SOME RESULTS ON ATOMI GRAPH OF THE LATTICES

Amit C. Dabhole, Kirtiwant P. Ghadle* and Ganesh L. Rokade**
Department of Basic Sciences and Humanities,
Marathwada Institute of Technology, Aurangabad - 431004, Maharashtra, INDIA
E-mail : amit_dabhole22@rediffmail.com
*Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004, Maharashtra, INDIA
E-mail : drkp.ghadle@gmail.com
**Department of Mathematics, J.E.S. College, Jalna - 431203, Maharashtra, INDIA
E-mail : ganeshrokade01@gmail.com

(Received: Feb. 03, 2021 Accepted: Dec. 08, 2021 Published: Apr. 30, 2022)

Abstract: This paper deals with an atomi graph of the finite lattices. Let L be a finite lattice with one atom denoted by L_{a} and $A\left(L_{a}\right)=\left\{x \mid\right.$ there exist $y \in L_{a}$ such that $x \wedge y=a$, and $x, y \neq a, a$ is an atom of the lattice $\}$. We defined a relation $x \wedge y=a$, and $x, y \neq a$ as the atomi of the lattice L_{a}. The atomi graph of the lattice L_{a}, is denoted by $\gamma\left(L_{a}\right)$, is a graph with the vertex set $A\left(L_{a}\right)$ and two distinct vertices $x, y \in A\left(L_{a}\right)$ are adjacent if and only if they are atomi. We study some properties of atomi graph of the lattices.

Keywords and Phrases: Diameter, connected graph, complete graph, regular graph, complete bipartite graph.

[^0]
1. Introduction

The study of algebraic structures by using the properties of the associated graphs has gained considerable attention in the last few years, so the study of the graphs of the lattices has emerged as a growing field in graph theory. In literature, we find zero divisor, incomparability graphs, comparability graphs which are associated with this kind of study.

Duffus and Rival [6] considered the covering graphs of posets. This graph has vertices which are the elements of P and edges are those pairs $\{a, b\}, a, b \in P$, satisfying a covers b or b covers a. Allan and Laskar [3] have studied the domination and independent domination numbers of a graph. A graph $G=(V, E)$ considered as finite, undirected, with no multiple edges and with no loops.

Filipov [8] discussed the comparability graph of a partially ordered set by defining the adjacency between two elements a, b of a poset P, by using the comparability relation that is a, b are adjacent if either $a \leq b$ or $b \leq a$. The study of graphs associated with rings was initiated by Beck [4]. Two elements x, y in a commutative ring R are called adjacent if and only if $x y=0$. He studied coloring of such graphs.

Akbari and Mohammadian [2] discussed zero-divisor graph of a commutative ring. The zero-divisor graph of R, denoted by $\Gamma(R)$, is a graph with vertex set $Z(R)^{*}$ in which two vertices x and y are adjacent if and only if $x \neq y$ and $x y=0$. It is shown that for any finite commutative ring R, the edge chromatic number of $\Gamma(R)$ is equal to the maximum degree of $\Gamma(R)$, unless $\Gamma(R)$ is a complete graph of odd order. Bresar, et. al. [5] introduce the cover-incomparability graph of a poset and called these graph as $C-I$ graph of P. The cover-incomparability graph of a poset P is the edge-union of the covering and the incomparability graph of P.

Nimbhorkar et. al. [11] defined the zero-divisor graphs of a lattices L with 0 , by defining the vertex set as the set of all elements in L and two vertices $x, y \in L$ are adjacent if and only if $x \wedge y=0$. For a finite bounded lattice L, Estaji and Khashyarmanesh [7] associate a zero-divisor graph $G(L)$ which is a natural generalization of the concept of zero-divisor graph for a Boolean algebra. Also they study the interplay of lattice-theoretic properties of L with graph-theoretic properties of $G(L)$.

Foxa and Pach [9] defined incomparability graph with vertex set P, in which two elements of P are adjacent if and only if they are incomparable. They studied applications to extremal problems for string graphs and edge intersection patterns in topological graphs. Wasadikar and Survase [12] studied the incomparability graph of lattices. For $a, b \in P$, they define a, b are incomparable if neither $a \leq b$ nor $b \leq a$ denoted by $a \| b$. For a finite lattice L and $W(L)=\{x \mid$ there exist
$y \in L$ such that $x \| y\}$. The incomparability graph, is a graph with the vertex set $W(L)$ and two distinct vertices $a, b \in W(L)$ are adjacent if and only if they are incomparable.

Another graph associated with a lattice was discussed by Afkhami et.al. [1]. They associate a simple graph to a lattice L in which the vertex set is being the set of all elements of L and two distinct vertices x and y are adjacent if $x \vee y \in S$, when S is a multiplicatively closed subset of L. Golovach et. al. [10] studied enumeration algorithms and lower and upper bounds for the maximum number of minimal dominating sets in interval graphs and trees. They have shown that every interval graph on n vertices has at most $3^{\frac{n}{3}}$ minimal dominating sets. Also they discussed the upper bound on the number of minimal dominating sets of trees. Wasadikar and Dabhole [13] discussed the minimum dominating set and order of incomparability graph of the lattices L_{n} and $L_{n}^{1^{2}}$. Also they express the cardinality of neighbourhood of an atom by a binomial expression.

In the present research article, let L be a lattice with one atom a, denoted by L_{a}. We associate a graph with L_{a} and denote it by $\gamma\left(L_{a}\right)$. Let $A\left(L_{a}\right)=\{x \mid$ there exist $y \in L_{a}$ such that $x \wedge y=a$, and $x, y \neq a, a$ is an atom of the lattice $\}$. Define a simple graph to the lattice L_{a} as, a) the vertices of $\gamma\left(L_{a}\right)$ are the elements of $A\left(L_{a}\right)$; b) two elements $x, y \in L_{a}$ are adjacent if and only if $x \wedge y=a$, and $x, y \neq a$ in L_{a}. We called this graph as the atomi graph of the lattice L_{a}. Further, the distance $d(x, y)$ between two vertices x and y is the length of a shortest path joining x and y. Some properties of atomi graph of the lattice L_{a} is studied. We proved that $\gamma\left(L_{a}\right)$ is always connected and its diameter is ≤ 3. Let L_{a} have chains from a to 1, where 1 is greatest element of the lattice L_{a}. We have discussed, the chains of L_{a} which gives $\gamma\left(L_{a}\right)$ are a complete, regular and a bipartite graph. Further, we have studied the atomi graph of linear sum of two lattices.
Theorem 1.1. The atomi graph of a chain is the empty graph.
Proof. Let the lattice L_{a} is a chain. Consider any two elements $x, y \in L_{a}$. As $x \wedge y=a$ exists only if $x \wedge a=a$, so for any x there does not exists y such that $x \wedge y=a$, and $x, y \neq a$.

Hence, the atomi graph of a chain is the empty graph i.e. $A\left(L_{a}\right)=\Phi$.
Corollary 1.2. In the lattice L_{a}, if $a \prec x$ and there is no $y \in L_{a}$ such that $a \prec y$ then atomi graph of L_{a} is the empty graph.
Example 1.3. The atomi graph of the lattice shown in the Figure 1.1 is the empty graph.

Figure 1.1
Proposition 1.4. The non-isomorphic lattices may have isomorphic atomi graph $\gamma\left(L_{a}\right)$.
Example 1.5. The lattices in the Figure $1.2(a)$ and Figure $1.2(b)$ are nonisomorphic but the atomi graph of the lattices of Figure 1.2(a) and Figure 1.2(b) shown in the Figure $1.2(c)$ is isomorphic i.e. $L_{a_{1}} \nVdash L_{a_{2}}$ but $\gamma\left(L_{a_{1}}\right) \cong \gamma\left(L_{a_{2}}\right)$.

Figure 1.2(a)

Figure 1.2(b)

Figure 1.2(c)

2. Connectedness of Atomi Graph and its Diameter

In this section we have proved the connectedness of atomi graph of the lattice L_{a} and calculated the distance between any two vertices in $\gamma\left(L_{a}\right)$. Further we have calculated the diameter of $\gamma\left(L_{a}\right)$.
Theorem 2.1. The atomi graph of the lattice L_{a} is always connected and $\operatorname{diam}\left(\gamma\left(L_{a}\right)\right) \leq$ 3.

Proof. Let $x, y \in \gamma\left(L_{a}\right)$ be distinct.
a) If $x \wedge y=a$, and $x, y \neq a$ in L_{a} then x is adjacent to y. So $d(x, y)=1$.
b) Suppose that $x \wedge y \neq a$, and $x, y \neq a$ then there exists elements $z_{1}, z_{2} \in$ $A(L)-\{x, y\}$ such that $z_{1} \wedge x=a, z_{2} \wedge y=a$, and $x, y, z_{1}, z_{2} \neq a$.
i) If $z_{1}=z_{2}$ then $x-z_{1}-y$ is a path of length 2 ; thus $d(x, y)=2$.
ii) Let us assume that $z_{1} \neq z_{2}$. If $z_{1} \wedge z_{2}=a$, and $z_{1}, z_{2} \neq a$ then we have $z_{1} \wedge x=a$ and $z_{2} \wedge y=a$, and $x, y, z_{1}, z_{2} \neq a$ i.e. $x-z_{1}-z_{2}-y$ is a path of length 3. Hence $d(x, y)=3$.

If $z_{1} \wedge z_{2} \neq a$ then for some $z_{1} \wedge z_{2}=q_{1}$, we have $x-q_{1}-y$ is a path of length 2 . Thus $d(x, y)=2$.
Hence, $\operatorname{diam}\left(\gamma\left(L_{a}\right)\right) \leq 3$.
Now there exists a path between any two distinct elements in $\gamma\left(L_{a}\right)$, hence $\gamma\left(L_{a}\right)$ is always a connected graph.
3. Some Properties of $\gamma\left(L_{a}\right)$ when the Lattice L_{a} Contains Chains

Let L_{a} be a lattice consisting of chains C_{i}^{k} between a and 1 such that $C_{i}^{k} \cap C_{j}^{k}=$ $\{a, 1\},\left(C_{i} \neq\{a, 1\}\right)$ for every $i, j=1,2, \ldots, n, i \neq j$. In C_{i}^{k}, i denote the number of a chain and k denote the number of elements in the $i^{\text {th }}$ chain excluding $\{a, 1\}$.
Theorem 3.1. The atomi graph $\gamma\left(L_{a}\right)$ is a complete graph, if in the lattice L_{a}, each chain $C_{i}^{k=1}, i=1,2, \ldots, n, C_{i}^{k=1} \cap C_{j}^{k=1}=\{a, 1\}, i \geq 2$ contain one element.
Proof. Let L_{a} be a finite lattice and $\gamma\left(L_{a}\right)$ is atomi graph of the lattice L_{a}. Consider each chain $C_{i}, i=1,2, \ldots, n$ contain one element other than $a, 1$ denoted by $C_{i}^{k=1}$,.

If $x_{i} \in C_{i}^{k=1}$, we have $x_{j_{1}} \wedge x_{j_{2}}=a, x_{j_{1}}, x_{j_{2}} \neq a, x_{j_{1}}, x_{j_{2}}=1,2, \ldots, n, x_{j_{1}}, x_{j_{2}}$, are distinct in the lattice L_{a}, since $C_{i}^{k=1} \cap C_{j}^{z}=\{a, 1\}$. So each $x_{j_{1}}$ is adjacent to every $x_{j_{2}}$ in $\gamma\left(L_{a}\right)$ i.e. every two distinct vertices in $\gamma\left(L_{a}\right)$ have an edge.

Therefore $\gamma\left(L_{a}\right)$ is a complete graph.
Corollary 3.2. The order of complete atomi graph is n and the degree of each vertex is $n-1$.
Theorem 3.3. If the lattice L_{a} contains $C_{i}^{k}, i \geq 3, k$ is any positive integer $k \geq 2$ $i=1,2, \ldots, n$, then $\gamma\left(L_{a}\right)$ is a regular graph.

Proof. Consider the lattice L_{a} contains $C_{i}, i=1,2, \ldots, n, i \geq 3, i=1,2, \ldots, n$, $C_{i} \cap C_{j}=\{a, 1\}$ chains and each chain C_{i} containing k elements denoted $C_{i}^{k}, k \geq 2$.

Let $x_{p}, x_{q} \in C_{1}^{k}$, then $x_{p} \wedge x_{q} \neq a, x_{p}, x_{q} \neq a$, since no two elements in C_{1}^{k} have g.l.b as an atom a. But for $x_{p} \in C_{1}^{k}, x_{z} \in C_{i}^{k}, i \neq 1, x_{p}, x_{q}, x_{z}$ are the k elements in each chain, we have $x_{p} \wedge x_{z}=a$, i.e. each x_{p} is adjacent to every element of $C_{i}^{k}, i \neq 1$ chains.

Similarly, let $x_{p}, x_{q} \in C_{2}^{k}$, then $x_{p} \wedge x_{q} \neq a, x_{p}, x_{q} \neq a$, since no two elements in C_{2}^{k} have g.l.b as an atom a. But for $x_{p} \in C_{2}^{k}, x_{z} \in C_{i}^{k}, i \neq 2, p, z=1,2, \ldots, n$, we have $x_{p} \wedge x_{z}=a$, i.e. each x_{p} is adjacent to every element of $C_{i}^{k}, i \neq 2$ chains.

Continuing this for the $i^{\text {th }}$ chain of the lattice L_{a}. Let $x_{p}, x_{q} \in C_{i}^{k}$, then $x_{p} \wedge$ $x_{q} \neq a, x_{p}, x_{q} \neq a$, since no two elements in C_{i}^{k} have g.l. b as an atom a. But for $x_{p} \in C_{i}^{k}, x_{z} \in C_{j}^{k}, j=1,2, \ldots,(n-1)$, we have $x_{p} \wedge x_{z}=a$, i.e. each x_{p} is adjacent to every element of $C_{j}^{k}, j=1,2, \ldots, n$ chains.

Hence the degree of each vertex in $\gamma\left(L_{a}\right)$ is same and therefore $\gamma\left(L_{a}\right)$ is a regular graph.
Theorem 3.4. The atomi graph of the lattice L_{a} is a complete bipartite graph $K_{m, n}$ if L_{a} contains two chains $C_{1}^{m}, C_{2}^{n}, m, n \geq 2, m, n=1,2, \ldots, n, C_{1}^{m} \cap C_{2}^{n}=\{a, 1\}$.
Proof. Let the lattice L_{a} having two chains C_{1}^{m} and $C_{2}^{n}, m, n \geq 2, m, n=$ $1,2, \ldots, n$. A chain C_{1}^{m} containing $m \geq 2$ elements and C_{2}^{n} contains $n \geq 2$ elements, $C_{1}^{m} \cap C_{2}^{n}=\{a, 1\}$.

Let $p_{1}=\left\{x_{i} \mid x_{i} \in C_{1}, i=1,2, \ldots, n, i \geq 2\right\}$. Since no two elements of p_{1} are adjacent in $\gamma\left(L_{a}\right)$, hence assume that p_{1} as one partite set and similarly consider p_{2} as another partite set, $p_{1} 2=\left\{x_{j} \mid x_{j} \in C_{2}, j=1,2, \ldots, n, j \geq 2\right\}$. We claim that x is not adjacent to y if $x, y \in p_{1}$ or $x, y \in p_{2}$.

Assume that x is adjacent to y for some $x, y \in p_{1}$ then we have $x \wedge y=a, x, y \neq a$. But this contradicts to assumption of atomi relation in the chain C_{1}, for any $x \in p_{1}$ there does not exists $y \in p_{1}$ such that $x \wedge y=a, x, y \neq a$. Hence x is not adjacent to y. Similarly $x, y \in p_{2}$, we have x is not adjacent to y.

Now $C_{i} \cap C-j=\{a, 1\}$ we have for each $x_{i} \in C_{1}$ there exist $x_{j} \in C_{2}$ such that $x_{i} \wedge x_{j}=a, x_{i}, x_{j} \neq a$. Hence each $x_{i} \in C_{i}$ is adjacent to every $x_{j} \in C_{2}$ in $\gamma\left(L_{a}\right)$.

Therefore, $\gamma\left(L_{a}\right)$ is a complete bipartite graph $K_{m, n}$.

4. Discussion of Atomi Graph the Lattice L^{*}

In this section we have studies the atomi graph of the lattice L^{*}, where L^{*} is the linear sum of lattices $L_{a_{1}}$ and $L_{a_{2}}$ that is $L^{*}=L_{a_{1}} \bigoplus L_{a_{2}}$.
Definition 4.1. Let L_{1} and L_{2} be two lattices, the linear sum of L_{1} and L_{2} denoted by $L_{1} \oplus L_{2}$ is obtained by placing the diagram of L_{1} directly below the diagram of L_{2} and adding a line segment from the maximum element of L_{1} to the minimum
element of L_{2}.
Theorem 4.2. If $L^{*}=L_{a_{1}} \bigoplus L_{a_{2}}$ is the linear sum of the lattices $L_{a_{1}}$ and $L_{a_{2}}$ then the atomi graph of L^{*} is the atomi graph of $L_{a_{1}}$.
Proof. Let $L^{*}=L_{a_{1}} \oplus L_{a_{2}}$ is the linear sum of the lattices $L_{a_{1}}$ and $L_{a_{2}}$. In the lattice L_{*}, the lattices $L_{a_{1}}$ and $L_{a_{2}}$ are joined by an edge $x-y$, where x is the maximum element of $L_{a_{1}}$ and y is the minimum element of $L_{a_{2}}$ and a_{1}, a_{2} are atoms of the lattices $L_{a_{1}}, L_{a_{2}}$ respectively. The lattice L^{*} contains a chain $x-y-a_{2}$ which is formed by linear sum of $L_{a_{1}}$ and $L_{a_{2}}$.

Consider $z_{1}, z_{2} \in L_{a_{2}}$ then there does not exists $z_{1} \wedge z_{2}=a_{1}, z_{1}, z_{2} \neq a_{1}$. Here a_{1} is an atom of the lattice $L_{a_{1}}$ which is also an atom of L^{*}. Now $z_{1} \wedge z_{2}=a_{1}, z_{1}, z_{2} \neq a_{1}$ exist only if $z_{1}, z_{2} \in L_{a_{1}}$ i.e. adjacency of L^{*} is derived from adjacency of $L_{a_{1}}$. Hence no elements of $L_{a_{2}}$ is in the atomi graph of L^{*}.

Therefore, the atomi graph of L^{*} is the atomi graph of $L_{a_{1}}$.

5. Conclusion.

In this paper we have considered finite lattice with one atom L_{a}. Let L be a finite lattice with one atom denoted by L_{a} and $A\left(L_{a}\right)=\left\{x \mid\right.$ there exist $y \in L_{a}$ such that $x \wedge y=a, x, y \neq a, a$ is an atom of the lattice $\}$, where a relation $x \wedge y=a, x, y \neq a$ as the atomi of the lattice L_{a}. Here $\gamma\left(L_{a}\right)$ denotes the atomi graph of the lattice L_{a} which is a graph of vertex set $A\left(L_{a}\right)$. Two distict vertices are adjacent if and only if they are atomi. We have studied the atomi graph of linear sum of two lattices.

References

[1] Afkhami M., Barati Z. and Khashyarmanesh K., A Graph associated to a lattice, Ricerche di Matematica, 63 (2014), 67-78.
[2] Akbhari S. and Mohammadian A., On the zero-divisor graph of a commutative ring, Journal of Algebra, 274 (2004), 847-855.
[3] Allan R. and Laskar R., On domination and independent domination number of a graph, Discrete Mathematics, 23 (1978), 73-76.
[4] Beck I., Coloring of a commutative rings, Journal of Algebra, 116 (1988), 208-226.
[5] Bresar B., Changat M., Klavzar S., Kovse M., Mathews J. and Mathews A., Cover-incomparability graphs of posets, Order, 25 (2008), 335-347.
[6] Duffus D. and Rival I., Path length in the covering graph of a lattice, Discrete Mathematics, 19 (1977), 139-158.
[7] Estaji E. and Khashayarmanesh K., The zero divisor graph of a lattice, Results in Mathematics, 61 (2010), 1-11.
[8] Filipov N., Comparability graphs of a partially ordered sets of different types, Colloq Math. Soc. Janos Bolyai, 33 (1980), 373-380.
[9] Foxa J., Pach J., String graphs and incomparability graphs, Advances in Mathematics, 230 (2012), 1381-1401.
[10] Golovach P., Heggernes P., Kante M. M., Kratsch D. and Villanger Y., Minimal dominating sets in interval graphs and trees, Discrete Applied Mathematics, 216 (2017), 162-170.
[11] Nimbhorkar S., Wasadikar M. and Pawar M., Coloring of lattices, Mathematica Solvaca, 60 (2010), 419-434.
[12] Wasadikar M., Survase P., Incomparability graphs of lattices, ICMMSC, 283 (2012), 78-85.
[13] Wasadikar M. and Dabhole A., Incomparability graphs of the lattices L_{n} and $L_{n}^{1^{2}}$, Electronic Notes in Discrete Mathematics, 63 (2017), 271-278.

[^0]: 2020 Mathematics Subject Classification: 05E30, 05C76, 05C99.

