Y is given in the definition
the sum of each row vectors gives rise the last column of generator matrix G
hence extension of binary Schubert code is extended binary Schubert code .

(5) Since Ω̄(2,4) has distance 8 hence distance of Ω(2,4) must be 8-1 i.e. 7 hence
Ω(2,4) is an exactly three error correcting code.

5. Conclusions
Thus due to projective space geometry we could able to define extended binary

Schubert Code and binary Schubert code. The extended binary Schubert code
denoted by Ω̄(2,4) is binary [19, 5, 8] self orthogonal linear code where as Ω(2,4) is
binary [18, 5, 7] linear code. Both the codes are 3-error correcting code.
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