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Abstract: In this paper, we apply an efficient computational technique based on
the coupling of the Sumudu transform method and the iterative method to solve
the generalized time-fractional biological population model within the Caputo frac-
tional derivative. This method is termed as Sumudu transform iterative method
(STIM). The series form approximate analytical solutions are obtained in a closed
form, having components of the converging behavior towards the exact solution.
Furthermore, the outcomes of this investigation are illustrated graphically using
the mathematical software Maple, and the solution graphs demonstrate that the
approximate solution is closely related to the exact solution.
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1. Introduction
Various physical phenomena can be explained effectively in the natural sciences

and engineering by designing models based on the principle of fractional calculus.
In last few years, the use of fractional differentiation for mathematical modeling of
real-world physical problems such as earthquake modeling, traffic flow models with
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fractional derivatives, measurement of viscoelasticity material properties and so
on has become widespread. Fractional partial differential equations have attained
a lot of popularity because the fractional order system eventually converges to
the equations of the integer order. The theory of fractional differential equations
contributes to a more accurate and systematic translation of nature’s reality.

In the last decade, many researchers have studied fractional partial differen-
tial equations (FPDEs) by different techniques such as the adomian decomposi-
tion method (ADM) [11], the homotopy perturbation method (HPM) [19, 24], the
homotopy perturbation transform method (HPTM) [16], the homotopy analysis
method (HAM) [1, 18], the q-homotopy analysis transform method (q-HATM) [3],
the iterative Laplace transform method (ILTM) [4, 25], the Laplace decomposi-
tion method (LDM) [14], the modified generalized Taylor fractional series method
(MGTFSM) [15] etc. There are several integral transforms available for solving
PDEs, including Laplace, Sumudu, Fourier, Mellin, and Elzaki. The Laplace and
Sumudu transforms are the most widely accepted.

Watugala proposed the Sumudu transform method (STM) [27] to solve engi-
neering problems. Weerakoon [28] used this method to solve partial differential
equations. The inverse formula of this transform was later discovered by Weer-
akoon [29]. Demiray et al . [10] used the Sumudu transform method (STM) to
obtain exact solutions to fractional differential equations.

Recently, Wang and Liu developed the Sumudu transform iterative method
(STIM) [26] by combining the Sumudu transform with an iterative technique to
find approximate analytical solutions to time-fractional Cauchy reaction-diffusion
equations. The Sumudu transform iterative method was used to successfully solve
a variety of time and space fractional partial differential equations as well as their
systems [17] and fractional Fokker-Planck equations [2]. The proposed technique
is straightforward to implement and very efficient computationally.

2. Mathematical Formulation of the Problem
According to biological scientists the population of the species may be regulated

through dispersal or emigration. The diffusion of a biological species within a region
C is defined by three functions of position −→x = (x, y) and time t [13] namely
population density u(−→x , t), diffusion velocity v(−→x , t), and the population supply,
g(−→x , t). The population density u(−→x , t) indicates the number of individuals per
unit volume, at a given position −→x and time t. At time t, its integral over any
sub region D of region C yield the total population of D in that sub region. The
entity g(−→x , t) represents the rate which individuals are added to the population at
position −→x per unit volume via births and deaths. The diffusion velocity v(−→x , t)
is the average velocity of all individuals who occupy position −→x at time t, and it
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depicts the population flow from point to point. For any regular sub region D of
C and for all time t, the entities u, v and g must be compatible with the following
population balance law

dα

dtα

∫
D

udV +

∫
∂D

u−→v .n̂ dA =

∫
D

gdV, (1)

where n̂ is the outward unit normal to the boundary ∂D of D. In equation (1), the
derivative has been defined in the Caputo sense. It follows from equation (1), the
rate of population change in D plus the rate at which individuals depart D over its
boundary must equal the rate at which individuals are supplied directly to D. By
assuming the aforementioned assumptions [20], we can see that

g = g(u), −→v = −r(u)∇u, (2)

where r(u) > 0 for u > 0, and ∇ is the Laplace operator.
For population density u, the following two-dimensional nonlinear degenerate para-
bolic partial differential equation may be derived as

∂αu

∂tα
=
∂2φ(u)

∂x2
+
∂2φ(u)

∂y2
+ g(u), t ≥ 0, x, y ∈ R. (3)

The model described above in equation (3) is referred to as the time fractional
biological population model. For modeling of the population of animal, Gurney
and Nisbet [12] employed φ(u) as a special case.
This model leads to equation (3) with φ(u) = u2, to the following equation

∂αu

∂tα
=
∂2u2

∂x2
+
∂2u2

∂y2
+ g(u), t ≥ 0, x, y ∈ R. (4)

with the given initial condition u(x,y,0). Various properties of equation (4) were
investigated in [20], including Holder estimates and its solutions.

The following are three examples of constitutive equations for g(u) that may
be expressed as
(a) g(u) = cu, c = constant, Malthusian Law [13].
(b) g(u) = c1u− c2u2, c1, c2 = positive constants, Verhulst Law [20].
(c) g(u) = cuθ, (c > 0, 0 < θ < 1), Porous media [5, 22].
Consider a more general expression for g(u) as g(u) = hua(1 − rub), which con-
verts equation (4) to the generalized time fractional biological population model
represented by

∂αu

∂tα
=
∂2u2

∂x2
+
∂2u2

∂y2
+ hua(1− rub), t ≥ 0, x, y, h, a, r, b ∈ R, 0 < α ≤ 1, (5)
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with subject to the initial condition u(x, y, 0) = f0(x, y), where u denotes the

population density and
∂αu

∂tα
is the Caputo fractional derivative of order α. If

h = c, a = 1, r = 0 and h = c1, a = b = 1, r = c2/c1 where c1 > 0, c2 > 0, c are
constants, then equation (5) leads to Malthusian law and Verhulst law, respectively.

The purpose of this study is to apply the Sumudu transform iterative method
to solve the generalized time-fractional biological population model because it is
more precise and computationally efficient than other existing methods.

3. Preliminaries and Basic Definitions
In this section, we provide some fundamental definitions, notations, and prop-

erties of fractional calculus using Sumudu transform theory, which will be used
later in this paper.

Definition 1. In Caputo’s sense, the fractional derivative of a function u(x, t) is
defined as [8]

∂αu(x, t)

∂tα
=

1

Γ(m− α)

∫ t

0

(t− ξ)m−α−1u(m)(x, ξ)dξ, m− 1 < α ≤ m , m ∈ N,

= Im−αt Dmu(x, t). (6)

Here Dm ≡ dm

dtm
and Iαt stands for the Riemann-Liouville fractional integral oper-

ator of order α > 0, defined as [21]

Iαt u(x, t) =
1

Γ(α)

∫ t

0

(t− ξ)α−1u(m)(x, ξ)dξ, ξ > 0. (7)

Definition 2. The Sumudu transform over the set of functions {f(t)|∃M,ρ1 >
0, ρ2 > 0 such that |f(t)| < Me|t|/ρj if t ∈ (−1)j × [0,∞)} by the following formula
[6, 27]

S[f(t)] = F (ω) =

∫ ∞
0

e−tf(ωt)dt , ω ∈ (−ρ1, ρ2). (8)

Definition 3. The Sumudu transform of Caputo fractional derivative is presented
in following manner [10, 26]

S[
∂αu(x, t)

∂tα
] = ω−αS[u(x, t)]−

m−1∑
k=0

[
ω−α+ku(k)(x, 0)

]
,

m− 1 < α ≤ m , m ∈ N. (9)

where u(k)(x, 0) is the k-order derivative of u(x, t) with respect to t at t = 0.
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Definition 4. The Mittag-Leffler function, which is a generalization of exponential
function is defined as [21, 23]

Eα(z) =
∞∑
n=0

zn

Γ(nα + 1)
, α ∈ C, Re(α) > 0. (10)

4. Basic Concept of Sumudu Transform Iterative Method
In order to illustrate the basic idea of this method [26], we consider the general

fractional partial differential equation with the initial conditions of the form

∂αu(x, t)

∂tα
+Ru(x, t) +Nu(x, t) = g(x, t), m− 1 < α ≤ m, m ∈ N, (11)

u(k)(x, 0) = hk(x), k = 0, 1, 2, ...,m− 1, (12)

where
∂αu(x, t)

∂tα
is the Caputo fractional derivative of order α, m−1 < α ≤ m, m ∈

N, defined by equation (6), R is a linear operator and may include other fractional
derivatives of order less than α, N is a non-linear operator which may include other
fractional derivatives of order less than α and g(x,t) is a known function.
Applying the Sumudu transform on both sides of equation (11), we have

S
[∂αu(x, t)

∂tα

]
+ S[Ru(x, t) +Nu(x, t)] = S[g(x, t)]. (13)

By using the equation (9), we get

S[u(x, t)] = ωα
m−1∑
k=0

ω−α+ku(k)(x, 0) +ωαS[g(x, t)]−ωαS[Ru(x, t) +Nu(x, t)]. (14)

On taking inverse Sumudu transform on equation (14), we have

u(x, t) = S−1
[
ωα
(m−1∑
k=0

[ω−α+ku(k)(x, 0) + S[g(x, t)]
)]
− S−1

[
ωαS[Ru(x, t) +Nu(x, t)]

]
.

(15)

Further, we apply the iterative method introduced by Daftardar-Gejji and Jafari
[7], which represents a solution u(x,t) in infinite series of components

u(x, t) =
∞∑
i=0

ui(x, t). (16)
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As R is a linear operator, so we have

R
( ∞∑
i=0

ui(x, t)
)

=
∞∑
i=0

R[ui(x, t)], (17)

and the non-linear operator N is decomposed as follows

N
( ∞∑
i=0

ui(x, t)
)

= N [u0(x, t)] +
∞∑
i=0

[
N
( i∑
j=0

uj(x, t)
)
−N

( i−1∑
j=0

uj(x, t)
)]
. (18)

Substituting the results given by equations from (16) to (18) in the equation (15),
we get

∞∑
i=0

ui(x, t) = S−1
[
ωα
(m−1∑
k=0

ω−α+ku(k)(x, 0) + S[g(x, t)]
)]

− S−1
[
ωαS

{ ∞∑
i=0

R[ui(x, t)] +N [u0(x, t)] +

∞∑
i=1

[
N
( i∑
j=0

uj(x, t)
)
−N

( i−1∑
j=0

uj(x, t)
)]}]

.

(19)

We have defined the recurrence formulae as

u0(x, t) = S−1
[
ωα
(m−1∑
k=0

ω−α+ku(k)(x, 0) + S[g(x, t)]
)]

,

u1(x, t) = −S−1
[
ωαS[R(u0(x, t)) +N(u0(x, t))]

]
,

um+1(x, t) = −S−1
[
ωαS

{
R[um(x, t)]−

[
N
( m∑
j=o

uj(x, t)
)
−N

(m−1∑
j=0

uj(x, t)
)]}]

, m ≥ 1.


(20)

Therefore, the approximate analytical solution of equations (11) and (12) in trun-
cated series form is given by

u(x, t) ∼= lim
N→∞

N∑
m=0

um(x, t). (21)

In general, the solutions in the above series converge quickly. The classical approach
to convergence of this type of series has been presented by Bhalekar and Daftardar-
Gejji [7] and Daftardar-Gejji and Jafari [9].
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5. Solution of Generalized Time Fractional Biological Population Model
In this section, we employ the Sumudu transform iterative approach to solve

generalized time fractional biological population models.

Example 1. Consider the following generalized time-fractional biological popula-
tion model [11]

∂αu

∂tα
=
∂2u2

∂x2
+
∂2u2

∂y2
+ u(1− ru), t ≥ 0, r ∈ R, 0 < α ≤ 1, (22)

with the initial condition

u(x, y, 0) = exp
[1

2

√
r

2
(x+ y)

]
. (23)

Taking the Sumudu transform on the both sides of equation (22), and making use
of the result given by equation (23), we have

S[u(x, y, t)] = exp
[1

2

√
r

2
(x+ y)

]
+ ωαS

[∂2u2
∂x2

+
∂2u2

∂y2
+ u(1− ru)

]
. (24)

Operating with the inverse Sumudu transform on both sides of equation (24) gives

u(x, y, t) = exp
[1

2

√
r

2
(x+ y)

]
+ S−1

[
ωαS

[∂2u2
∂x2

+
∂2u2

∂y2
+ u(1− ru)

]]
. (25)

Substituting the results from equations (16) to (18) in the equation (25) and ap-
plying the equation (20), we determine the components of the STIM solution as
follows

u0(x, y, t) = u(x, y, 0) = exp
[1

2

√
r

2
(x+ y)

]
, (26)

u1(x, y, t) = S−1
[
ωαS

[∂2u20
∂x2

+
∂2u20
∂y2

+ u0(1− ru0)
]]

=
tα

Γ(α + 1)
exp
[1

2

√
r

2
(x+ y)

]
, (27)

u2(x, y, t) = S−1
[
ωαS

[∂2(u0 + u1)
2

∂x2
+
∂2(u0 + u1)

2

∂y2
+ (u0 + u1)(1− r(u0 + u1))

]]
− S−1

[
ωαS

[∂2u20
∂x2

+
∂2u20
∂y2

+ u0(1− ru0)
]]
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=
t2α

Γ(2α + 1)
exp
[1

2

√
r

2
(x+ y)

]
, (28)

u3(x, y, t) = S−1
[
ωαS

[∂2(u0 + u1 + u2)
2

∂x2
+
∂2(u0 + u1 + u2)

2

∂y2

+ (u0 + u1 + u2)(1− r(u0 + u1 + u2))
]]

− S−1
[
ωαS

[∂2(u0 + u1)
2

∂x2
+
∂2(u0 + u1)

2

∂y2
+ (u0 + u1)(1− r(u0 + u1))

]]
=

t3α

Γ(3α + 1)
exp
[1

2

√
r

2
(x+ y)

]
, (29)

and so on. The other components can be found accordingly.
Thus, the approximate analytical solution in the series form can be obtained as

u(x, y, t) ∼= lim
N→∞

N∑
m=0

um(x, y, t) = u0(x, y, t)+u1(x, y, t)+u2(x, y, t)+u3(x, y, t)+, ...,

u(x, y, t) = exp
[1

2

√
r

2
(x+ y)

]
+

tα

Γ(α + 1)
exp
[1

2

√
r

2
(x+ y)

]
+

t2α

Γ(2α + 1)
exp
[1

2

√
r

2
(x+ y)

]
+

t3α

Γ(3α + 1)
exp
[1

2

√
r

2
(x+ y)

]
+, ...,

= exp
[1

2

√
r

2
(x+ y)

] ∞∑
n=0

tnα

Γ(nα + 1)

= exp
[1

2

√
r

2
(x+ y)

]
Eα(tα). (30)

which is the same result was obtained by El-Sayed et al . [11] using ADM.

Remark 1. For α = 1 the result in equation (30) reduces to the following form

u(x, y, t) = exp
[1

2

√
r

2
(x+ y) + t

]
. (31)

This exact solution for the standard form of the biological population model was
obtained earlier by Roul [24] using the HPM method.
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Figure 1. Solution graph for Example 1: (a) Exact Solution (b) approximate
solution at α = 1, r = 48, t = 1

Example 2. Consider the following generalized time-fractional biological popula-
tion model [11]

∂αu

∂tα
=
∂2u2

∂x2
+
∂2u2

∂y2
+ hu, t ≥ 0, h ∈ R, 0 < α ≤ 1, (32)

with the initial condition

u(x, y, 0) =
√
xy. (33)

Taking the Sumudu transform on the both sides of equation (32), and making use
of the result given by equation (33), we have

S[u(x, y, t)] =
√
xy + ωαS

[∂2u2
∂x2

+
∂2u2

∂y2
+ hu

]
. (34)

Operating with the inverse Sumudu transform on both sides of equation (34) gives

u(x, y, t) =
√
xy + S−1

[
ωαS

[∂2u2
∂x2

+
∂2u2

∂y2
+ hu

]]
. (35)

Substituting the results from equations (16) to (18) in the equation (35) and ap-
plying the equation (20), we determine the components of the STIM solution as
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follows

u0(x, y, t) = u(x, y, 0) =
√
xy , (36)

u1(x, y, t) = S−1
[
ωαS

[∂2u20
∂x2

+
∂2u20
∂y2

+ hu0

]]
=
√
xy

htα

Γ(α + 1)
, (37)

u2(x, y, t) = S−1
[
ωαS

[∂2(u0 + u1)
2

∂x2
+
∂2(u0 + u1)

2

∂y2
+ h(u0 + u1)

]]
− S−1

[
ωαS

[∂2u20
∂x2

+
∂2u20
∂y2

+ hu0

]]
=
√
xy

h2t2α

Γ(2α + 1)
, (38)

u3(x, y, t) = S−1
[
ωαS

[∂2(u0 + u1 + u2)
2

∂x2
+
∂2(u0 + u1 + u2)

2

∂y2
+ h(u0 + u1 + u2)

]]
− S−1

[
ωαS

[∂2(u0 + u1)
2

∂x2
+
∂2(u0 + u1)

2

∂y2
+ h(u0 + u1)

]]
=
√
xy

h3t3α

Γ(3α + 1)
, (39)

and so on. The other components can be found accordingly.
Thus, the approximate analytical solution in the series form can be obtained as

u(x, y, t) ∼= lim
N→∞

N∑
m=0

um(x, y, t) = u0(x, y, t)+u1(x, y, t)+u2(x, y, t)+u3(x, y, t)+, ...,

u(x, y, t) =
√
xy +

htα

Γ(α + 1)

√
xy +

h2t2α

Γ(2α + 1)

√
xy +

h3t3α

Γ(3α + 1)

√
xy+, ...,

=
√
xy

∞∑
n=0

hntnα

Γ(nα + 1)

=
√
xy Eα(htα). (40)

which is the same result was obtained by Sharma and Bairwa [25] using ILTM.

Remark 2. For α = 1 the result in equation (40) reduces to the following form

u(x, y, t) =
√
xy eht. (41)
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Figure 2. Solution graph for Example 2: (a) Exact Solution (b) approximate
solution at α = 1, h = 0.01, t = 1

This exact solution for the standard form of the biological population model was
obtained earlier by Roul [24] using the HPM method.
Example 3. Consider the following generalized time-fractional biological popula-
tion model [11]

∂αu

∂tα
=
∂2u2

∂x2
+
∂2u2

∂y2
+ u, t ≥ 0, 0 < α ≤ 1, (42)

with the initial condition

u(x, y, 0) =
√

sinx sinh y. (43)

Taking the Sumudu transform on the both sides of equation (42), and making use
of the result given by equation (43), we have

S[u(x, y, t)] =
√

sinx sinh y + ωαS
[∂2u2
∂x2

+
∂2u2

∂y2
+ u
]
. (44)

Operating with the inverse Sumudu transform on both sides of equation (44) gives

u(x, y, t) =
√

sinx sinh y + S−1
[
ωαS

[∂2u2
∂x2

+
∂2u2

∂y2
+ u
]]
. (45)

Substituting the results from equations (16) to (18) in the equation (45) and ap-
plying the equation (20), we determine the components of the STIM solution as
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follows

u0(x, y, t) = u(x, y, 0) =
√

sinx sinh y , (46)

u1(x, y, t) = S−1
[
ωαS

[∂2u20
∂x2

+
∂2u20
∂y2

+ u0

]]
=
√

sinx sinh y
tα

Γ(α + 1)
, (47)

u2(x, y, t) = S−1
[
ωαS

[∂2(u0 + u1)
2

∂x2
+
∂2(u0 + u1)

2

∂y2
+ (u0 + u1)

]]
− S−1

[
ωαS

[∂2u20
∂x2

+
∂2u20
∂y2

+ u0

]]
=
√

sinx sinh y
t2α

Γ(2α + 1)
, (48)

u3(x, y, t) = S−1
[
ωαS

[∂2(u0 + u1 + u2)
2

∂x2
+
∂2(u0 + u1 + u2)

2

∂y2
+ (u0 + u1 + u2)

]]
− S−1

[
ωαS

[∂2(u0 + u1)
2

∂x2
+
∂2(u0 + u1)

2

∂y2
+ (u0 + u1)

]]
=
√

sinx sinh y
t3α

Γ(3α + 1)
, (49)

and so on. The other components can be found accordingly.
Thus, the approximate analytical solution in the series form can be obtained as

u(x, y, t) ∼= lim
N→∞

N∑
m=0

um(x, y, t) = u0(x, y, t)+u1(x, y, t)+u2(x, y, t)+u3(x, y, t)+, ...,

u(x, y, t) =
√

sinx sinh y +
tα

Γ(α + 1)

√
sinx sinh y

+
t2α

Γ(2α + 1)

√
sinx sinh y +

t3α

Γ(3α + 1)

√
sinx sinh y+, ...,

=
√

sinx sinh y
∞∑
n=0

tnα

Γ(nα + 1)

=
√

sinx sinh y Eα(tα). (50)

which is the same result was obtained by Sharma and Bairwa [25] using ILTM.
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Remark 3. For α = 1 the result in equation (50) reduces to the following form

u(x, y, t) =
√

sinx sinh y et. (51)

This exact solution for the standard form of the biological population model was
obtained earlier by Roul [24] using the method of HPM.

Figure 3. Solution graph for Example 3: (a) Exact Solution (b) approximate
solution at α = 1, t = 1

Example 4. Consider the following generalized time-fractional biological popula-
tion model [11]

∂αu

∂tα
=
∂2u2

∂x2
+
∂2u2

∂y2
+ hu−1(1− ru), t ≥ 0, h, r ∈ R, 0 < α ≤ 1, (52)

with the initial condition

u(x, y, 0) =
(hr

4
x2 +

hr

4
y2 + y + 5

)1/2
. (53)

Taking the Sumudu transform on the both sides of equation (52), and making use
of the result given by equation (53), we have

S[u(x, y, t)] =
(hr

4
x2 +

hr

4
y2 +y+5

)1/2
+ωαS

[∂2u2
∂x2

+
∂2u2

∂y2
+hu−1(1−ru)

]
. (54)

Operating with the inverse Sumudu transform on both sides of equation (54) gives

u(x, y, t) =
(hr

4
x2+

hr

4
y2+y+5

)1/2
+S−1

[
ωαS

[∂2u2
∂x2

+
∂2u2

∂y2
+hu−1(1−ru)

]]
. (55)
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Substituting the results from equations (16) to (18) in the equation (55) and ap-
plying the equation (20), we determine the components of the STIM solution as
follows

u0(x, y, t) = u(x, y, 0) =
(hr

4
x2 +

hr

4
y2 + y + 5

)1/2
, (56)

u1(x, y, t) = S−1
[
ωαS

[∂2u20
∂x2

+
∂2u20
∂y2

+ hu−10 (1− ru0)
]]

= h
tα

Γ(α + 1)

(hr
4
x2 +

hr

4
y2 + y + 5

)1/2
, (57)

u2(x, y, t) = S−1
[
ωαS

[∂2(u0 + u1)
2

∂x2
+
∂2(u0 + u1)

2

∂y2
+ h(u0 + u1)

−1(1− r(u0 + u1))
]]

− S−1
[
ωαS

[∂2u20
∂x2

+
∂2u20
∂y2

+ hu−10 (1− ru0)
]]

= −2h2
t2α

Γ(2α + 1)

(hr
4
x2 +

hr

4
y2 + y + 5

)−3/2
, (58)

u3(x, y, t) = S−1
[
ωαS

[∂2(u0 + u1 + u2)
2

∂x2
+
∂2(u0 + u1 + u2)

2

∂y2

+ h(u0 + u1 + u2)
−1(1− r(u0 + u1 + u2))

]]
− S−1

[
ωαS

[∂2(u0 + u1)
2

∂x2
+
∂2(u0 + u1)

2

∂y2
+ h(u0 + u1)

−1(1− r(u0 + u1))
]]

= 3h3
t3α

Γ(3α + 1)

(hr
4
x2 +

hr

4
y2 + y + 5

)−5/2
, (59)

and so on. The other components can be found accordingly.
Thus, the approximate analytical solution in the series form can be obtained as

u(x, y, t) ∼= lim
N→∞

N∑
m=0

um(x, y, t) = u0(x, y, t)+u1(x, y, t)+u2(x, y, t)+u3(x, y, t)+, ...,

u(x, y, t) =
(hr

4
x2 +

hr

4
y2 + y + 5

)1/2
+ h

tα

Γ(α + 1)

(hr
4
x2 +

hr

4
y2 + y + 5

)−1/2
− 2h2

t2α

Γ(2α + 1)

(hr
4
x2 +

hr

4
y2 + y + 5

)−3/2
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+ 3h3
t3α

Γ(3α + 1)

(hr
4
x2 +

hr

4
y2 + y + 5

)−5/2
+, ...,

= u0 +
htα

u0

∞∑
n=0

(n+ 1)

Γ
(

(n+ 1)α + 1
)[−htα

u20

]n
. (60)

which is the same result was obtained by El-Sayed et al . [11] using ADM.

Remark 4. For α = 1 the result in equation (60) reduces to the following form

u(x, y, t) = u0 +
ht

u0
exp
(−ht
u20

)
. (61)

This exact solution for the standard form of the biological population model was
obtained earlier by Liu et al . [19] using the HPM method.

Figure 4. Solution graph for Example 4: (a) Exact Solution (b) approximate
solution at α = 1, r = 48, h = 0.01, t = 1

6. Conclusion
The Sumudu transform iterative method (STIM) is successfully used in this

paper to solve generalized time-fractional biological population models. The frac-
tional derivative is described in the Caputo sense and the solutions are obtained in
closed form, in terms of Mittag-Leffler functions. The STIM solutions are highly
compatible with the ADM, ILTM, and HPM solutions. The graphical representa-
tion of the obtained solutions was completed successfully by the Maple software.
Furthermore, when compared to existing methods, the proposed approach is much
easier to implement and requires fewer calculations. It can also be used to solve a
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variety of problems involving fractional-order derivatives.
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