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Abstract: Underachievement in mathematics is one major challenge for under-
graduate - level students in Nepal. The results of Tribhuvan University (TU) show
that students struggled with the subject Real analysis. Many teachers also struggle
to teach this subject effectively due to the lack of conceptual knowledge, and tech-
nology. Therefore, conceptual understanding of fundamental terms of real analysis
needs to be taught effectively at the undergraduate level to ensure smooth content
progression into a higher level. Several studies advocated that the integration of
information communication technology (ICT) with teaching and learning activities
in mathematics enhances students’ learning of the mathematics contents. So, this
study visualizes the conceptual understanding of Riemann sums and proof of their
properties using GeoGebra software of experimental teaching for the undergrad-
uate level on TU. The study was based on constructivism-learning theory. The
experiment showed that blended GeoGebra and usual practice processes promote
conceptual understanding of students of the Riemann sum and proof of its proper-
ties.
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1. Introduction

The Riemann Darboux sum is one of the fundamental key concepts of real
analysis, with a broader application in social science, industrial, economic, and in
many sciences and mathematics itself. In Nepal, the concept of a Riemann sum
and its properties is first introduced in real analysis at the undergraduate level
in the second year of Tribhuvan University (TU), which is a completely new idea
for Nepalese students. Most of the students were realized that real analysis is a
difficult subject at University Level. Very few students understand the conceptual
understanding of the Riemann sum and its properties. The conceptual understand-
ing has been the broader scope of many researchers. The conceptual understanding
classified into operational and structural ways of understanding. While the opera-
tional understanding includes highly manipulative skills and uses them as principal
means in their quest after meaning, the structural is more capable of direct-grasp
understanding [11]. She defines as reification the transition from an operational to
a structural way of thinking and states that this transition is a basic phenomenon
in the formation of a mathematical object.

1.1. Theoretical Framework

This study was conducted according to the constructivist learning theory, which
advocates that knowledge is built in the mind of an individual through active partic-
ipation in certain experiences [13]. The fundamental belief of constructivist theory
is that students actively construct knowledge, and contrary to the idea that knowl-
edge is transmitted by the educator [15, 16]. Students are seen as active builders of
knowledge rather than passive recipients [13]. Constructivists distinguish between
cognitive constructivism and social constructivism. Social constructivists believe
that knowledge is the result of collaborative construction in a socio-cultural context
and that learning is favored by information sharing, negotiation, and discussions
[5]. Thus, social constructivists emphasize the learning environment that should
allow easy communication and collaboration with others [2, 5]. For cognitive con-
structivists, learning is first an individual matter; therefore, instructional design
should support and meet the needs of individual students to create knowledge, and
conceptual understanding [8]. So, the perspectives of constructivism theory the
conceptual understanding of the mathematical knowledge have been constructed
through the active participant, and emphasize a student-centered pedagogical ap-
proach [3, 12].
The use of mathematical software like Geogebra, Mathematica, Matlab, etc. gives
students the chance to engage in high-level thinking such as analysis and reflection
[10]. When using software, students are involved in learning knowledge, testing
conjectures, and checking counterexamples, therefore, they have the opportunity
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to visualize the task and reflect on their thinking [14]. Thus, this study focused on
integrating GeoGebra software in the teaching of Riemann Darboux sum, and its
properties. In accordance with constructivist theories, it is believed that technol-
ogy can help students build and conceptual understanding of mathematics content.
The conceptual understanding of mathematical contents will eventually translate
into improvement in carrying out mathematical exercises. The technology could
stimulate the student to perform a series of actions and processes in order to ob-
jectively build their own patterns. The students keep going back and forth as they
build their own knowledge, based on experience provided by technology. It can
promote students to connect the visual, numerical, symbolic representations, ex-
plore and deepen the understanding of the concepts learned.

1.2. Objective

This study aimed to explore the conceptual understanding in learning Riemann
Darboux sum and proof its properties with GeoGebra at undergraduate level stu-
dents at Tribhuvan University.

Definition 1.1. (Partition) Let [a, b] be a close interval in the real line R. The
partition P of [a, b] is a finite set of points x0, x1, x2, · · · , xn such that a = x0 <
x1 < x2 < · · · < xn−1 < xn = b.

Symbolically, we write P = {x0, x1, x2, · · · , xn}, where x0 = a and xn = b. The
partition P has (n + 1) points. The intervals [x0, x1],[x1, x2],[x2, x3],· · · ,[xn−1, xn]
are called the subintervals of the partition P . The length of the rth subinterval
[xr−1, xr] is denoted by δr = xr − xr−1 i.e. δr, where r = 1, 2, 3, · · · , n. The set
of partition of [a,b] is denoted by P [a, b]. Thus, P [a, b]={P : P is a partition of
[a, b]}. The length of largest subinterval is called the norm of the partition P and
it is denoted by ||P || or µ (P ) i.e. ||P || = max {δr = xr − rr−1, 1 ≤ r ≤ n}. Let
P1, P2 ∈ P [a, b], then P2 is said to be finer of P1, If P1 ⊂ P2 i.e. if each point of P1

is also a point of P2. In this case, we say that P2 is refinement of P1 [1, 4, 7].

Definition 1.2. (Darbox Lower and Upper Sum) Let P = {x0, x2, x3, · · · , xn} be
a partitions of [a, b]. Let f : [a, b]→ R be a bounded real valued function and let

m = inf {f(x) : x ∈ [a, b]}
M = sup {f(x) : x ∈ [a, b]}
mr = inf {f(x) : x ∈ [xr−1, xr]}
Mr = sup {f(x) : x ∈ [xr−1, xr]}

Then the sums defined by

L (P, f) = m1δ1 +m2δ2 +m3δ3 + · · ·+mnδn
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=
n∑
r=1

mrδr and

U (P, f) = M1δ1 +M2δ2 +M3δ3 + · · ·+Mnδn

=
n∑
r=1

Mrδr

are respectively called the Darboux Lower Sum and Darboux Upper Sum of
f corresponding to the partition P of [a,b]. Also, tr ∈ [xr−1 − xr], then the sum

f(t1)δ1 + f(t2)δ2 + f(t3)δ3 + · · ·+ f(tn)δn =
n∑
r=1

f(tr)δr [1, 6, 7, 9].

The geometrical idea of Darboux sums is indicated in figures 1. The Lower
sum is the area of the shaded rectangles whose width of rth rectangle is δr and the
height of the shaded rectangle is mr which is indicated by figure 1(b). Similarly,the
Upper sum is the area of the shaded rectangles,the width of rth rectangle is δr and
the height of the shaded rectangle is Mr also indicated by figure 1(c).

(a) Sup and Inf of rth interval (b) Lower Sum of f(x) (c) Upper Sum of f(x)

Figure 1

Example 1.3. Let P = {1, 2, 3, 4, 5} be the partition of [1,5] and f : [a, b]→ R be
a function defined by f(x) = x2, then find (i) U(P, f) and (ii) L(p, f)
Solution. Since, f : [a, b] → R be a bounded function defined by f(x) = x2, and
P = {1, 2, 3, 4, 5} be the partition of [5, 11], then we have to visualization of (i)
U(P, f) and (ii) L(P, f) by using GeoGebra Software.
Now,

f(x) = x2

f(2) = 4

f(3) = 9

f(4) = 16

f(5) = 25

Also, we have



Visualization of the Riemann Darboux Sum and its Properties with Geogebra 149

Figure 2: Upper sum of
f(x) = x2, x ∈ [1, 5]

U(p, f) =
n∑
r=1

Mrδr

= M1δ1 +M2δ2 +M3δ3 +M4δ4 +M5δ5

= 1 · 4 + 1 · 9 + 1 · 16 + 1 · 25

= 54

Again,

Figure 3: Lower sum of
f(x) = x2, x ∈ [1, 5]

L(p, f) =
n∑
r=1

mrδr

= m1δ1 +m2δ2 +m3δ3 +m4δ4 +m5δ5

= 1 · 1 + 1 · 4 + 1 · 9 + 1 · 16

= 30

Example 1.4. Let P =
{

0, π
6
, π
3
, π
2
, 2π

3
, 5π

6
, π
}

be partition of [0, π] and f : [0, π]→
R be function defined by f(x) = sinx, then find U(P, f) and L(P, f).
Solution. Since, the given function f(x) = sinx is bounded on [0, π] and P ={

0, π
6
, π
3
, π
2
, 2π

3
, 5π

6
, π
}

be partition of [0, π], then we have to finds of (i) U(P, f) and
(ii) L(P, f) and visualization its by using GeoGebra Software.

Since, f(x) = sinx, then f(0) = sin0 = 0, f
(
π
6

)
= sin

(
π
6

)
= 1

2
, f
(
π
3

)
=

sin
(
π
3

)
=
√
3
2

, f
(
π
2

)
= sin

(
π
2

)
= 1, f

(
2π
3

)
= sin

(
2π
3

)
=
√
3
2

, f
(
5π
6

)
= sin

(
5π
6

)
= 1

2
,

f (π) = sin (π) = 0 Now, we have

Figure 4: Uppersum
of f(x) = sinx,x ∈
[0, π]

U(p, f) =
n∑
r=1

Mrδr

= M1δ1 +M2δ2 +M3δ3 +M4δ4 +M5δ5 +M6δ6

= sin
(π

6

) π
6

+ sin
(π

3

) π
6

+ sin
(π

2

) π
6

+ sin
(π

2

) π
6

+ sin

(
2π

3

)
π

6
+ sin

(
5π

6

)
π

6
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=
1

2
· π

6
+

√
3

2
· π

6
+ 1 · π

6
+ 1 · π

6
+

√
3

2
· π

6
+

1

2
· π

6

=
π

12

(
3 +
√

3
)

= 2.48

Figure 5: Lowersum
of f(x) = sinx,x ∈
[0, π]

Again,

L(p, f) =
n∑
r=1

mrδr

= m1δ1 +m2δ2 +m3δ3 +m4δ4 +m5δ5 +m6δ6

= 0 + sin
(π

6

) π
6

+ sin
(π

3

) π
6

+ sin

(
2π

3

)
π

6

+ sin

(
5π

6

)
π

6
+ 0

=
1

2
· π

6
+

√
3

2
· π

6
+ +

√
3

2
· π

6
+

1

2
· π

6

=
π

6

(
1 +
√

3
)

= 1.43

2. Properties of Darboux Sums
Theorem 2.1. Let f : [a, b] → R be a bounded function and P be a partition of
[a,b], then U (P, f) and L (P, f) are bounded and U (P, f) ≤ S (P, f) ≤ L (P, f) [1,
7].
Proof. Let m and M be lower and upper bounds of f on [a,b] respectively, then

m ≤ mr ≤ f(tr) ≤Mr ≤M

= mδr ≤ mrδr ≤ f(tr)δr ≤Mrδr ≤Mδr

=
n∑
r=1

mδr ≤
n∑
r=1

mrδr ≤
n∑
r=1

f(tr)δr ≤
n∑
r=1

Mrδr ≤
n∑
r=1

Mδr

= m

n∑
r=1

δr ≤ L (P, f) ≤ S (P, f) ≤ U (P, f) ≤M

n∑
r=1

δr

= m(b− a) ≤ L (P, f) ≤ S (P, f) ≤ U (P, f) ≤M(b− a)

Thus, L (P, f) ≤ S (P, f) ≤ U (P, f) and these sum are bound. Hence, the set of
lower and upper sums are bounded sets.
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(a) Lowersum of f(x) at n=10 (b) Lowersum of f(x) at n=20 (c) Lowersum of f(x) at n=40

(d) Uppersum of f(x) at n=10 (e) Uppersum of f(x) at n=20 (f) Uppersum of f(x) at n=40

Figure 6: Uppersum and Lowersum of f(x) = 1.5sinx+ 2cosx,at(1.36 ≤ x ≤ 5.98)

.

Theorem 2.2. Let f : [a, b] → R be a bounded function, if P1, P2 ∈ P[a, b] and
P1 ⊂ P2, then (i) U (P1, f) ≥ U (P2, f) and (ii) L (P1, f) ≤ L (P2, f) [1, 6].
Proof. Let P1 = {x0, x1, x2, · · · , xn} be the partition of [a,b]. First consider the
case when P2 contains one point x′ then P1.
Suppose, this additional point x′ belong to the rth subintervals [xr−1 − xr].
Let Mr1 = sup {f(x) : x ∈ [xr−1, x

′]}; Mr2 = sup {f(x) : x ∈ [x′, xr]}
Then, Mr1 ≤Mr ,and Mr2 ≤Mr ⇒Mr −Mr1 ≥ 0 ,and Mr −Mr2 ≥ 0
Now,

U (P1, f)− U (P2, f) = [M1δ1 +M2δ2 + · · ·+Mrδr + · · ·+Mnδn]

− [M1δ1 +M2δ2 + · · ·+ · · ·+Mr1δr1 +Mr2δr2 + · · ·+Mnδn]

=Mrδr +Mr1δr1 +Mr2δr2

=Mr (xr − xr−1) +Mr1

(
x′ − xr−1

)
+Mr2

(
xr − x′

)
=Mr (xr − xr−1) +Mr1

(
x′ − xr−1

)
+Mr2

(
xr − x′

)
=Mr

(
xr − x′

)
+Mr

(
x′ − xr−1

)
−Mr1

(
x′ − xr−1

)
−Mr2

(
xr − x′

)
= (Mr −Mr2)

(
xr − x′

)
+ (Mr −Mr1)

(
x′ − xr−1

)
≥ 0 (1)

∴ U (P1, f) ≥ U (P2, f). If P2 contains p more additional points than as equation
(1), we can show U (P1, f) ≥ U (P2, f). Similarly, we can show that L (P1, f) ≤
L (P2, f)

Theorem 2.3. Let f : [a, b]→ R be a bounded function, and P1, P2 ∈ P[a, b], then
U (P1, f) ≥ L (P2, f) [1, 6, 7].
Proof. Let P = P1∪P2, with P1 ⊂ P and P2 ⊂ P , then by the theorem 2.2 we have
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U (P1, f) ≥ U (P, f) and L (P2, f) ≤ L (P, f). Also, we have L (P, f) ≤ U (P, f).
Thus, U (P1, f) ≥ U (P, f) ≥ L (P, f) ≥ L (P2, f)
⇒ U (P1, f) ≥ L (P2, f)

(a) Uppersum of f(x) at n=6 (b) Lowersum of f(x) at n=11

Figure 7: U (P1, f) ≥ U (P2, f),f(x) = 1.5sinx+ 2cosx,at(−1.32 ≤ x ≤ 2.6)
.

(a) Lowersum of f(x) at n=6 (b) Lowersum of f(x) at n=11

Figure 8: L (P1, f) ≤ L (P2, f),f(x) = 1.5sinx+ 2cosx, at(−1.32 ≤ x ≤ 2.6)

(a) U (P1, f), at n=9 (b) L (P2, f), at n=12

Figure 9: U (P1, f) ≥ L (P2, f), where
f(x) = −0.04x5 + 0.68x4 − 4.17x3 + 10.9x2 − 11.16x+ 4.22, at(0.68 ≤ x ≤ 5.12)

.
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Theorem 2.4. Let f : [a, b] → R be a bounded function, P1, P2 ∈ P[a, b],and
P2 ⊃ P1 with p additional points. If ||P || ≤ δ and |f(x)| ≤ k, then (i) U (P1, f) ≤
U (P2, f) + 2pkδ and (ii) L (P2, f) ≤ L (P1, f) + 2pkδ [1, 6, 7].
Proof. Let P1 = {x0, x1, x2, · · · , xn}. Also, consider the case when P2 contains
one more point say x′ than P1.Suppose x′ ∈ (xr−1, xr), then by the theorem 2.2 we
have
U (P1, f)− U (P2, f) = (Mr −Mr2) (xr − x′) + (Mr −Mr1) (x′ − xr−1)
Since, −k ≤Mr1 ≤Mr ≤ k and −k ≤Mr2 ≤Mr ≤ k.
Thus, 0 ≤Mr −Mr1 ≤ 2k and 0 ≤Mr −Mr2 ≤ 2k.

(a) U (P1, f) = 5.74 (b) U (P2, f) + 2pkδ = 11.92

Figure 10: f(x) = −0.19x6 + 2.83x5 − 15.75x4 + 40.34x3 − 49.74x2 + 26.29x −
2.95, at(a = 0.26 ≤ x ≤ 4.58 = b)

.

(a) L (P2, f) = 3.88 (b) L (P1, f) + 2pkδ = 14.51

Figure 11: f(x) = −0.19x6 + 2.83x5 − 15.75x4 + 40.34x3 − 49.74x2 + 26.29x −
2.95, at(a = 0.26 ≤ x ≤ 4.58 = b)

.
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∴ U (P1, f)− U (P2, f) ≤ 2k (xr − x′) + 2k (x′ − xr−1)
= 2k (xr − x′ + x′ − xr−1)
= 2k (xr − xr−1)
= 2kδr

≤ 2kδ

If P2 contains p more additional points than P1 into same manner we can show
that U (P1, f)− U (P2, f) ≤ 2kpδ
⇒ U (P1, f) ≤ U (P2, f) + 2kpδ
Similarly, we can show that L (P2, f) ≤ L (P1, f) + 2kpδ

Theorem 2.5. If P ∈ P[a, b] also, f ,and g are two bounded functions on [a,b],
then (i) U (P, f + g) ≤ U (P, f)+U (P, g) and (ii) L (P, f + g) ≥ L (P, f)+L (P, g)
[12, 15].
Proof. Let P1 = {x0, x1, x2, · · · , xn} be a partition of [a,b] and δr be the length of
rth subinterval [xr−1, xr].

Let Mr = sup {(f + g)(x) : x ∈ [xr−1, xr]}
Mr ′ = sup {f(x) : x ∈ [xr−1, xr]}
Mr ′′ = sup {g(x) : x ∈ [xr−1, xr]}

Since, Mr ′ ≥ f(x) and Mr ′′ ≥ g(x), for all x ∈ [xr−1, xr].

⇒Mr ′ +Mr ′′ ≥ f(x) + g(x)

⇒Mr ′ +Mr ′′ ≥ (f + g)(x), ∀ ∈ [xr−1, xr]

∴Mr ′ +Mr ′′ ≥Mr

⇒Mr ′δr +Mr ′′δr ≥Mrδr

⇒
∑

Mr ′δr +
∑

Mr ′′δr ≥
∑

Mrδr

⇒ U (P, f) + U (P, g) ≥ U (P, f + g)

Also, f(x) ≥ mr ′ and g(x) ≥ mr ′′ for all x ∈ [xr−1, xr]

⇒ f(x) + g(x) ≥ mr ′ +mr ′′ , ∀x ∈ [xr−1, xr]

⇒ mr ≥ mr ′ +mr ′′

⇒ mrδr ≥ mr ′δr +mr ′′δr

⇒
∑

mrδr ≥
∑

mr ′δr +
∑

mr ′′δr

⇒ L (P, f + g) ≥ L (P, f) + L (P, g)
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(a) Uppersum of f(x) at
n=15

(b) Uppersum of g(x) at
n=15 (c) Uppersum of f(x)+g(x)

(d) Lowersum of f(x) at
n=15

(e) Lowersum of g(x) at
n=15

(f) Lowersum of f(x)+g(x)

Figure 12
.

3. Conclusion. GeoGebra software’s ability is to transfer abstractions into con-
crete mathematical concepts and have a positive effect on learning directly con-
tributed to the development of students’ understanding of concepts. A conceptual
understanding of mathematical concepts plays an important role in the teach-
ing and learning process of mathematics and is provide using GeoGebra software.
Therefore, it is recommended for use by students of all levels to enrich their con-
ceptual understanding of mathematical content in teaching-learning activities.
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