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1. Introduction, Definitions and Notations
Let C be the set of all finite complex numbers and f be an entire function defined

on C. The maximum modulus function Mf (r) and the maximum term µf (r) of

f =
∞∑
n=0

anz
n on |z| = r are defined as Mf = max

|z|=r
|f(z)| and µf (r) = max

n≥0
(|an|rn)

respectively. Since Mf (r) is strictly increasing and continuous, therefore there
exists its inverse function M−1

f : (|f (0)| ,∞)→ (0,∞) with lim
s→∞

M−1
f (s) =∞. We
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use the standard notations and definitions of the theory of entire functions which
are available in [10] and [11], and therefore we do not explain those in details.

Let L is a class of continuous non-negative functions α defined on (−∞,+∞)
such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞ and
α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. We say that α ∈ L0, if α ∈ L and
α(cx) = (1 + o(1))α(x) as x0 ≤ x → +∞ for each c ∈ (0,+∞), i.e., α is slowly
increasing function. Clearly L0 ⊂ L. Moreover we assume that throughout the
present paper α, α1, α2, β, β1 and β2 always denote the functions belonging to L0

unless otherwise specifically stated. The value

ρ(α,β)[f ] = lim sup
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)

is called [7] generalized order (α, β) of f . For details about generalized order (α, β)
one may see [7]. During the past decades, several authors made close investigations
on the properties of entire functions related to generalized order (α, β) in some dif-
ferent direction. For the purpose of further applications, Biswas et al. [4, 5] rewrite
the definition of the generalized order (α, β) of entire function in the following way
after giving a minor modification to the original definition (e.g. see, [7]).

Definition 1. [4, 5] The generalized order (α, β) and generalized lower order (α, β)
of an entire function f, denoted by ρ(α,β)[f ] and λ(α,β)[f ] respectively, are defined
as:

ρ(α,β)[f ] = lim sup
r→+∞

α(Mf (r))

β(r)
and λ(α,β)[f ] = lim inf

r→+∞

α(Mf (r))

β(r)
.

Since for 0 ≤ r < R,

µf (r) ≤Mf (r) ≤
R

R− r
µf (R){cf.[9]},

it is easy to see that

ρ(α,β)[f ] = lim sup
r→+∞

α(µf (r))

β(r)
and λ(α,β)[f ] = lim inf

r→+∞

α(µf (r))

β(r)
.

Mainly the growth investigation of entire functions has usually been done through
their maximum moduli function in comparison with those of exponential function.
But if one is paying attention to evaluate the growth rates of any entire function
with respect to a new entire function, the notions of relative growth indicators (see
e.g. [1, 2]) will come. Now in order to make some progress in the study of relative
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order, Biswas et al. [3] have introduced the definitions of generalized relative order
(α, β) and generalized relative lower order (α, β) of an entire function with respect
to another entire function in the following way:

Definition 2. [3] Let α, β ∈ L0. The generalized relative order (α, β) and gener-
alized relative lower order (α, β) of an entire function f with respect to an entire
function g denoted by %(α,β)[f ]g and λ(α,β)[f ]g respectively are defined as:

ρ(α,β)[f ]g = lim sup
r→+∞

α(M−1
g (Mf (r)))

β(r)
and λ(α,β)[f ]g = lim inf

r→+∞

α(M−1
g (Mf (r)))

β(r)
.

In terms of maximum terms of entire functions, Definition 2 can be reformulated
as:

Definition 3. Let α, β ∈ L0. The growth indicators ρ(α,β)[f ]g and λ(α,β)[f ]g of an
entire function f with respect to another entire function g are defined as:

ρ(α,β)[f ]g = lim sup
r→+∞

α(µ−1g (µf (r)))

β(r)
and λ(α,β)[f ]g = lim inf

r→+∞

α(µ−1g (µf (r)))

β(r)
.

In fact, Lemma 5 states the equivalence of Definition 2 and Definition 3.
Here, in this paper, we investigate some interesting results associated with

the comparative growth properties of composite entire functions using generalized
relative order (α, β) and generalized relative lower order (α, β).

2. Lemmas
In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [6] Let f and g are any two entire functions with g(0) = 0. Also let b

satisfy 0 < b < 1 and c(b) = (1−b)2
4b

. Then for all sufficiently large values of r,

Mf (c(b)Mg(br)) ≤Mf◦g(r) ≤Mf (Mg(r)).

In addition if b = 1
2
, then for all sufficiently large values of r,

Mf◦g(r) ≥Mf

(1

8
Mg

(r
2

))
.

Lemma 2. [8] Let f and g are entire functions. Then for every δ > 1 and
0 < r < R,

µf◦g(r) ≤
δ

δ − 1
µf

( δR

R− r
µg(R)

)
.
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Lemma 3. [8] If f and g are any two entire functions. Then for all sufficiently
large values of r,

µf◦g(r) ≥
1

2
µf

( 1

16
µg

(r
4

))
.

Lemma 4. [2] Suppose f is an entire function and A > 1, 0 < B < A. Then for
all sufficiently large r,

Mf (Ar) ≥ BMf (r).

Lemma 5. Definition 2 and Definition 3 are equivalent.
Proof. Taking R = ar for any a > 1 in the inequalities µg(r) ≤Mg(r) ≤ R

R−rµg(R)
{cf. [9]}, for 0 ≤ r < R we obtain that

M−1
g (r) ≤ µ−1g (r)

and
µ−1g (r) ≤ aM−1

g

( ar

(a− 1)

)
.

Since M−1
g (r) and µ−1g (r) are increasing functions of r, then for any a > 1 it follows

from the above, Lemma 4 and the inequalities µf (r) ≤ Mf (r) ≤ a
a−1µf (ar) {cf.

[9]} that

M−1
g

(
Mf

( (a− 1)r

(2a− 1)a

))
≤ µ−1g (µf (r)) (2.1)

and

µ−1g (µf (r)) ≤ aM−1
g

(
Mf

((2a− 1)

(a− 1)
r
))

. (2.2)

Therefore the lemma follows from (2.1) and (2.2).

3. Main Results
In this section we present the main results of the paper.

Theorem 1. Let f , g and h are any three entire functions such that ρ(α2,β2)[g]
< λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < +∞.
(i) If either β1(r) = B exp(α2(r)) where B is any positive constant or

lim
r→+∞

exp(α2(r))
β1(r)

= +∞, then

lim
r→+∞

α1(M
−1
h (Mf◦g(β

−1
2 (log r))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= 0.

(ii) If α2(β
−1
1 (r)) ∈ L0, then

lim
r→+∞

exp(α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r)))))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= 0.
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Proof. Since ρ(α2,β2)[g] < λ(α1,β1)[f ]h we can choose ε(> 0) is such a way that

ρ(α2,β2)[g] + ε < λ(α1,β1)[f ]h − ε. (3.1)

In view of Lemma 1, we get for all sufficiently large positive numbers of r that

α1(M
−1
h (Mf◦g(β

−1
2 (log r)))) 6 (ρ(α1,β1)[f ]h + ε)β1(Mg(β

−1
2 (log r))). (3.2)

Now the following three cases may arise .
Case I. Let β1(r) = B exp(α2(r)) where B is any positive constant. Then we have
from (3.2) for all sufficiently large positive numbers of r that

α1(M
−1
h (Mf◦g(β

−1
2 (log r)))) 6 B(ρ(α1,β1)[f ]h + ε) exp(α2(Mg(β

−1
2 (log r))))

i.e., α1(M
−1
h (Mf◦g(β

−1
2 (log r)))) 6 B(ρ(α1,β1)[f ]h + ε)r(ρ(α2,β2)[g]+ε). (3.3)

Case II. Let lim
r→+∞

exp(α2(r))
β1(r)

= +∞. Then for all sufficiently large positive numbers

of r we get from (3.2) that

α1(M
−1
h (Mf◦g(β

−1
2 (log r)))) < (ρ(α1,β1)[f ]h + ε)r(ρ(α2,β2)[g]+ε). (3.4)

Case III. Let α2(β
−1
1 (r)) ∈ L0. Then for all sufficiently large positive numbers of

r we get from (3.2) that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r)))))) ≤ (1 + o(1))α2(Mg(β

−1
2 (log r)))

i.e., α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r)))))) 6 r(1+o(1))(ρ(α2,β2)[g]+ε). (3.5)

Also from the definition of λ(α1,β1)[f ]h, we get for all sufficiently large positive
numbers of r that

exp(α1(M
−1
h (Mf (β

−1
1 (log r))))) > r(λ(α1,β1)[f ]h−ε). (3.6)

Now combining (3.3) of Case I and (3.6) we get for all sufficiently large positive
numbers of r that

α1(M
−1
h (Mf◦g(β

−1
2 (log r))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

≤
B(ρ(α1,β1)[f ]h + ε)r(ρ(α2,β2)[g]+ε)

r(λ(α1,β1)[f ]h−ε)
. (3.7)

Therefore in view of (3.1) it follows from (3.7) that

lim
r→+∞

α1(M
−1
h (Mf◦g(β

−1
2 (log r))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= 0.
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Similar conclusion can also be derived from (3.4) of Case II and (3.6).
Hence the first part of the theorem follows.
Further combining (3.5) of Case III and (3.6) we obtain for all sufficiently large

positive numbers of r that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r))))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

≤ r(1+o(1))(ρ(α2,β2)[g]+ε)

r(λ(α1,β1)[f ]h−ε)
. (3.8)

Therefore in view of (3.1) we get from above that

lim
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r))))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= 0.

Hence the second part of the theorem follows from above.
Thus the theorem follows.

Theorem 2. Let f , g and h are any three entire functions such that λ(α2,β2)[g]
< λ(α1,β1)[f ]h ≤ ρ(α1,β1)[f ]h < +∞.
(i) If either β1(r) = B exp(α2(r)) where B is any positive constant or

lim
r→+∞

exp(α2(r))
β1(r)

= +∞, then

lim inf
r→+∞

α1(M
−1
h (Mf◦g(β

−1
2 (log r))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= 0.

(ii) If α2(β
−1
1 (r)) ∈ L0, then

lim inf
r→+∞

exp(α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r)))))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= 0.

The proof of Theorem 2 is omitted as it can be carried out in the line of Theorem
1.

Theorem 3. Let f , g and h are any three entire functions such that 0 < λ(α1,β1)[f ]h
≤ ρ(α1,β1)[f ]h < λ(α2,β2)[g] < +∞.
(i) If either β1(r) = B exp(α2(r)) where B is any positive constant or

lim
r→+∞

exp(α2(r))
β1(r)

= 0, then

lim
r→+∞

α1(M
−1
h (Mf◦g(β

−1
2 (log r))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= +∞.
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(ii) If α2(β
−1
1 (r)) ∈ L0, then

lim
r→+∞

exp(α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r)))))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= +∞.

Proof. Let us choose 0 < ε < λ(α1,β1)[f ]h. Now for all sufficiently large positive
numbers of r we get from Lemma 1 that

α1(M
−1
h (Mf◦g(β

−1
2 (log r)))) > (1 + o(1))(λ(α1,β1)[f ]h − ε)β1

(
Mg

(β−12 (log r)

2

))
.

(3.9)
Now the following three cases may arise.

Case I. Let β1(r) = B exp(α2(r)) where B is any positive constant. Then from
(3.9) we obtain for all sufficiently large positive numbers of r that

α1(M
−1
h (Mf◦g(β

−1
2 (log r)))) > B(1 + o(1))(λ(α1,β1)[f ]h − ε)r(1+o(1))(λ(α2,β2)[g]−ε).

(3.10)

Case II. Let lim
r→+∞

exp(α2(r))
β1(r)

= 0. Then from (3.9) it follows for all sufficiently large

positive numbers of r that

α1(M
−1
h (Mf◦g(β

−1
2 (log r)))) > (1+o(1))(λ(α1,β1)[f ]h−ε)r(1+o(1))(λ(α2,β2)[g]−ε). (3.11)

Case III. Let α2(β
−1
1 (r)) ∈ L0. Then from (3.9) it follows for all sufficiently large

positive numbers of r that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r)))))) ≥ (1 + o(1))α2

(
Mg

(β−12 (log r)

2

))

i.e., exp(α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r))))))) ≥ r(1+o(1))(λ(α2,β2)[g]−ε). (3.12)

Again from the definition of ρ(α1,β1)[f ]h we get for all sufficiently large positive
numbers of r that

exp(α1(M
−1
h (Mf (β

−1
1 (log r))))) ≤ r(ρ(α1,β1)[f ]h+ε). (3.13)

Now combining (3.10) of Case I and (3.13) we get for all sufficiently large positive
numbers of r that

α1(M
−1
h (Mf◦g(β

−1
2 (log r))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

≥
B(1 + o(1))(λ(α1,β1)[f ]h − ε)r(1+o(1))(λ(α2,β2)[g]−ε)

r(ρ(α1,β1)[f ]h+ε)
.
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Since ρ(α1,β1)[f ]h < λ(α2,β2)[g], it follows from above that

lim
r→+∞

α1(M
−1
h (Mf◦g(β

−1
2 (log r))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= +∞.

Similar conclusion can also be derived from (3.11) of Case II and (3.13).
Therefore the first part of the theorem follows.

Again combining (3.12) of Case III and (3.13) we obtain for all sufficiently large
positive numbers of r that

exp(α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r)))))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

≥ r(1+o(1))(λ(α2,β2)[g]−ε)

r(ρ(α1,β1)[f ]h+ε)

i.e., lim
r→+∞

exp(α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r)))))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= +∞,

Therefore the second part of the theorem follows from above.
Hence the theorem follows.

Theorem 4. Let f , g and h are any three entire functions such that 0 < λ(α1,β1)[f ]h
< λ(α2,β2)[g] < +∞.
(i) If either β1(r) = B exp(α2(r)) where B is any positive constant or

lim
r→+∞

exp(α2(r))
β1(r)

= 0, then

lim sup
r→+∞

α1(M
−1
h (Mf◦g(β

−1
2 (log r))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= +∞.

(ii) If α2(β
−1
1 (r)) ∈ L0, then

lim sup
r→+∞

exp(α2(β
−1
1 (α1(M

−1
h (Mf◦g(β

−1
2 (log r)))))))

exp(α1(M
−1
h (Mf (β

−1
1 (log r)))))

= +∞.

The proof of Theorem 4 is omitted as it can be carried out in the line of Theorem
3.

Theorem 5. Let f , g and h are any three entire functions such that 0 < λ(α1,β1)[f ]h
≤ ρ(α1,β1)[f ]h < +∞ and 0 < λ(α2,β2)[g] ≤ ρ(α2,β2)[g] < +∞.
(i) If β1(r) = α2(r), then

λ(α1,β1)[f ]h · λ(α2,β2)[g]

ρ(α1,β1)[f ]h
≤ lim inf

r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

6 min
{
ρ(α2,β2)[g],

ρ(α1,β1)[f ]h · λ(α2,β2)[g]

λ(α1,β1)[f ]h

}
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and

max
{
λ(α2,β2)[g],

λ(α1,β1)[f ]h · ρ(α2,β2)[g]

ρ(α1,β1)[f ]h

}
≤ lim sup

r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

≤
ρ(α1,β1)[f ]h · ρ(α2,β2)[g]

λ(α1,β1)[f ]h
.

(ii) If β1(α
−1
2 (r)) ∈ L0, then

λ(α1,β1)[f ]h
ρ(α1,β1)[f ]h

≤ lim inf
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

6 1

6 lim sup
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

≤
ρ(α1,β1)[f ]h
λ(α1,β1)[f ]h

.

(iii) If α2(β
−1
1 (r)) ∈ L0, then

λ(α2,β2)[g]

ρ(α1,β1)[f ]h
≤ lim inf

r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

6

min
{ λ(α2,β2)[g]

λ(α1,β1)[f ]h
,
ρ(α2,β2)[g]

ρ(α1,β1)[f ]h

}
≤

max
{ λ(α2,β2)[g]

λ(α1,β1)[f ]h
,
ρ(α2,β2)[g]

ρ(α1,β1)[f ]h

}
≤

lim sup
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

≤
ρ(α2,β2)[g]

λ(α1,β1)[f ]h
.

Proof. From the definitions of generalized relative order (α1, β1) and generalized
relative lower order (α1, β1) of f with respect to h, we have for all sufficiently large
positive numbers of r that

α1(M
−1
h (Mf (r))) ≤ (ρ(α1,β1)[f ]h + ε)β1(r), (3.14)

α1(M
−1
h (Mf (r))) ≥ (λ(α1,β1)[f ]h − ε)β1(r) (3.15)

and also for a sequence of positive numbers of r tending to infinity we get that

α1(M
−1
h (Mf (r))) ≥ (ρ(α1,β1)[f ]h − ε)β1(r). (3.16)

Similarly for a sequence of positive numbers of r tending to infinity we obtain that

α1(M
−1
h (Mf (r))) ≤ (λ(α1,β1)[f ]h + ε)β1(r). (3.17)
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Now in view of Lemma 1, we have for all sufficiently large positive numbers of r
that

α1(M
−1
h (Mf◦g(r))) 6 (ρ(α1,β1)[f ]h + ε)β1(Mg(r)) (3.18)

and also we get for a sequence of positive numbers of r tending to infinity that

α1(M
−1
h (Mf◦g(r))) 6 (λ(α1,β1)[f ]h + ε)β1(Mg(r)). (3.19)

Similarly, in view of Lemma 1, it follows for all sufficiently large positive numbers
of r that

α1(M
−1
h (Mf◦g(r))) ≥ (1 + o(1))(λ(α1,β1)[f ]h − ε)β1

(
Mg

(r
2

))
(3.20)

and also we obtain for a sequence of positive numbers of r tending to infinity that

α1(M
−1
h (Mf◦g(r))) ≥ (1 + o(1))(ρ(α1,β1)[f ]h − ε)β1

(
Mg

(r
2

))
. (3.21)

Now the following two cases may arise:
Case I. Let β1(r) = α2(r).

Now we have from (3.18) for all sufficiently large positive numbers of r that

α1(M
−1
h (Mf◦g(r))) 6 (ρ(α1,β1)[f ]h + ε)(ρ(α2,β2)[g] + ε)β2(r), (3.22)

and for a sequence of positive numbers of r tending to infinity that

α1(M
−1
h (Mf◦g(r))) 6 (ρ(α1,β1)[f ]h + ε)(λ(α2,β2)[g] + ε)β2(r). (3.23)

Also we obtain from (3.19) for a sequence of positive numbers of r tending to
infinity that

α1(M
−1
h (Mf◦g(r))) 6 (λ(α1,β1)[f ]h + ε)(ρ(α2,β2)[g] + ε)β2(r). (3.24)

Further it follows from (3.20) for all sufficiently large positive numbers of r that

α1(M
−1
h (Mf◦g(r))) ≥ (1 + o(1))(λ(α1,β1)[f ]h − ε)(λ(α2,β2)[g]− ε)β2(r), (3.25)

and for a sequence of positive numbers of r tending to infinity that

α1(M
−1
h (Mf◦g(r))) ≥ (1 + o(1))(λ(α1,β1)[f ]h − ε)(ρ(α2,β2)[g]− ε)β2(r). (3.26)
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Moreover, we obtain from (3.21) for a sequence of positive numbers of r tending to
infinity that

α1(M
−1
h (Mf◦g(r))) ≥ (1 + o(1))(ρ(α1,β1)[f ]h − ε)(λ(α2,β2)[g]− ε)β2(r). (3.27)

Therefore from (3.15) and (3.22), we have for all sufficiently large positive numbers
of r that

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

6
(ρ(α1,β1)[f ]h + ε)(ρ(α2,β2)[g] + ε)β2(r)

(λ(α1,β1)[f ]h − ε)β2(r)

i.e., lim sup
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

6
ρ(α1,β1)[f ]h · ρ(α2,β2)[g]

λ(α1,β1)[f ]h
. (3.28)

Similarly from (3.16) and (3.22), it follows for a sequence of positive numbers of r
tending to infinity that

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

6
(ρ(α1,β1)[f ]h + ε)(ρ(α2,β2)[g] + ε)β2(r)

(ρ(α1,β1)[f ]h − ε)β2(r)

i.e., lim inf
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

6 ρ(α2,β2)[g]. (3.29)

In the same way also from (3.15) and (3.23), we obtain that

lim inf
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

6
ρ(α1,β1)[f ]h · λ(α2,β2)[g]

λ(α1,β1)[f ]h
. (3.30)

Similarly from (3.15) and (3.24), we get that

lim inf
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

6 ρ(α2,β2)[g]. (3.31)

Thus from (3.29), (3.30) and (3.31), it follows that

lim inf
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

6 min
{
ρ(α2,β2)[g],

ρ(α1,β1)[f ]h · λ(α2,β2)[g]

λ(α1,β1)[f ]h

}
.

(3.32)
Further from (3.14) and (3.25), we have for all sufficiently large positive numbers
of r that

α1(M
−1
h (Mf◦g(r))(M

−1
h

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

≥
(1 + o(1))(λ(α1,β1)[f ]h − ε)(λ(α2,β2)[g]− ε)β2(r)

(ρ(α1,β1)[f ]h + ε)β2(r)
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i.e., lim inf
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

≥
λ(α1,β1)[f ]h · λ(α2,β2)[g]

ρ(α1,β1)[f ]h
. (3.33)

Similarly, from (3.17) and (3.25) we obtain that

lim sup
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

≥ λ(α2,β2)[g]. (3.34)

Likewise from (3.14) and (3.26), we get that

lim sup
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

≥
λ(α1,β1)[f ]h · ρ(α2,β2)[g]

ρ(α1,β1)[f ]h
, (3.35)

Similarly from (3.14) and (3.27), we have that

lim sup
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

≥ λ(α2,β2)[g]. (3.36)

Thus from (3.34), (3.35) and (3.27) it follows that

lim sup
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (β

−1
1 (β2(r)))))

≥ max
{
λ(α2,β2)[g],

λ(α1,β1)[f ]h · ρ(α2,β2)[g]

ρ(α1,β1)[f ]h

}
.

(3.37)
Therefore the first part of the theorem follows from (3.28), (3.32), (3.33) and (3.37).
Case II. Let β1(α

−1
2 (r)) ∈ L0.

Now we have from (3.18) for all sufficiently large positive numbers of r that

α1(M
−1
h (Mf◦g(r))) 6 (ρ(α1,β1)[f ]h + ε)β1(α

−1
2 ((ρ(α2,β2)[g] + ε)β2(r)))

i.e., α1(M
−1
h (Mf◦g(r))) 6 (1 + o(1))(ρ(α1,β1)[f ]h + ε)β1(α

−1
2 (β2(r))) (3.38)

Further from (3.20), it follows for all sufficiently large positive numbers of r that

α1(M
−1
h (Mf◦g(r))) ≥ (1 + o(1))(λ(α1,β1)[f ]h − ε)β1(α−12 (β2(r))). (3.39)

Now from (3.15) and (3.38), we have for all sufficiently large positive numbers of r
that

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

6
(1 + o(1))(ρ(α1,β1)[f ]h + ε)β1(α

−1
2 (β2(r)))

(λ(α1,β1)[f ]h − ε)β1(α−12 (β2(r)))
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i.e., lim sup
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

6
ρ(α1,β1)[f ]h
λ(α1,β1)[f ]h

. (3.40)

Also from (3.16) and (3.38), it follows for a sequence of positive numbers of r
tending to infinity that

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

6
(1 + o(1))(ρ(α1,β1)[f ]h + ε)β1(α

−1
2 (β2(r)))

(ρ(α1,β1)[f ]h − ε)β1(α−12 (β2(r)))

i.e., lim inf
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

6 1. (3.41)

Further from (3.14) and (3.39), we have for all sufficiently large positive numbers
of r that

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

≥
(1 + o(1))(λ(α1,β1)[f ]h − ε)β1(α−12 (β2(r)))

(ρ(α1,β1)[f ]h + ε)β1(α
−1
2 (β2(r)))

i.e., lim inf
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

≥
λ(α1,β1)[f ]h
ρ(α1,β1)[f ]h

. (3.42)

Also from (3.17) and (3.39) it follows for a sequence of positive numbers of r tending
to infinity that

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

≥
(1 + o(1))(λ(α1,β1)[f ]h − ε)β1(α−12 (β2(r)))

(λ(α1,β1)[f ]h + ε)β1(α
−1
2 (β2(r)))

i.e., lim sup
r→+∞

α1(M
−1
h (Mf◦g(r)))

α1(M
−1
h (Mf (α

−1
2 (β2(r)))))

≥ 1. (3.43)

Hence the second part of the theorem follows from (3.40), (3.41), (3.42) and (3.43).
Case III. Let α2(β

−1
1 (r)) ∈ L0.

Then we have from (3.18) for all sufficiently large positive numbers of r that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r))))) 6 (1 + o(1))(ρ(α2,β2)[g] + ε)β2(r), (3.44)

and for a sequence of positive numbers of r tending to infinity that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r))))) 6 (1 + o(1))(λ(α2,β2)[g] + ε)β2(r). (3.45)

Further, it follows from (3.20) for all sufficiently large positive numbers of r that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r))))) ≥ (1 + o(1))(λ(α2,β2)[g]− ε)β2(r), (3.46)
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and for a sequence of positive numbers of r tending to infinity that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r))))) ≥ (1 + o(1))(ρ(α2,β2)[g]− ε)β2(r). (3.47)

Now from (3.15) and (3.44), we have for all sufficiently large positive numbers of r
that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

6
(1 + o(1))(ρ(α2,β2)[g] + ε)β2(r)

(λ(α1,β1)[f ]h − ε)β2(r)

i.e., lim sup
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

6
ρ(α2,β2)[g]

λ(α1,β1)[f ]h
. (3.48)

Also from (3.16) and (3.44), it follows for a sequence of positive numbers of r
tending to infinity that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

6
(1 + o(1))(ρ(α2,β2)[g] + ε)β2(r)

(ρ(α1,β1)[f ]h − ε)β2(r)

i.e., lim inf
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

6
ρ(α2,β2)[g]

ρ(α1,β1)[f ]f
. (3.49)

Similarly from (3.15) and (3.45), we obtain that

lim inf
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

6
λ(α2,β2)[g]

λ(α1,β1)[f ]f
. (3.50)

Thus from (3.49) and (3.50) it follows that

lim inf
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

6 min
{ ρ(α2,β2)[g]

ρ(α1,β1)[f ]f
,
λ(α2,β2)[g]

λ(α1,β1)[f ]f

}
. (3.51)

Further from (3.14) and (3.46), we have for all sufficiently large positive numbers
of r that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

≥
(1 + o(1))(λ(α2,β2)[g]− ε)β2(r)

(ρ(α1,β1)[f ]f + ε)β2(r)

i.e., lim inf
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

≥
λ(α2,β2)[g]

ρ(α1,β1)[f ]f
. (3.52)

Also from (3.17) and (3.46) it follows for a sequence of positive numbers of r tending
to infinity that

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

≥
(1 + o(1))(λ(α2,β2)[g]− ε)β2(r)

(λ(α1,β1)[f ]f + ε)β2(r)
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i.e., lim sup
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

≥
λ(α2,β2)[g]

λ(α1,β1)[f ]f
. (3.53)

Similarly from (3.14) and (3.47), we obtain that

lim sup
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

≥
ρ(α2,β2)[g]

ρ(α1,β1)[f ]f
. (3.54)

Thus from (3.53) and (3.54) it follows that

lim sup
r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α1(M
−1
h (Mf (β

−1
1 (β2(r))))

≥ max
{ λ(α2,β2)[g]

λ(α1,β1)[f ]f
,
ρ(α2,β2)[g]

ρ(α1,β1)[f ]f

}
. (3.55)

Thus the third part of the theorem follows from (3.48), (3.51), (3.52) and (3.55).

Theorem 6. Let f , g and h are any three entire functions such that 0 < λ(α1,β1)[f ]h
≤ ρ(α1,β1)[f ]h < +∞ and 0 < λ(α2,β2)[g] ≤ ρ(α2,β2)[g] < +∞. Also let 0 <
λ(α2,β2)[g]k ≤ ρ(α2,β2)[g]k < +∞ where k is another entire function.
(i) If β1(r) = α2(r), then

λ(α1,β1)[f ]h · λ(α2,β2)[g]

ρ(α2,β2)[g]k
≤ lim inf

r→+∞

α1(M
−1
h (Mf◦g(r)))

α2(M
−1
k (Mg(r)))

6 min
{ρ(α1,β1)[f ]h · λ(α2,β2)[g]

λ(α2,β2)[g]k
,
λ(α1,β1)[f ]h · ρ(α2,β2)[g]

λ(α2,β2)[g]k

}
and

max
{λ(α1,β1)[f ]h · ρ(α2,β2)[g]

ρ(α2,β2)[g]k
,
ρ(α1,β1)[f ]h · λ(α2,β2)[g]

ρ(α2,β2)[g]k

}
≤ lim sup

r→+∞

α1(M
−1
h (Mf◦g(r)))

α2(M
−1
k (Mg(r)))

≤
ρ(α1,β1)[f ]h · ρ(α2,β2)[g]

λ(α2,β2)[g]k
.

Theorem 7. (ii) If β1(α
−1
2 (r)) ∈ L0, then

λ(α1,β1)[f ]h
ρ(α2,β2)[g]k

≤ lim inf
r→+∞

α1(M
−1
h (Mf◦g(r)))

α2(M
−1
k (Mg(β

−1
2 (β1(α

−1
2 (β2(r)))))))

6 min
{ρ(α1,β1)[f ]h
ρ(α2,β2)[g]k

,
λ(α1,β1)[f ]h
λ(α2,β2)[g]k

}
≤ max

{ρ(α1,β1)[f ]h
ρ(α2,β2)[g]k

,
λ(α1,β1)[f ]h
λ(α2,β2)[g]k

}
≤ lim sup

r→+∞

α1(M
−1
h (Mf◦g(r)))

α2(M
−1
k (Mg(β

−1
2 (β1(α

−1
2 (β2(r)))))))

≤
ρ(α1,β1)[f ]h
λ(α2,β2)[g]k

.
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(iii) If α2(β
−1
1 (r)) ∈ L0, then

λ(α2,β2)[g]

ρ(α2,β2)[g]k
≤ lim inf

r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α2(M
−1
k (Mg(r)))

6 min

{
ρ(α2,β2)[g]

ρ(α2,β2)[g]k
,
λ(α2,β2)[g]

λ(α2,β2)[g]k

}
6 max

{
ρ(α2,β2)[g]

ρ(α2,β2)[g]k
,
λ(α2,β2)[g]

λ(α2,β2)[g]k

}
≤ lim sup

r→+∞

α2(β
−1
1 (α1(M

−1
h (Mf◦g(r)))))

α2(M
−1
k (Mg(r)))

≤
ρ(α2,β2)[g]

λ(α2,β2)[g]k
.

The proof of Theorem 6 is omitted as it can be carried out in the line of Theorem
5.

Remark 1. The same results of above theorems in terms of maximum terms of
entire functions can also be deduced with the help of Lemma 2 and Lemma 3.

Acknowledgement
The authors are thankful to the referees for their valuable suggestions to lead

the paper in present form.

References
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