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Abstract: Motivated by work of Srivastava-Owa, we define new generalized sub-
classes of bi-univalent functions defined in the open unit disk which are associated
with fractional differential operator. Furthermore, we have obtained estimates of
the coefficients |a2| and |a3| for the functions belonging to these subclasses.
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1. Introduction
The study of fractional operators (integral and differential) plays a vital and

essential role in mathematical analysis. The fractional calculus operators and their
various other generalizations have fruitfully been applied in obtaining various things
like coefficients estimates, characterization properties and distortion inequalities for
various subclasses of analytic and univalent functions. Srivastava and Owa [12] gave
definitions for fractional operators (derivative and integral) in the complex Z-plane
C as follows.
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Definition 1. [12] The fractional derivative of order α is defined, for a function
f by

Dα
z f(z) =

1

Γ(1− α)

d

dz

∫ z

0

f(ζ)

(z − ζ)α
dζ; 0 ≤ α < 1,

where the function f is analytic in simply-connected region of the complex Z-plane
C containing the origin and the multiplicity of (z − ζ)−α is removed by requiring
log(z − ζ) to be real when (z − ζ) > 0.

Definition 2. [12] The fractional integral of order α is defined, for a function f
by

Iαz f(z) =
1

Γ(α)

∫ z

0

f(ζ)(z − ζ)α−1dζ;α > 0,

where the function f is analytic in simply-connected region of the complex Z-plane
C containing the origin and the multiplicity of (z − ζ)α−1 is removed by requiring
log(z − ζ) to be real when (z − ζ) > 0.

From Definitions 1 and 2, we have

Dα
z z

µ =
Γ(µ+ 1)

Γ(µ− α + 1)
zµ−α, µ > −1; 0 ≤ α < 1

and

Iαz z
µ =

Γ(µ+ 1)

Γ(µ+ α + 1)
zµ+α, µ > −1; 0 ≤ α < 1.

2. Preliminaries
Let J denotes the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n (2.1)

which are analytic in the unit disc U = {z ∈ C : |z| < 1}. Let D denote the
subclass of J which consists of functions of the form (2.1) that are univalent and
normalized by the conditions f(0) = 0 and f ′(0) = 1 in U.
We know that every function f ∈ D has an inverse f−1, defined by

f−1 (f(z)) = z, (z ∈ U) and f (f−1(w)) = w,

(
|w| < r0(f); r0(f) ≥ 1

4

)
,

where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + .... (2.2)

Definition 3. [4] A function f in D is said to be bi-univalent in U if both f and
f−1 are univalent in U .
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Let Σ denote the class of bi-univalent functions in U given by(2.1). In [6] Lewin
investigated the class Σ of bi-univalent functions and showed that |a2| < 1.51.
Subsequently Brannan and Clunie [1] conjectured that |a2| ≤

√
2. Also Netanyahu

[8] showed that max
f∈Σ

|a2| =
4

3
. The coefficient estimate problem for each of the

Taylor-Maclaurin coefficients |an| (n ≥ 3; n ∈ N) is still an open problem. Several
authors investigated various subclasses of the class Σ and obtained estimates for
their coefficients |a2| and |a3| for functions in these subclasses (see [2, 3, 5, 7, 9,
10]).
In [11] Srivastava, Mishra and Gochhayat introduced the following two subclasses of
the bi-univalent functions class Σ and obtained non-sharp estimates on the first two
Taylor-Maclaurin coefficients |a2| and |a3| of functions in each of these subclasses.

Definition 4. [11] A function f given by (2.1) is said to be in the class H
(α)
Σ

(0 < α ≤ 1), if the following conditions are satisfied:

f ∈ Σ, |arg(f ′(z))| < απ

2
(z ∈ U)

and |arg(g′(w))| < απ

2
(w ∈ U)

where the function g is defined by (2.2).

Definition 5. [11] A function f given by (2.1) is said to be in the class HΣ(β)
(0 ≤ β < 1), if the following conditions are satisfied:

f ∈ Σ, < (f ′(z)) > β (z ∈ U)

and < (g′(w)) > β (w ∈ U)

where the function g is defined by (2.2).
Motivated by above definitions, we now give two definitions.

Definition 6. A function f given by (2.1) is said to be in the class AH
Dλz
Σ (α)

(0 < α ≤ 1), if the following conditions are satisfied:

f ∈ Σ,

∣∣∣∣arg(Γ(2− λ)Dλ
z f(z)

z1−λ

)∣∣∣∣ < απ

2
(z ∈ U) (2.3)

and ∣∣∣∣arg(Γ(2− λ)Dλ
wg(w)

w1−λ

)∣∣∣∣ < απ

2
(w ∈ U) (2.4)

where the function g is defined by (2.2).
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Definition 7. A function f given by (2.1) is said to be in the class RH
Dλz
Σ (β)

(0 ≤ β < 1), if the following conditions are satisfied:

f ∈ Σ, <
(

Γ(2− λ)Dλ
z f(z)

z1−λ

)
> β (z ∈ U) (2.5)

and

<
(

Γ(2− λ)Dλ
wg(w)

w1−λ

)
> β (w ∈ U) (2.6)

where the function g is defined by (2.2).

Remark 1. For λ = 1, the classes AH
Dλz
Σ (α) and RH

Dλz
Σ (β) reduces to the classes

H
(α)
Σ , HΣ(β) respectively which was introduced by Srivastava et al. [11].

3. Coefficient bounds for the function class AH
Dλz
Σ (α)

We begin with the following useful lemma.

Lemma 1. [10] Let h ∈ P, the family of all functions h analytic in U for which
<{h(z)} > 0 and have the form h(z) = 1 + p1z + p2z

2 + p3z
3 + ... for z ∈ U. Then

|pn| ≤ 2 for each n ∈ N.
We first state and prove the following result.

Theorem 1. Let f be in the function class AH
Dλz
Σ (α), then

|a2| ≤ 2α(2− λ)

√
3− λ

12α(2− λ)− 4(α− 1)(3− λ)
(3.7)

and

|a3| ≤
α(2− λ)(3− λ)

3
+ (2− λ)2α2. (3.8)

Proof. We can write the argument in (2.3) and (2.4) as(
Γ(2− λ)Dλ

z f(z)

z1−λ

)
= [p(z)]α (3.9)

and (
Γ(2− λ)Dλ

wg(w)

w1−λ

)
= [q(w)]α (3.10)

respectively, where p, q ∈ P have the form

p(z) = 1 + p1z + p2z
2 + p3z

3 + ... (3.11)
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and
q(w) = 1 + q1w + q2w

2 + q3w
3 + ... . (3.12)

Equating the coefficients in (3.9) and (3.10), we get

2a2

(2− λ)
= αp1, (3.13)

6

(3− λ)(2− λ)
a3 = αp2 +

α(α− 1)

2
p2

1, (3.14)

−2a2

(2− λ)
= αq1, (3.15)

6

(3− λ)(2− λ)
(2a2

2 − a3) = αq2 +
α(α− 1)

2
q2

1. (3.16)

From (3.13) and (3.15), we get

p1 = −q1 (3.17)

and
8a2

2

(2− λ)2
= α2(p2

1 + q2
1) . (3.18)

Adding (3.14) and (3.16), and using (3.18), we obtain

a2
2 =

α2(3− λ)(2− λ)2(p2 + q2)

12α(2− λ)− 4(α− 1)(3− λ)
. (3.19)

Using Lemma 1, we get

|a2| ≤ 2α(2− λ)

√
3− λ

12α(2− λ)− 4(α− 1)(3− λ)
. (3.20)

Next in order to find the bound on |a3|, by subtracting (3.16) from (3.14) and then
using (3.17), we obtain

a3 − a2
2 =

α(p2 − q2)(2− λ)(3− λ)

12
. (3.21)

By (3.16), we get

a3 =
α(p2 − q2)(2− λ)(3− λ)

12
+
α2(2− λ)2(p2

1 + q2
1)

8
. (3.22)
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Using Lemma 1, we get

|a3| ≤
α(2− λ)(3− λ)

3
+ (2− λ)2α2. (3.23)

This completes the proof of the theorem.
Putting λ =1 in Theorem 1, we have

Corollary 1. Let f be in the function class AH
D1
z

Σ (α), then

|a2| ≤ α

√
2

α + 2

and

|a3| ≤
α(3α + 2)

3
.

4. Coefficient bounds for the function class RH
Dλz
Σ (β)

We now state and prove the following result.

Theorem 2. Let f be in the function class RH
Dλz
Σ (β), then

|a2| ≤
√

(1− β)(2− λ)(3− λ)

3
(4.24)

and

|a3| ≤
(2− λ)(1− β)

3
((3− λ) + 3(2− λ)(1− β)) . (4.25)

Proof. First of all the argument inequalities in (2.5) and (2.6) can be written in
their equivalent forms as,(

Γ(2− λ)Dλ
z f(z)

z1−λ

)
= β + (1− β)p(z) (4.26)

and (
Γ(2− λ)Dλ

wg(w)

w1−λ

)
= β + (1− β)q(z) (4.27)

respectively, where p(z), q(z) are given by (3.11) and (3.12). Now equating the
coefficients in (4.26) and (4.27), we get

2a2

(2− λ)
= (1− β)p1, (4.28)
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6a3

(3− λ)(2− λ)
= (1− β)p2, (4.29)

−2a2

(2− λ)
= (1− β)q1 (4.30)

and
6(2a2

2 − a3)

(3− λ)(2− λ)
= (1− β)q2. (4.31)

Using (4.28) and (4.30), we obtain

p1 = −q1 (4.32)

and

(1− β)2(p2
1 + q2

1) =
8a2

2

(2− λ)2
. (4.33)

By (4.29) and (4.31), we get

12a2
2

(3− λ)(2− λ)
= (1− β)(p2 + q2) (4.34)

or equivalently,

a2
2 =

(1− β)(p2 + q2)(3− λ)(2− λ)

12
. (4.35)

Applying Lemma 1, we get

|a2| ≤
√

(1− β)(2− λ)(3− λ)

3
(4.36)

which is the bound on |a2| as given in (4.24). Next in order to find the bound on
|a3|, subtracting (4.31) from (4.29), we get

12

(3− λ)(2− λ)
(a3 − a2

2) = (1− β)(p2 − q2) (4.37)

or equivalently,

a3 = a2
2 +

(3− λ)(2− λ)

12
(1− β)(p2 − q2). (4.38)

Using (4.33), we obtain

a3 =
(1− β)2(2− λ)2(p2

1 + q2
1)

8
+

(3− λ)(2− λ)

12
(1− β)(p2 − q2). (4.39)
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Using Lemma 1, we get

|a3| ≤
(2− λ)(1− β)

3
[(3− λ) + 3(2− λ)(1− β)] . (4.40)

This completes the proof of the theorem.
Putting λ =1 in Theorem 2, we have

Corollary 2. Let f be in the function class RH
D1
z

Σ (β), then

|a2| ≤
√

2(1− β)

3

and

|a3| ≤
(1− β)(5− β)

3
.
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