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Abstract: The purpose of this paper is to establish a unique fixed point theorem
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generalizes, extends some existing results in the literature.
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1. Introduction
The theory of fuzzy sets was first introduced by Zadeh [12], after that a lot of

research papers have been published on fuzzy sets. The fuzzy sets concept places
an important role in scientific and engineering application. Kramosil and michalek
[7] introduced the concept of fuzzy metric space by generalizing the concept of
probabilistic metric space to fuzzy situation. George and Veeramani [2] modified
this concept of fuzzy metric space and obtained a Hausdorff topology for this kind
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of fuzzy metric spaces. Grabiec [4] initiated the study of fixed point theory on
fuzzy metric space. For more results on the development of fixed point theory in
fuzzy metric spaces, see [1, 5, 10].

On the other hand Harandi [6] introduced a new extension of the concept of
partial metric space called a metric like space. The concept of a fuzzy metric like
space which generalizes the notion of fuzzy metric spaces and metric like spaces
was introduced by Shukla and Abbas [9].

2. Preliminaries

To clarify the issue we first recall some basic definitions.

Definition 2.1. [8] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a contin-
uous t-norm if {[0, 1], ∗} is an abelian topological monoid with unit 1 such that
a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, a, b, c, d,∈ [0, 1]. Three typical examples of
t-norms are a∗ b = min{a, b} (minimum t-norm), a∗ b = ab (product t-norm), and
a ∗ b = max{a+ b− 1, 0} (Lukasiewicz t-norm).

Definition 2.2. [2] The triplet (X,M, ∗) is a fuzzy metric space if X is an arbi-
trary set,∗ is a continuous t−norm, M is a fuzzy set in X2 × (0,∞) satisfying the
following conditions:
(FM1) M(x, y, t) > 0;
(FM2) M(x, y, t) = 1 if and only if x = y;
(FM3) M(x, y, t) = M(y, x, t);
(FM4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);
(FM5) M(x, y, ·) : (0,∞)→ [0, 1] is a continuous mapping;
for all x, y, z ∈ X and s, t > 0.
Here M with ∗ is called a fuzzy metric on X. Note that, M(x, y, t) can be thought
of as the definition of nearness between x and y with respect to t. It is known that
M(x, y, ·) is nondecreasing for all x, y ∈ X.

Definition 2.3. [9] The triplet (X,F, ∗) is a fuzzy metric-like space if X is an
arbitrary set,∗ is a continuous t−norm, F is a fuzzy set in X2 × (0,∞) satisfying
the following conditions:
(FML1) F (x, y, t) > 0;
(FML2) If F (x, y, t) = 1 then x = y;
(FML3) F (x, y, t) = F (y, x, t);
(FML4) F (x, y, t) ∗ F (y, z, s) ≤ F (x, z, t+ s);
(FML5) F (x, y, ·) : (0,∞)→ [0, 1] is a continuous mapping;
for all x, y, z ∈ X and s, t > 0.
Here M with ∗ is called a fuzzy metric-like on X. A fuzzy metric-like space satisfies



Fixed Point Theorem in M Complete Non-Archimedean ... 217

all of the conditions of a fuzzy metric space except that F (x, x, t) may be less than 1
for all t > 0 and for some (or may be for all) x ∈ X. Also, every fuzzy metric space
is fuzzy metric-like space with unit self fuzzy distance, that is, with F (x, x, t) = 1
for all t > 0 and for all x ∈ X.
Note that, the axiom (FM2) in Definition 3 gives the idea that when x = y the
degree of nearness of x and y is perfect, or simply 1, and then M(x, x, t) = 1 for
each x ∈ X and for each t > 0. While in fuzzy metric-like space, M(x, x, t) may be
less than 1, that is, the concept of fuzzy metric-like is applicable when the degree
of nearness of x and y is not perfect for the case x = y.

Example 2.4. [9] Let X = R+, k ∈ R+ and m > 0. Define ∗ by a ∗ b = ab and the
fuzzy set F in X2 × (0,∞) by F (x, y, t) = kt

kt+m(max{x,y}) for all x, y ∈ X, t > 0.

Then, since σ(x, y) = max{x, y} for all x, y ∈ X, is a metric-like on X (see [6])
therefore, (X,F, ∗) is a fuzzy metric-like space, but it is not a fuzzy metric space,
as F (x, x, t) = kt

kt+mx
6= 1 for all x > 0 and t > 0.

Definition 2.5. [9] A sequence {xn} in a fuzzy metric-like space (X,F, ∗) is said
to be convergent to x ∈ X. If limn→∞ F (xn, x, t) = F (x, x, t) for all t > 0.

Definition 2.6. [9] A sequence {xn} in a fuzzy metric-like space (X,F, ∗) is said
to be Cauchy if limn→∞ F (xn+p, xn, t) for all t > 0, p ≥ 1 exists and is finite.

Definition 2.7. [9] A fuzzy metric like spaces (X,F, ∗) is said to be complete if
every Cauchy sequence {xn} in X converges to some x ∈ X such that
limn→∞ F (xn, x, t) = F (x, x, t) = limn→∞ F (xn+p, xn, t) for all t > 0, p ≥ 1.
Let ψ be the class of all functions ψ : [0, 1]→ [0, 1] such that
(i) ψ is non-decreasing and left continuous,
(ii) ψ(r) > r for all r ∈ (0, 1).
It can easily be shown that if ψ ∈ Ψ, then ψ(1) = 1 and limn→+∞ ψ

n(r) = 1 for all
r ∈ (0, 1).

Definition 2.8. [3] Let (X,M, ∗) be a fuzzy metric space. We say that T : X → X
is a β − ψ−fuzzy contractive mapping if there exist two functions β : X × X ×
(0,+∞)→ (0,+∞) and ψ ∈ Ψ such that M(x, y, t) > 0⇒ β(x, y, t)M(Tx, Ty, t) ≥
ψ(M(x, y, t)) for all t > 0 and for all x, y ∈ X with x 6= y.

Definition 2.9. [3] Let (X,M, ∗) be a fuzzy metric space. We say that T : X → X
is β− admissible if there exists a function β : X ×X × (0,+∞) → (0,+∞) such
that, for all t > 0, x, y ∈ X, β(x, y, t) ≤ 1 =⇒ β(Tx, Ty, t) ≤ 1.

Definition 2.10. [11] Let (X,F, ∗) be a fuzzy metric-like space and let {xn} be a
sequence in X. The sequence {xn} is called a 1-G-Cauchy sequence if lim

n→∞
F (xn+p,
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xn, t) = 1 for all t > 0 and each p ≥ 1. The space (X,F, ∗) is called 1-G-complete if
every 1-G-Cauchy sequence in X converges to some x ∈ X such that F (x, x, t) = 1
for all t > 0.

Definition 2.11. [11] Let (X,F, ∗) be a fuzzy metric-like space and let {xn} be
a sequence in X. The sequence {xn} is called a 1-M-Cauchy sequence if lim

n,m→∞
F (xn, xm, t) = 1 for all t > 0. The space (X,F, ∗) is called 1-M-complete if every
1-M-Cauchy sequence in X converges to some x ∈ X such that F (x, x, t) = 1 for
all t > 0.

Remark. Every complete fuzzy metric space in the sense of Grabiec (1988) is 1-
G-complete as a fuzzy metric-like space, and every complete fuzzy metric space in
the sense of George and Veeramani (1994) is 1-M-complete as a fuzzy metric-like
space.

Non-Archimedean fuzzy metric-like space. If in Definition 2.3, the trian-
gular inequality FML 4 is replaced by condition (NA), then we call (X,F, ∗) a
non-Archimedean fuzzy metric-like space. If (X,F, ∗) is a non-Archimedean fuzzy
metric-like space, then the following holds
F (x, z,max{t, s}) ≥ F (x, y, t) ∗ F (y, z, s) for all x, y, z ∈ X and t, s > 0.
Or equivalently,
F (x, z, t) ≥ F (x, y, t) ∗ F (y, z, t) for all x, y, z ∈ X and t > 0.
Now, we give one example which is a non-Archimedean fuzzy metric-like space, but
not a fuzzy metric-like space since as follows:

Example 2.11. Let X = N . Define a fuzzy set F on x2× [0,∞) by F (x, y, 0) = 0
for all x, y,∈ X, F (1, 1, t) = 1 for all t > 0 and

F (x, y, t) =


1
5

if 0 < t ≤ 1
2

3
10

if 1
2
< t ≤ 1

1
10

if t ≥ 1

It is easy to check that (X,F, ∗F ) is a non- Archimedean fuzzy metric-like space.

3. Main Results

Definition 3.1. Let (Z, F, ∗) be a fuzzy metric like space. We say that K :
Z → Z is a β − ψ−fuzzy contractive mapping if there exist two functions β :
Z ×Z × (0,+∞)→ (0,+∞) and ψ ∈ Ψ such that F (z, y, t) > 0 ⇒ ψ(F (z, y, t)) ≤
β(z, y, t)F (Kz,Ky, t) for all t > 0 and for all z, y ∈ Z with z 6= y.

Definition 3.2. Let (Z, F, ∗) be a fuzzy metric like space. We say that K : Z → Z
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is β−admissible if there exists a function β : Z × Z × (0,+∞) → (0,+∞) such
that, for all t > 0, z, y ∈ Z β(z, y, t) ≤ 1 =⇒ β(Kz,Ky, t) ≤ 1.

Theorem 3.3. Let (Z, F, ∗) be a M-complete non-Archimedean fuzzy metric like
space and K : Z → Z be a self fuzzy β − ψ−contractive mapping. It is also
β−admissible, satisfying the following assertions:
(i) there exists z0 ∈ Z such that β(z0, Kz0, t) ≤ 1 for all t > 0;
(ii) if {zn} is a sequence in Z such that β(zn, zn+1, t) ≤ 1, and zn → u as n→ +∞,
then β(zn, u, t) ≤ 1. Also there exists l0 ∈ N with m > n ≥ l0 for all m,n ∈ N and
for all t > 0 such that β(zm+1, zn+1, t) ≤ 1; Then, K has a fixed point.
Proof. We choose z0 ∈ Z such that β(z0, Kz0, t) ≤ 1 for all t > 0, and define a
sequence {zn} in Z by zn+1 = Kzn, for all n ∈ N . If zn0 = zn0+1 for some n0 ∈ N ,
then z = zn is a fixed point of K. So we assume that zn 6= zn+1, for all n ∈ N .
Since K is β−admissible, we have

β(z0, z1, t) = β(z0, Kz0, t) ≤ 1.

β(z1, z2, t) = β(Kz0, Kz1, t) ≤ 1

Continuing in this way, by induction, we get

β(zn, zn+1, t) ≤ 1 for all n ∈ N and for all t > 0. (3.1)

Now, since K is β − ψ−fuzzy contractive mapping, we have

F (z, y, t) > 0⇒ β(z, y, t)F (Kz,Ky, t) ≥ ψ(F (z, y, t)) ∀ t > 0 and ∀z, y ∈ Z.
(3.2)

Put z = z1 and y = z2 and in equation (3.2), we get

F (z1, z2, t) = F (Kz0, Kz1, t)

≥ β(z0, z1, t)F (Kz0, Kz1, t)

≥ ψ(F (z0, z1, t)).

Put z = z2 and y = z3 in equation (3.2), we get

F (z2, z3, t) = F (Kz1, Kz2, t)

≥ β(z1, z2, t)F (Kz1, Kz2, t)

≥ ψ(F (z1, z2, t)) ≥ ψ(ψF (z0, z1, t)) ≥ ψ2(F (z0, z1, t)).

Continuing in this way, by induction, we get

F (zn, zn+1, t) = F (Kzn−1, Kzn, t)

≥ β(zn−1, zn, t)F (Kzn−1, Kzn, t)

≥ ψn(F (z0, z1, t)), for all n ∈ N.
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Thus it is an increasing sequence, and since limn→+∞ ψ
n(p) = 1 for all p ∈ (0, 1),

then we deduce from the above expression that

lim
n→+∞

F (zn, zn+1, t) = 1 for all t > 0.

Now we prove that {zn} is a M -Cauchy sequence, for this, on the contrary suppose
that the sequence {zn} is not M -Cauchy, then there exist ε ∈ (0, 1), t > 0 and
l0 ∈ N , such that, for each l ∈ N with l ≥ l0, there exist m(l), n(l) ∈ N with
m(l) > n(l) ≥ l and

F (zm(i), zn(i), t) ≤ 1− ε and β(zm(l), zn(l), t) ≤ 1.

Assume that for each l, m(l) be the least positive integer exceeding n(l) satisfying
the above inequality, that is F (zm(l)−1, zn(l), t) > 1− ε and F (zm(l), zn(l), t) ≤ 1− ε.
So for all l ∈ N , such that l ≥ l0, we have

1− ε ≥ F (zm(l), zn(l), t)

≥ F (zm(l)−1, zn(l), t) ∗ F (zm(l)−1, zm(l), t) by(NA)

≥ (1− ε) ∗ F (zm(l)−1, zm(l), t).

Taking limit as n→∞ in above inequality, we have

lim
n→+∞

(1− ε) ∗ F (zm(l)−1, zm(l), t) = (1− ε) ∗ 1 = 1− ε

We deduce that
lim

n→+∞
F (zm(l), zn(l), t) = (1− ε)

Now from FML (IV) we have

F (zm(l), zn(l), t) ≥ F (zm(l), zm(l)+1, t) ∗ F (zm(l)+1, zn(l), t) by (NA)

≥ F (zm(l), zm(l)+1, t) ∗ F (zm(l)+1, zn(l)+1, t) ∗ F (zn(l)+1, zn(l), t)

= F (zm(l), zm(l)+1, t) ∗ F (Kzm(l), Kzn(l), t) ∗ F (zn(l)+1, zn(l), t)

≥ F (zm(l), zm(l)+1, t) ∗ β(zm(l), zn(l), t)F (Kzm(l), zn(l), t)

∗ F (zn(l)+1, zn(l), t) by (iii)

≥ F (zm(l), zm(l)+1, t) ∗ ψ(F (zm(l), zn(l), t)) ∗ F (zn(l), zn(l)+1, t).

Taking limit as l→ +∞, we obtain

1− ε ≥ 1 ∗ ψ(1− ε) ∗ 1 = ψ(1− ε) > (1− ε).
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Which is a contradiction and so {zn} is a Cauchy sequence in (Z, F, ∗). Since
(Z, F, ∗) is M -complete non Archimedean fuzzy metric like space, by the complete-
ness of FML ,there is u ∈ Z, such that limn→∞ F (zn, u, t) = limn→+∞ F (zn, zn+p, t)
= F (u, u, t) = 1, for all t > 0, p ≥ 1. Now we prove that u is a fixed point of K,
for this we obtain from equation (3.1) and hypothesis β(zn, u, t) ≤ 1 for all t > 0
by (NA) and using (3.2), we obtain

F (Ku, u, t) ≥ F (Ku,Kzn, t) ∗ F (Kzn, u, t) Using (NA)

≥ F (Ku,Kzn, t) ∗ F (zn+1, u, t)

≥ β(zn, u, t)F (Kzn, Ku, t) ∗ F (zn+1, u, t) Using (3.2)

≥ ψ(F (zn, u, t)) ∗ F (zn+1, u, t).

Since ψ(1) = 1, taking the limit as n → +∞ in the above inequality, we get
that F (Ku, u, t) = 1 that is, Ku = u. Therefore u is a fixed point of K and
F (u, u, t) = 1, for all t > 0. Hence the result.

Example 3.4. Let Z = (0,+∞), a ∗ b = ab for all a, b ∈ [0, 1] and F (z, y, t) =
min{z,y}
max{z,y} for all z, y ∈ Z and for all t > 0. Clearly, (Z, F, ∗) is a M -complete non-
Archimedean fuzzy metric space. Since every fuzzy metric space is a fuzzy metric
like space with unit self fuzzy distance that is F (z, z, t) = 1 for all t > 0, z in Z so
(Z, F, ∗) is a M -complete non-Archimedean fuzzy metric like space.

Define the mapping K : Z → Z by Kz =

{ √
z if z ∈ (0, 1]

2 Otherwise,

and the function β : Z×Z×(0,+∞)→ (0,+∞) by β(z, y, t) =

{
1 if z ∈ (0, 1]
2 Otherwise,

for all t > 0. It is easy to show that K is a β − ψ−contractive mapping with
ψ(v) =

√
v, for all v ∈ [0, 1]. Clearly, K is β−admissible. Further, there ex-

ists z0 ∈ Z such that β(z0, Kz0, t) ≤ 1 for all t > 0, indeed for z0 = 1 we have
β(1, K(1), t) = 1.
Let {zn} n ∈ N be a sequence in Z such that β(zn, zn+1, t) ≤ 1 for all n ∈ N ,
zn → u ∈ Z as n → +∞ and let l0 = 1 such that for all m,n ∈ N we have
m > n ≥ l0. By the definition of the function β, it follows that zn ∈ (0, 1] for all
n ∈ N .
Now, if u > 1, we get F (zn, u, t) = min{zn,u}

max{zn,u} = zn
u
≤ 1

u
< 1, that contradicts to the

definition of convergence, since limn→∞ F (zn, u, t) = 1 for all t > 0. Consequently,
we obtain that u ∈ (0, 1]. Therefore β(zn, u, t) = 1 and β(zm+1, zn+1, t) = 1 for all
m,n ∈ N . Thus, all the hypotheses of Theorem 3.3 are satisfied. Here 1 and 2 are
two fixed points of K.

Theorem 3.5. Adding the following condition, to the hypothesis of Theorem 3.3
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we obtain the uniqueness of the fixed point of K for all z, y ∈ Z and for all t > 0,
there exists a point u ∈ Z such that β(z, u, t) ≤ 1 and β(y, u, t) ≤ 1.
Proof. Suppose that u and v are two fixed point of K. Then there exists z ∈ Z
such that β(u, z, t) ≤ 1 and β(v, z, t) ≤ 1 Since K is β−admissible, therefore we
get

β(u,Knz, t) ≤ 1 and β(v,Knz, t) ≤ 1 for all n ∈ N for all t > 0.

F (u,Knz, t) = F (Ku,K(Kn−1z), t)

≥ β(u,Kn−1z, t)F (Ku,K(Kn−1z), t)

≥ ψ(F (u,Kn−1z, t))

This implies that F (u,Knz, t) ≥ ψn(F (u, z, t)) for all n ∈ N . Then, letting n→∞,
we have Knz → u. Similarly, for using v and letting n → ∞, we get Knz → v as
n→∞ the uniqueness of the limit gives us u = v.

4. Conclusion
In this paper we have used the idea of β admissible mapping to prove some

fixed point theorems for β − ψ−fuzzy-contractive mapping in M complete non
Archimedean fuzzy metric like space. Our result generalizes and extends some
known results in the literature.
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