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1. Introduction, Definitions and Notations
Fundamental theorem of algebra only gives information about the number of

zeros of a polynomial but not location of the zeros. All zeros of a quadratic poly-
nomial can be derived algebraically for all possible values of its coefficients. But,
difficulty arises when degree of polynomial increases. So, it is desirable to know a
region where the zeros of a polynomial lie.

Problem of finding a region containing all the zeros of a polynomial has a rich
old history {cf.[7]}. In 1829, Cauchy {cf.[7]} develop the following classical result:
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Theorem A. Let P (z) =
∑n

j=0 ajz
n be a polynomial of degree n, then all the zeros

of P (z) lie in |z| ≤ r where r is the unique positive root of the equation

|an|zn − (|an−1|zn−1 + ...+ |a0|) = 0.

So many improvements and generalizations of Theorem A for polynomials exist
in the literature {[2], [3] & [4]}. We think that there is no such results for transcen-
dental entire functions. The main aim of this paper is to develop some Cauchy’s
type bounds for the moduli of zeros of transcendental entire functions. We do not
explain the standard theories, notations and definitions of entire functions as those
are available in [6] & [9].

Some well known definitions are given below.

Definition 1. [6] The order ρ of an entire function f(z) is defined as

ρ = inf{k > 0 : Mf (r) < er
k

, r > r0}

where M(r, f) := Mf (r) = max|z|=r |f(z)|.
Definition 1 can be alternatively stated as:

Definition 2. [6] The order ρ of an entire function f(z) is defined as

ρ = lim sup
r→∞

log[2]M(r, f)

log r

where exp[k] x = log[−k] x = exp(exp[k−1] x) = log(log[−k−1] x) for k = ±1,±2, ±3,
... and exp[0] x = log[0] x = x.

For ρ = ∞, Satto [8] defined the concept of ’index’ of an entire function as
follows:

Definition 3. [8] An entire function f(z) is said to be of index q if

ρ(q) = lim sup
r→∞

log[q]M(r, f)

log r

with ρ(q − 1) =∞ and ρ(q) <∞.
ρ(q) is called the rate of growth of f(z) of index q.
Juneja, Kapoor and Bajpai [5] introduced (p, q)th order of a non constant entire

function as:

ρ(p, q) = lim sup
r→∞

log[p]M(r, f)

log[q] r
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where p & q are integers with p ≥ q ≥ 0.
Clearly, ρ(q) = ρ(q, 1).

2. Lemmas
Here, we state some lemmas which are essential for the presentation of the work.

Lemma 2.1. [1] If g(z) is analytic in | z |≤ r and | g(z) |< K for | z |= r, then

|g(n)(0)| ≤ K.n!

rn
, n = 0, 1, 2, ... .

Lemma 2.1 is known as Cauchy’s inequality.

Lemma 2.2. [1] If f1(z) and f1(z) are analytic within and on a simple closed curve
Γ with |f2(z)| <|f1(z)| on Γ, then f1(z) + f2(z) and f1(z) have the same number
of zeros inside Γ.

Lemma 2.2 is called Rouche’s theorem.

Lemma 2.3. Let f(z) =
∑∞

j=0 ajz
j be a transcendental entire function of finite

order ρ. Then for a positive integer Nρ > ρ,

|an| < (e
1
Nρ )n for n ≥ Nρ.

Proof. For all sufficiently large values of r, it follows from Definition 1 that

M(r, f) < er
Nρ
.

Hence for all sufficiently large values of r, we get by Lemma 2.1 that

|an| <
er
Nρ

rn
, n = 0, 1, 2, ... .

Let h(r) = er
Nρ

rn
. Then, h′(r) = er

Nρ

rn+1 (Nρr
Nρ − n).

Now, h′(r) = 0 if and only if (Nρr
Nρ − n) = 0.

Let r1 be the unique positive root of this equation. Then, we have r1 ≥ 1 if n ≥ Nρ.

Clearly, h(r) is minimum at r = r1 and minh(r)
r>0

= er
Nρ
1

rn1
≤ (e

1
Nρ )n.

Hence,

|an| < (e
1
Nρ )n for n ≥ Nρ.

This completes the proof of the lemma.

Lemma 2.4. Let f(z) =
∑∞

j=0 ajz
j be a transcendental entire function of the rate

of growth ρ(q) of index q(≥ 3). Then for a positive integer Nρ(q) > ρ(q),

|an| < (e
1

Nρ(q) )n for n ≥ Nρ(q)E[q−2](1)
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where E[m](x) =
∏m

i=0 exp[i] x.
Proof. From Definition 3, we obtain for all sufficiently large values of r that

M(r, f) < exp[q−1] rNρ(q) .

Therefore in view of Lemma 2.1, it follows for all sufficiently large values of r that

|an| <
exp[q−1] rNρ(q)

rn
, n = 0, 1, 2, ... .

Let h(r) = exp[q−1] r
Nρ(q)

rn
.

Then,

h′(r) =
exp[q−1] rNρ(q)

rn+1

{
Nρ(q)r

Nρ(q)(exp[q−2] rNρ(q)).(exp[q−3] rNρ(q))...(exp r)− n
}

=
exp[q−1] rNρ(q)

rn+1

{
Nρ(q)E[q−2](r

Nρ(q))− n
}
.

Now, h′(r) = 0 gives
Nρ(q)E[q−2](r

Nρ(q))− n = 0.

Let t1 be the unique positive root of this equation. If n ≥ Nρ(q)E[q−2](1), we get
that t1 ≥ 1.
Hence,

exp[q−2] t
Nρ(q)
1 =

n

Nρ(q)E[q−3](t
Nρ(q)
1 )

≤ n

Nρ(q)

.

Clearly, h(r) attains its minimum value at r = t1.
Now,

minh(r)
r>0

=
exp[q−1] t

Nρ(q)
1

tn1

=
exp(exp[q−2] t

Nρ(q)
1 )

tn1

≤ (e
1

Nρ(q) )n.

Hence,

|an| < (e
1

Nρ(q) )n for n ≥ Nρ(q)E[q−2](1).

Thus the lemma is proved.
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3. Theorems
The main results of this paper are being presented here.

Theorem 3.1. Let f(z) =
∑∞

j=0 ajz
j be a transcendental entire function of finite

order ρ with f(0) = a0 6= 0. Also, let Nρ > ρ be the least positive integer such that

aNρ−1 6= 0 and |aNρ−1| < e
Nρ−1

Nρ . Then no zeros of f(z) lie in

|z| < min

{
t0,

1

e
1
Nρ

}
where t0 is the least positive root of the equation |a0| − (|a1| + e

1
Nρ |a0|)t − (|a2| −

e
1
Nρ |a1|)t2 − ...− (|aNρ−1| − e

1
Nρ |aNρ−2|)tNρ−1 −(e− e

1
Nρ |aNρ−1|)tNρ = 0.

Proof. For the least positive integer Nρ > ρ, it follows by Lemma 2.3 that

|f(z)| =|a0 + a1z + ...+ aNρ−1z
Nρ−1 +

∞∑
j=Nρ

ajz
j|

≥|a0| − (|a1z + ...+ aNρ−1z
Nρ−1 +

∞∑
j=Nρ

ajz
j|)

≥|a0|−|a1||z| − ...−|aNρ−1||z|Nρ−1 −
∞∑

j=Nρ

|aj||z|j

≥|a0|−|a1||z| − ...−|aNρ−1||z|Nρ−1 −
∞∑

j=Nρ

(e
1
Nρ )j|z|j.

Now,
∞∑

j=Nρ

(e
1
Nρ )j|z|j =

∞∑
j=Nρ

(e
1
Nρ |z|)j =

e|z|Nρ

1− e
1
Nρ |z|

if |z| < 1

e
1
Nρ

.

Hence for Nρ > ρ and |z| < 1

e
1
Nρ

, we get that

|f(z)| ≥|a0|−|a1||z| − ...−|aNρ−1||z|Nρ−1 −
e|z|Nρ

1− e
1
Nρ |z|

=

 |a0| − (|a1|+ e
1
Nρ |a0|)|z| − (|a2| − e

1
Nρ |a1|)|z|2 − ...− (|aNρ−1| − e

1
Nρ

|aNρ−2|)|z|Nρ−1 − (e− e
1
Nρ |aNρ−1|)|z|Nρ


1− e

1
Nρ |z|

.
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Let t0 be the least positive root of the equation

g(t) =|a0|− (|a1|+e
1
Nρ |a0|)t− (|a2|−e

1
Nρ |a1|)t2− ...− (|aNρ−1|−e

1
Nρ |aNρ−2|)tNρ−1−

(e− e
1
Nρ |aNρ−1|)tNρ = 0.

Then g(t) > 0 if t < t0, otherwise there will be another positive root.

Consequently, |f(z)| > 0 if |z| < min

{
t0,

1

e
1
Nρ

}
.

This proves the theorem.

Remark 3.1. The following example justifies the validity of Theorem 3.1.

Example 3.1. Let f(z) = ez
2

+ 1
2

sin z + 1.
Then, the Taylor’s series expansion of f(z) is

f(z) = 2 +
z

2
+ z2 − z3

12
+ ... .

Here, ρ = 2, a0 = 2, a1 = 1
2

& a2 = 1.
Now, taking Nρ = 3, the equation of Theorem 3.1 reduces to

2−
(

1

2
+ 2e

1
3

)
t−
(

1− 1

2
e

1
3

)
t2 −

(
e− e

1
3

)
t3 = 0

and the least positive root t0 ≈ 0.52.
Hence by Theorem 3.1, no zeros of f(z) lie in

|z| < 0.52 .

Remark 3.2. Taking f1(z) = ez
2
+ 1, f2(z) = 1

2
sin z and using Lemma 2.2, it can

be easily verified that ez
2

+ 1
2

sin z + 1 does not vanishes in |z| < 0.52 as f1(z) = 0
for z2 = (2n+ 1)πi, n = 0, ± 1, ± 2... .

Theorem 3.2. Let f(z) =
∑∞

j=0 ajz
j be a transcendental entire function of the

rate of growth ρ(q) of index q(≥ 3) with a0 6= 0. Also, let Nq < Nρ(q)E[q−2](1) be
the greatest positive integer for the positive integer Nρ(q) > ρ(q) such that aNq 6=
0 with |aNq | < eE[q−2](1). Then zeros of f(z) do not lie in

|z| < min

{
t′0,

1

e
1
Nq

}
where t′0 is the least positive root of the equation.

|a0| − (|a1| + e
1

Nρ(q) |a0|)t − (|a2| − e
1

Nρ(q) |a1|)t2 − ... − (|aNq | − e
1

Nρ(q) |aNq−1|)tNq −
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e
1

Nρ(q) (eE[q−2](1) − |aNq |)tNq+1 = 0.
Proof. For the greatest positive integer Nq < Nρ(q)E[q−2](1) with Nρ(q) > ρ(q), we
get by Lemma 2.4 that

|f(z)| =|a0 + a1z + ...+ aNqz
Nq +

∞∑
j=Nq+1

ajz
j|

≥|a0| − (|a1z + ...+ aNqz
Nq +

∞∑
j=Nq+1

ajz
j|)

≥|a0|−|a1||z| − ...−|aNq ||z|Nq −
∞∑

j=Nq+1

|aj||z|j

≥|a0|−|a1||z| − ...−|aNq ||z|Nq −
∞∑

j=Nq+1

(e
1

Nρ(q) )j|z|j.

Now, we obtain for |z| < 1

e

1
Nρ(q)

that

∞∑
j=Nq+1

(e
1

Nρ(q) )j|z|j =
e
Nq+1

Nρ(q) |z|Nq+1

1− e
1

Nρ(q) |z|

<
e
E[q−2](1)+

1
Nρ(q) |z|Nq+1

1− e
1

Nρ(q) |z|
.

Therefore, it follows for |z| < 1

e

1
Nρ(q)

that

|f(z)| >|a0|−|a1||z| − ...−|aNq ||z|Nq −
e
E[q−2](1)+

1
Nρ(q) |z|Nq+1

1− e
1

Nρ(q) |z|

=

 |a0| − (|a1|+ e
1

Nρ(q) |a0|)|z| − (|a2| − e
1

Nρ(q) |a1|)|z|2 − ...− (|aNq | − e
1

Nρ(q)

|aNq−1|)|z|Nq − e
1

Nρ(q) (eE[q−2](1) − |aNq |)|z|Nq+1


1− e

1
Nρ(q) |z|

.

Let

h(t) =|a0|−(|a1|+e
1

Nρ(q) |a0|)t−(|a2|−e
1

Nρ(q) |a1|)t2− ...−(|aNq |−e
1

Nρ(q) |aNq−1|)tNq−
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e
1

Nρ(q) (eE[q−2](1) − |aNq |)tNq+1.
Clearly, if t′0 is the least positive root of h(t) = 0, then h(t) > 0 for t < t′0.

Hence |f(z)| > 0 if |z| < min

{
t′0,

1

e
1
Nq

}
Thus the theorem is established.

Remark 3.3. The following example ensures the validity of Theorem 3.2.

Example 3.2. Taking f(z) = ecos z+sin z−1, we have the Taylor’s series expansion
of f(z) as

f(z) = e− 1 + z − e

2
z2 − 1

6
z3 +

e

6
z4 +

1

120
z5 − ... .

Here, ρ(q) = 1 for q = 3 and Nq = 5 for Nρ(q) = 2.
Now, the equation of Theorem 3.2 becomes

e− 1−
{

1 + (e− 1)e
1
2

}
t−
{

1
2
e− e 1

2

}
t2 −

{
1
6
− 1

2
e

3
2

}
t3 − 1

6

{
e− e 1

2

}
t4

−
{

1
120
− 1

6
e

1
2

}
t5 − e 1

2

{
ee − 1

120

}
t6 = 0

and the least positive root t′0 ≈ 0.46.
Hence by Theorem 3.2, f(z) does not vanish in

|z| < 0.46 .

Remark 3.4. If f1(z) = ecos z, f2(z) = sin z + 1, then it is easily verifiable by
Lemma 2.2 that ecos z + sin z − 1 does not vanish in |z| < 0.46.

4. Conclusion and Future Prospect
A zero free region about the origin in C has been established in the paper for a

transcendental entire function. To get a region about an arbitrary point having no
zeros for a transcendental entire function, one can use the theorems of this paper
considering Taylor’s series expansion about that point. In the line of the works as
carried out in the paper it may be thought of proving the results in case of entire
functions of several complex variables.
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