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Abstract: The present article is concerned with the oscillatory nature of the frac-
tional differential equation of order α ∈ (2, 3) with impulsive effects. By employing
a generalized Riccati transformation, we derive several oscillation criteria of Philos
type, which are either new or improve several recent results in the literature. Also,
we show the stability of the considered problem. To obtain the results, we trans-
form the fractional differential equation into a second-order ordinary differential
equation. In addition, we provide examples to show the effectiveness of the results.
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1. Introduction
The concept of fractional derivatives was originally established in Leibniz’s

letter to L’Hospital on September 30, 1695 [17], when he raised the meaning of
derivative of order 1

2
. The issue raised by Leibniz attracted many well-known math-

ematicians, including Liouville, Grünwald, Riemann, Euler, Lagrange, Heaviside,
Fourier, Abel, Letnikov, and many others. Since the 19th century, the theory of
fractional calculus originated rapidly and was the foundation for several disciplines
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such as fractional differential equations, noninteger order geometry, and fractional
dynamics. Today, there are numerous applications in various branches, including
optimal control, porous media, fractional filters, signal and image processing, frac-
tals, rheology, electrochemistry, fluid mechanics, polymer physics, etc. [12, 13, 19].
For basics of fractional calculus and applications, see [22, 31].

The generalization of integer order classical differential equations to noninteger
order are termed as fractional differential equations. Due to the wide applicability
of these differential equations in many areas of science and engineering, fractional
calculus deserves an independent study parallel to the well-known theory of ordi-
nary differential equations. Nowadays, many scientific and engineering problems,
including fractional derivatives, are already huge and still growing. Fractional order
differential equations came into existence because ordinary differential equations
cannot formulate many physical issues. Also, fractional differentials and integrals
provide a more accurate model under consideration.

Many authors have studied the existence, uniqueness, and approximations of
solutions of fractional differential equations. Some of these works can be seen in the
papers [4, 6, 12, 19, 30, 35]. The fundamental results and definitions of fractional
differential equations are discussed in [15, 23]. Many authors have studied various
types of models based on noninteger order derivatives [29, 32, 36]. In recent years,
many researchers have shown keen interest in the study of oscillating and non-
oscillating behavior of solutions [3, 21, 32, 38, 41]. In papers [6, 25, 38], authors
studied the oscillatory nature of different classes of fractional differential equations
without impulses. In [33], S. Salahshour et al. studied the analytical solutions
of the fractional differential equation with uncertainty: application to the Basset
problem. In [8], A. A. El-Sayed et al. examined numerical solutions of multi-term
variable-order fractional differential equations via Jacobi operational matrix.

It is well known that many real-life phenomena are affected by the sudden
change in their states at certain moments, such as heartbeats and blood flow in the
human body [27]. These phenomena are discussed in the form of impulses whose
duration is negligible compared to the whole process. Impulsive differential equa-
tions are used to simulate those discontinuous processes in which impulses occur.
For example, disturbances in cellular neural networks [7], fluctuations of pendulum
system in the case of external impulsive effects [2], relaxational oscillations of the
electromechanical system [24], and so on. As a result, it becomes an important tool
to handle the real process of mathematical models and phenomena. We refer to
[16] for an introduction to the theory of impulsive differential equations. It has a
wide range of applications, including drug diffusion in the human body, frequency-
modulated systems, population dynamics, chemical technology, electric circuits,
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fractals, viscoelasticity, etc. For more details on impulsive differential equations
and their applications, refer to [34, 35]. One of the main advantages of the im-
pulses can be seen in the paper of Sugie and Ishihara [36], they provide the model
in which the mass point might oscillate in the presence of impulsive effect and in
the absence of impulsive effect, the mass point didn’t oscillate.

Some researchers began to investigate the oscillatory nature of differential equa-
tions with impulses in 1989, and it is still in its early stages of development. Authors
later extended the oscillation study to parabolic and hyperbolic impulsive partial
differential equations in papers [11, 26]. In recent years, many researchers have
shown a great interest in studying the oscillatory nature of noninteger order evolu-
tion equations with impulses. We refer to [29, 36] and references cited therein for
these studies. Sadhasivam and Deepa [32] investigated a hybrid evolution system
with impulsive conditions.

In the literature, we noticed Riccati techniques are widely used to obtain
Kamenev and Philos type oscillation criteria [9, 10, 14, 18, 28, 36, 37, 39, 40].
The authors used Riccati techniques to investigate the oscillation of solutions of
even-order differential equations with neutral terms in the papers [1, 20]. On the
other hand, O. Bazighifan et al. [5] studied the fourth-order delay differential equa-
tion and discussed the oscillatory and asymptotic properties of solutions. We refer
to [18, 40] for more works on second-order differential equations with damping.

In [29], Raheem and Maqbul studied the oscillatory behavior of solutions of the
following fractional impulsive differential equation: Dβ

+,tu(x, t) + a(t)Dβ−1
+,t u(x, t) = b(t)∆u(x, t) +

m∑
k=1

ck(t)∆u(x, t− τk)− F (x, t), t 6= tj ,

Dβ−1
+,t u(x, t+j )−Dβ−1

+,t u(x, t−j ) = σ(x, tj)D
β−1
+,t u(x, tj), j = 1, 2, . . . , (x, t) ∈ Ω×R+ = G,

where a, b, ck ∈ PC[R+, R+] and forcing term F ∈ PC[Ω × R+, R+], where PC
denotes the class of functions which are piecewise continuous functions in t with
discontinuities of first kind only at t = tj, j = 1, 2, . . . and left continuous at t = tj,
β ∈ (1, 2) is a constant, ∆ is the Laplacian in Rn, Ω is a bounded domain in Rn

with a smooth boundary ∂Ω and Ω = Ω ∪ ∂Ω.
Moreover, in [10], L. Feng et al. investigated Philos type oscillation theorem

for impulsive Riemann-Liouville’s fractional differential equations. K. Wen et al.
[39] studied a second-order linear impulsive differential equation with damping
term and obtained several results on oscillations. For earlier works on oscillatory
behavior of differential equations, refer to [18, 25, 26, 32, 37, 41] and the references
cited therein.

After motivating from the above works, we extend the applications of Riccati
transformation to noninteger order differential equations and study the oscillatory
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nature of the problem. In this paper, we have proved several Philos type oscillation
theorems. The abstract form of the considered problem is as follows:{

Dα
+,tu(t) + a1(t)Dα−1

+,t u(t) + a2(t)Dα−2
+,t u(t) = 0, t ≥ t0 > 0, t 6= tj,

∆Dα−1
+,t u(tj) + djD

α−2
+,t u(tj) = 0, j = 1, 2, 3, . . . ,

(1.1)

where a1, a2 are piecewise continuous functions defined from [t0,∞) into R+ with
discontinuities at t = tj, j = 1, 2, . . . , Dα

+,t is the fractional derivative of Riemann-
Liouville type, where α ∈ (2, 3), and {dj} is a sequence of real numbers.

The rest of this paper is organized as follows. Section 2 contains some basic
lemmas and assumptions which are required for the next sections. In section 3,
Philos-type oscillation results and stability conditions are obtained for the problem
(1.1) using Riccati transformation. In section 4, examples are given to show the
effectuality of the results. In the end, a conclusion is added for future work.

2. Preliminaries and Assumptions
Throughout the paper, we assume the following assumptions:

(H1) The given numbers
0 < t1 < · · · < tj < · · ·

are such that
lim
j→∞

tj = +∞.

(H2) Dα−2
+,t u(z, t) is continuous, i.e.,

Dα−2u(z, t+j ) = Dα−2u(z, t−j ) = Dα−2u(z, tj).

Lemma 2.1. [29] For any function u : R+ → R, (Dα
+,tu)(t) = (Dα−1

+,t u)′(t) and

(Dα
+,tu)(t) = (Dα−2

+,t u)′′(t).

Lemma 2.2. [21] For any function u : R+ → R, let

G(t) =

∫ t

0

(t− τ)−(α−2)u(τ)dτ, where α ∈ (2, 3) and t ≥ 0, then

G′(t) = Γ(3− α)(Dα−2
+,t u)(t).

Lemma 2.3. For an eventually positive solution u(t) of (1.1) such that (Dα
+,tu)(t) >

0 for t ≥ τ > 0, and ∫ ∞
τ

exp

(
−
∫ s

t0

a2(σ)

a1(σ)
dσ

)
ds =∞,
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then (Dα−2
+,t u)(t) > 0 for t ≥ τ.

Proof. If we take U(t) = exp
(∫ t

t0

a2(σ)
a1(σ)

dσ
)

, then

[(Dα−2
+,t u)(t)U(t)]′ = (Dα−1

+,t u)(t)U(t) +
a2(t)

a1(t)
(Dα−2

+,t u)(t)U(t)

=
1

a1(t)
[a1(t)(Dα−1

+,t u)(t) + a2(t)(Dα−2
+,t u)(t)]U(t)

≤ − 1

a1(t)
[(Dα

+,tu)(t)]U(t) < 0.

If (Dα−2
+,t u)(t) < 0 for t ≥ τ, it follows that

(Dα−2
+,t u)(t)U(t) < (Dα−2

+,t u)(τ)U(τ) = C < 0, t ≥ τ.

From Lemma 2.2, we get

G′(t)

Γ(3− α)
= (Dα−2

+,t U)(t) < C exp

(
−
∫ t

t0

a2(σ)

a1(σ)
dσ

)
, t ≥ τ.

Integrating from τ to t, we get

G(t) < G(τ) + CΓ(3− α)

∫ t

τ

exp

(
−
∫ s

t0

a2(σ)

a1(σ)
dσ

)
ds.

By taking limit, we obtain lim
t→∞

G(t) = −∞. This contradiction gives (Dα−2
+,t u)(t) >

0 for t ≥ τ .
Following the process of the above Lemma 2.3, we have:

Lemma 2.4. For an eventually negative solution of (1.1) such that (Dα
+,tu)(t) < 0

for t ≥ τ > 0, and ∫ ∞
τ

exp

(
−
∫ s

t0

a2(σ)

a1(σ)
dσ

)
ds =∞,

then (Dα−2
+,t u)(t) < 0 for t ≥ τ.

Lemma 2.5. Let all the conditions of Lemma 2.3 and Lemma 2.4 are satisfied,
then if all non-zero solutions of the following system:{

z′′(t) + a1(t)z′(t) + a2(t)z(t) = 0, t ≥ t0 > 0, t 6= tj,
∆z′(tj) + djz(tj) = 0, j = 1, 2, 3, . . . ,

(2.1)
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are oscillatory, then each non-zero solution of the system (1.1) is oscillatory.
Proof. Let on contrary, system (1.1) has an eventually positive solution u(t).
Putting z(t) = Dα−2u(t), (1.1), and using Lemma 2.1, we get{

z′′(t) + a1(t)z′(t) + a2(t)z(t) = 0, t ≥ t0 > 0, t 6= tj,
∆z′(tj) + djz(tj) = 0, j = 1, 2, 3, . . . .

From Lemma 2.3, it follows that the above system has an eventually positive solu-
tion.

Throughout the rest paper, we assume that all the conditions of Lemma2.3 and
Lemma 2.4 are satisfied.

3. Main Results

Theorem 3.1. Assume that there exist real valued continuously differentiable func-
tions Ψ(t, s), φ(t, s) with domain D1 = {(t, s)|t ≥ s ≥ t0 > 0} such that

(A1) Ψ(t, t) = 0 for t ≥ t0 and Ψ(t, s) > 0 for t > s ≥ t0;

(A2) ∂
∂t

Ψ(t, s) ≥ 0, ∂
∂s

Ψ(t, s) ≤ 0;

(A3) −∂Ψ(t,s)
∂s

= φ(t, s)
√

Ψ(t, s), (t, s) ∈ D1.

Then every non-zero solution of (1.1) is oscillatory if

lim sup
t→∞

[
1

Ψ(t, t0)

∫ t

t0

[
Ψ(t, s)a2(s)− a1(s)

4
R2(t, s)

]
ds+

n∑
j=1

Ψ(t, tj)dj

]
=∞,

where

R(t, s) =

(
φ(t, s)√
a1(s)

+
√
a1(s)

√
Ψ(t, s)

)
.

Proof. If (2.1) has a nonoscillatory solution z = z(t), then there exists a T ≥ t0
such that z(t) 6= 0 for t ≥ T . Thus, we define the Riccati transformation as:

v(t) =
z′(t)

z(t)
for t ≥ T.

It follows from (2.1) that

v′(t) =
z′′(t)z(t)− (z′(t))2

z2(t)

=
z′′(t)

z(t)
−
(z′(t)
z(t)

)2

=
−a1(t)z′(t)− a2(t)z(t)

z(t)
− v2(t)
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v′(t) = −a1(t)v(t)− a2(t)− v2(t),

or,

v′(t) + v2(t) + a1(t)v(t) + a2(t) = 0, t 6= tj.

Since z(t) is continuous on [T,∞), we have

∆v(tj) = v(t+j )− v(t−j )

=
z′(t+j )

z(t+j )
−
z′(t−j )

z(t−j )

=
∆z′(tj)

z(tj)

∆v(tj) = −dj.

Therefore, the function v(t) satisfies{
v′(t) + v2(t) + a1(t)v(t) + a2(t) = 0, t 6= tj,
∆v(tj) + dj = 0, j = 1, 2, 3, . . . .

(3.1)

Let m be a positive integer such that tm−1 ≤ T < tm. For sufficiently large t, we
can choose a positive integer n, which satisfies tn ≤ t < tn+1. Let J exclude the
points tm, tm+1, . . . , tn from [T, t]. For t 6= tj, from the first equation of (3.1), we
have∫ t

T
Ψ(t, s)a2(s)ds = −

∫
J

Ψ(t, s)v′(s)ds−
∫
J

Ψ(t, s)v2(s)ds−
∫
J

Ψ(t, s)a1(s)v(s)ds.

(3.2)

We have∫
J

Ψ(t, s)v′(s)ds = −
n∑

j=m

(Ψ(t, t+j )v(t+j )−Ψ(t, t−j )v(t−j ))−Ψ(t, T )v(T )−
∫
J
v(s)

∂Ψ

∂s
ds

= −
n∑

j=m

Ψ(t, tj)∆v(tj)−Ψ(t, T )v(T )−
∫
J
v(s)

∂Ψ

∂s
ds.

Using second equation of (3.1), we get∫
J

Ψ(t, s)v′(s)ds =
n∑

j=m

Ψ(t, tj)dj −Ψ(t, T )v(T )−
∫
J

v(s)
∂Ψ

∂s
ds.
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From (3.2), we have∫ t

T

Ψ(t, s)a2(s)ds

= Ψ(t, T )v(T )−
n∑

j=m

Ψ(t, tj)dj −
∫
J
a1(s)

{
R(t, s)

√
Ψ(t, s)√
a1(s)

v(s) +
Ψ(t, s)

a1(s)
v2(s)

}
ds

= Ψ(t, T )v(T )−
n∑

j=m

Ψ(t, tj)dj −
∫
J
a1(s)

[{
R(t, s)

2
+

√
Ψ(t, s)√
a1(s)

v(s)

}2

− R2(t, s)

4

]
ds

≤ Ψ(t, T )v(T )−
n∑

j=m

Ψ(t, tj)dj +
1

4

∫
J
a1(s)R2(t, s)ds.

The above inequality implies that∫ t

T

[
Ψ(t, s)a2(s)− 1

4
a1(s)R2(t, s)

]
ds+

n∑
j=m

Ψ(t, tj)dj ≤ Ψ(t, T )v(T ).

Using the above inequality, we get∫ t

t0

[
Ψ(t, s)a2(s)− 1

4
a1(s)R2(t, s)

]
ds+

n∑
j=1

Ψ(t, tj)dj

≤
∫ T

t0

[
Ψ(t, s)a2(s)− 1

4
a1(s)R2(t, s)

]
ds+

m−1∑
j=1

Ψ(t, tj)dj + Ψ(t, T )v(T )

≤
∫ T

t0

Ψ(t, s)a2(s)ds+
m−1∑
j=1

Ψ(t, tj)dj + Ψ(t, T )v(T ).

As Ψ(t, s) is decreasing in s, we have

lim sup
t→∞

[
1

Ψ(t, t0)

∫ t

t0

{
Ψ(t, s)a2(s)− 1

4
a1(s)R2(t, s)

}
ds+

n∑
j=1

Ψ(t, tj)dj

]

≤

[
v(T ) +

∫ T

t0

a2(s)ds+
m−1∑
j=1

dj

]
<∞.

This contradiction completes the proof.
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Theorem 3.2. Let Ψ and φ be functions as defined in Theorem (3.1). Further,
we assume that there is a constant ρ > 0 such that

inf
s>t0

[
lim inf
t→∞

Ψ(t, s)

Ψ(t, t0)

]
> ρ, (3.3)

and

lim sup
t→∞

1

Ψ(t, t0)

∫ t

T

a1(s)R2(t, s)ds <∞.

Then every non-zero solution of (1.1) oscillates if there exists a positive continuous
function F on [t0,∞) with ∫ ∞

t0

F 2(σ)dσ =∞, (3.4)

and

lim sup
t→∞

[
1

Ψ(t, T )

∫ t

T

{
Ψ(t, s)a2(s)− 1

4
a1(s)R2(t, s)

}
ds+

n∑
j=m

Ψ(t, tj)dj

]
≥ F (T ), T ≥ t0.

(3.5)

Proof. Following the proof of previous theorem, we have

lim sup
t→∞

[
1

Ψ(t, T )

∫ t

T

{
Ψ(t, s)a2(s)− 1

4
a1(s)R2(t, s)

}
ds+

n∑
j=m

Ψ(t, tj)dj

]

≤ v(T )− lim inf
t→∞

[
1

Ψ(t, T )

∫
J

a1(s)

{
1

2
R(t, s) +

√
Ψ(t, s)√
a1(s)

v(s)

}2

ds

]
.

Consequently using the condition 3.5, we obtain

v(T ) ≥ F (T ) + lim inf
t→∞

[
1

Ψ(t, T )

∫
J

a1(s)

{
1

2
R(t, s) +

√
Ψ(t, s)√
a1(s)

v(s)

}2

ds

]
. (3.6)

From the above inequality, it follows that

lim inf
t→∞

[
1

Ψ(t, T )

∫
J

a1(s)

{
1

2
R(t, s) +

√
Ψ(t, s)√
a1(s)

v(s)

}2

ds

]
<∞.

=⇒ lim inf
t→∞

[
1

Ψ(t, T )

∫
J

{
R(t, s)

√
Ψ(t, s)

√
a1(s)v(s) + Ψ(t, s)v2(s)

}
ds

]
<∞.
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If we assume that

ξ1(t) =
1

Ψ(t, T )

∫
J

R(t, s)
√

Ψ(t, s)
√
a1(s)v(s)ds, t > T,

and

ξ2(t) =
1

Ψ(t, T )

∫
J

Ψ(t, s)v2(s)ds, t > T,

then we get

lim inf
t→∞

[ξ1(t) + ξ2(t)] <∞. (3.7)

For t > T, we have

ξ2(t) =
1

Ψ(t, T )

∫
J

Ψ(t, s)d

[ ∫ s

T

v2(σ)dσ

]

=
1

Ψ(t, T )

[
Ψ(t, s)

∫ s

T

v2(σ)dσ

]t−m
T

+
1

Ψ(t, T )

[
Ψ(t, s)

∫ s

t+n

v2(σ)dσ

]t
t+n

+
1

Ψ(t, T )

n∑
j=m+1

[
Ψ(t, s)

∫ s

t+j−1

v2(σ)dσ

]t−j
t+j−1

+
1

Ψ(t, T )

∫
J

[
∂

∂s

(
−Ψ(t, s)

)][ ∫ s

T

v2(σ)dσ

]
ds

=
Ψ(t, tm)

Ψ(t, T )

∫ t−m

T

v2(σ)dσ +
1

Ψ(t, T )

n∑
j=m+1

Ψ(t, s)

∫ t−j

t+j−1

v2(σ)dσ

+
1

Ψ(t, T )

∫
J

[
∂

∂s

(
−Ψ(t, s)

)][ ∫ s

T

v2(σ)dσ

]
ds.

Since Ψ(t, s) is decreasing in s, we have

Ψ(t, tm)

Ψ(t, T )

∫ t−m

T

v2(σ)dσ +
1

Ψ(t, T )

n∑
j=m+1

Ψ(t, s)

∫ t−j

t+j−1

v2(σ)dσ

≥ Ψ(t, tn)

Ψ(t, T )

∫ t−m

T

v2(σ)dσ +
Ψ(t, tn)

Ψ(t, T )

n∑
j=m+1

∫ t−j

t+j−1

v2(σ)dσ

=
Ψ(t, tn)

Ψ(t, T )

∫
J

v2(σ)dσ.
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Using condition (3.4), for an arbitrary µ > 0, there exists T1 > T such that∫
J

v2(σ)dσ ≥ µ

ρ
, t ≥ T1.

and consequently, we have for t ≥ T1,

ξ2(t) ≥ µ

ρ

Ψ(t, tn)

Ψ(t, T )
+
µ

ρ

1

Ψ(t, T )

∫ t

T1

∂

∂s

(
−Ψ(t, s)

)
ds

=
µ

ρ

Ψ(t, tn)

Ψ(t, T )
+
µ

ρ

Ψ(t, T1)

Ψ(t, T )
≥ 2

µ

ρ

Ψ(t, tn)

Ψ(t, T )
.

Using condition (3.3), we can choose T ′1 ≥ T1 such that

Ψ(t, tn)

Ψ(t, t0)
≥ ρ, t ≥ T ′1. (3.8)

So we have,
ξ2(t) ≥ 2µ, t ≥ T ′1.

Since µ > 0 is arbitrary, we have

lim
t→∞

ξ2(t) =∞.

Using (3.7), there exists a sequence {tν} converging to ∞ and a constant M such
that

ξ1(tν) + ξ2(tν) ≤M, ν = 1, 2, 3 . . . (3.9)

lim
ν→∞

ξ2(tν) =∞ implies that

lim
ν→∞

ξ1(tν) = −∞. (3.10)

From (3.9), we have

1 +
ξ1(tν)

ξ2(tν)
≤ M

ξ2(tν)
<

1

3
,

for sufficiently large ν. Thus,

ξ1(tν)

ξ2(tν)
< −2

3
.
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Equation (3.10) ensures that

lim
ν→∞

ξ2
1(tν)

ξ2(tν)
=∞. (3.11)

On the other hand, by using the Cauchy inequality, for any positive integer ν, we
have

ξ2
1(tν) =

1

Ψ2(tν , T )

∫ tν

T

a1(s)R2(t, s)Ψ(tν , s)v
2(s)ds

≤
[

1

Ψ(tν , T )

∫ tν

T

a1(s)R2(tν , s)ds

][
1

Ψ(tν , T )

∫ tν

T

Ψ(tν , s)v
2(s)ds

]
≤

[
1

Ψ(tν , T )

∫ tν

T

a1(s)R2(tν , s)ds

]
ξ2(tν),

and consequently,

ξ2
1(tν)

ξ2(tν)
≤ 1

Ψ(tν , T )

∫ tν

T

a1(s)R2(tν , s)ds.

Using (3.8), we get

ξ2
1(tν)

ξ2(tν)
≤ 1

ρ

[
1

Ψ(tν , t0)

∫ tν

T

a1(s)R2(tν , s)ds

]
.

Equation (3.11) gives

lim sup
t→∞

1

Ψ(t, t0)

∫ t

T

a1(s)R2(t, s)ds =∞,

which is a contradiction.

Theorem 3.3. Assume that the following conditions hold:

(C1) a2(t)z(t) is continuous in [t0,∞), and a2(t)z(t)/f(z(t)) ≥ q(t), where f(µz) ≥
µf(z) (µ > 0), f ′(z) > 0, and q(t) is continuous on [t0,∞) with q(t) ≥ 0;

(C2) There exist real numbers bj, b
∗
j , and cj such that b∗j <

z(tj)

z′(tj)
< bj and cj =

−bjdj;

(C3) lim
t→∞

∫ t

t0

∏
t0<tj<s

cj exp

(∫ s

t0

a1(ν)dν

)
q(s)ds =∞.
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Then every solution z(t) of (2.1) satisfies lim inf
t→∞

|z(t)| = 0.

Proof. Let z(t) be a solution of (2.1) and let on contrary that lim inf
t→∞

z(t) > 0. So

z(t) is nonoscillatory. Without loss of generality, we may assume that z(t) > 0 on
[T,∞). Following the idea of ([14], Lemma 2), we can easily find that z′(t) > 0 for
all t ≥ T. We employ a Riccati transformation as:

V (t) =
z′(t)

f(z(t))
. (3.12)

Differentiating it, we get

V ′(t) =
z′′(t)f(z(t))−

(
z′(t)

)2
f ′(z(t))

f 2(z(t))

=
−a1(t)z′(t)− a2(t)z(t)

f(z(t))
− f ′(z(t))V 2(t)

≤ −a1(t)V (t)− q(t). (3.13)

Using the continuity of z(t) and (C2), we have

∆V (tj) =
∆z′(tj)

f(z(tj))

= − djz(tj)

f(z(tj))

≤ −bjdjV (tj) = cjV (tj). (3.14)

Integrating (3.13) with (3.14), we obtain

V (t) ≤ V (t0)
∏

t0<tj<t

cj exp

(∫ t

t0

−a1(s)ds

)
−
∫ t

t0

∏
s<tj<t

cj exp

(∫ t

s
−a1(ν)dν

)
q(s)ds,

or,

V (t) ≤
∏

t0<tj<t

cj exp

(∫ t

t0

−a1(s)ds

)[
V (t0)−

∫ t

t0

∏
t0<tj<s

cj exp

(∫ s

t0

a1(ν)dν

)
q(s)ds

]
.

From the condition (C3), the above inequality is impossible. This contradiction
establishes the result.

Remark. If every solution z(t) of (2.1) satisfies lim inf
t→∞

|z(t)| = 0, then every

solution u(t) of (1.1) also satisfies lim inf
t→∞

|u(t)| = 0.
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4. Application
In this section, we consider the following example to illustrate the main results:

Example 4.1. Consider the following system of fractional impulsive differential
equations:{

D
11
5

+,tu(z, t) + 1
t
D

6
5
+,tu(z, t) + 1

t2
D

1
5
+,tu(z, t) = 0, t 6= tj,

∆D
6
5
+,tu(z, tj) + j−3D

1
5
+,tu(z, tj) = 0, j = 1, 2, 3, . . . , (z, t) ∈ (0, π

2
)× R+ = D.

(4.1)

Here a1(t) = 1
t
, a2(t) = 1

t2
and dj = j−3. We can easily see that∫ ∞

τ

exp

(
−
∫ s

t0

a2(σ)

a1(σ)
dσ

)
ds =

∫ ∞
τ

exp

(
−
∫ s

t0

1

σ
dσ

)
ds =

∫ ∞
τ

t0
s
ds =∞.

Furthermore, we assume that all other conditions of Lemma 2.3 and Lemma 2.4.
Let Ψ(t, s) = (t− s)2, φ(t, s) = 2, then

R(t, s) = 2
√
s+

(t− s)√
s

,

and

lim sup
t→∞

[
1

(t− t0)2

∫ t

t0

{
(t− s)2

s2
− 1

4s
R2(t, s)

}
ds+

n∑
j=1

(t− tj)2j−3

]
=∞.

Thus all the assumptions of Theorem 3.1 are satisfied. Therefore all non-zero
solutions of 4.1 are oscillatory.

Example 4.2.{
D

11
5

+,tu(z, t) + 1
t2
D

6
5
+,tu(z, t) + 1

t3
D

1
5
+,tu(z, t) = 0, t 6= tj,

∆D
6
5
+,tu(z, tj) + j−4D

1
5
+,tu(z, tj) = 0, j = 1, 2, 3, . . . , (z, t) ∈ (0, π

2
)× R+ = D.

(4.2)

Here a1(t) = 1
t2
, a2(t) = 1

t3
. Obviously,∫ ∞

τ

exp

(
−
∫ s

t0

a2(σ)

a1(σ)
dσ

)
ds =∞.

Let Ψ(t, s) = (t− s)2, φ(t, s) = 2, then

R(t, s) = 2s+
t− s
s

,
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and ∫ t

t0

a1(s)R2(t, s)ds =

∫ t

t0

1

s2

[
2s+

(t− s)2

s

]
ds.

After some simplification, we have

lim sup
t→∞

1

(t− t0)2

∫ t

t0

a1(s)R2(t, s)ds =
3

t30
<∞.

Further, we take F (σ) = 5
4σ2 − 1. We see that∫ ∞

t0

F 2(σ)dσ =

∫ ∞
t0

(
5

4σ2
− 1

)2

dσ =∞.

Here tj = j, dj = j−4 and it can be easily verified

lim sup
t→∞

[
1

Ψ(t, T )

∫ t

T

[
Ψ(t, s)a2(s)− 1

4
a1(s)R2(t, s)

]
ds+

n∑
j=m

Ψ(t, tj)dj

]

≥ 5

4T 2
− 1 = F (T ).

Thus all the conditions of Theorem 3.2 are satisfied. Therefore every non-zero
solution of (4.2) is oscillatory.

5. Conclusion
We have studied the fractional-order differential equation by transforming it

into the second-order ordinary differential equation. The considered problem is in-
vestigated with impulsive effects. We have established some results based on Philos
type oscillation criteria. Moreover, we proved the stability condition. Finally, ex-
amples are given to validate the results. In future, one can extend the above work
to a higher order multi-term time-fractional system.
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