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1. Introduction
Initially the concept of generalized closed sets were introduced by Levine [3] in

topological spaces in 1970. Molodtsov [4] pioneered the study of soft set theory as
a new mathematical tool and confronted the fundamental results of the soft sets in
1996. Soft topological spaces(STS) are defined over an initial universe with a fixed
set of parameters and was introduced by Munazza Naz & Muhammad Shabir [5].
The authors [6, 7] introduced the concept of generalized star β-closed sets in TS
and soft g∗β-closed sets in STS. In this paper we introduced the new concept of
contra g∗βs-continuous function and contra g∗βs-irresolute functions and we have
discussed some properties. Also we present almost contra g∗βs-continuous functions
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and we derive some of its characteristics and several properties are investigated.
For the concepts of STS we refer [1, 2, 6, 7, 9].

2. Soft Contra g∗β-Continuous Function

Definition 2.1. A function g : (U , τ, E) → (V , µ,K) is said to be soft contra
g∗β-continuous, denoted by contra g∗βs-conts function, if g−1(F,K) is g∗βs-closed
in (U , τ, E) for every soft open (briefly,opens)set (F,K) of (V , µ,K).

Theorem 2.2.

(a) Every soft contra conts is contra g∗βs- conts.

(b) Every contra gs- conts is contra g∗βs- conts.

(c) Every contra gss- conts is contra g∗βs- conts.

(d) Every contra αs-conts is contra g∗βs- conts.

(e) Every contra gαs-conts is contra g∗βs- conts.

(f) Every contra πgs-conts is contra g∗βs- conts.

(g) Every contra πgbs-conts is contra g∗βs- conts.

(h) Every contra βs- conts is contra g∗βs- conts.

(i) Every contra gβs- conts is contra g∗βs- conts.

(j) Every contra rgβs- conts is contra g∗βs- conts.

Proof.

(a) Let a function g : (U , τ, E)→ (V , µ,K) is soft contra conts and let (F,K) be
a opens in (V , µ,K). Then g−1(F,K) is closeds in (U , τ, E). Because every
closeds set is g∗βs-closed, so g−1(F,K) is g∗βs-closed in (U , τ, E). Therefore
g is contra g∗βs-conts.

(b) Let a function g : (U , τ, E) → (V , µ,K) is contra gs- conts and let (F,K)
be a opens in (V , µ,K). Then g−1(F,K) is gs- closed in (U , τ, E). Because
every gs- closed set is g∗βs-closed, so g−1(F,K) is g∗βs-closed in (U , τ, E).
Therefore g is contra g∗βs-conts.
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(c) Let a function g : (U , τ, E) → (V , µ,K) contra gss- conts and let (F,K) be
a opens in (V , µ,K). Then g−1(F,K) is gss- closed in (U , τ, E). Because
every gss- closed set is g∗βs-closed, so g−1(F,K) is g∗βs-closed in (U , τ, E).
Therefore g is contra g∗βs-conts.

The proof will same for remaining.

Example 2.3. Make U = {p, q, r} = V , E = {e1, e2}.
Let F1, F2, F3, F4, F5, F6, F7 are functions from E to P (U) and are defined as
follows:
F1(e1) = {p}, F1(e2) = {p}, F2(e1) = {q}, F2(e2) = {q}, F3(e1) = {r},
F3(e2) = {p}, F4(e1) = {p, q}, F4(e2) = {p, q}, F5(e1) = {p, r}, F5(e2) = {p},
F6(e1) = {q, r}, F6(e2) = {q}
Then τ = {Φ,U , (F1, E), . . . , (F6, E)} is a soft topology and elements in τ are opens

sets.
LetH1,H2,H3,H4,H5,H6 are functions from E to P (K) and are defined as follows:
H1(e1) = {r},H1(e2) = {q},H2(e1) = {r},H2(e2) = {p},H3(e1) = {r},
H3(e2) = {q, p},H4(e1) = {p, r},H4(e2) = {p},H5(e1) = {r, p},H5(e2) = {q, p},
H6(e1) = {p, r},H6(e2) = {q}.
So, µ = {Φ,V , (H1, E), . . . , (H6, E)} is a soft topology on V .
Defined an identity map g : U → V . Now the inverse image of the opens set in
(V , µ) is g∗β-closed. Then g is contra g∗βs-conts.
Hence (S, E) = {{p}, {p, q}}, {{p, r}, {p}}, {{p, q}, {q}}, {{p, r}, {p, q}} in (V , µ) is
closeds, gs-closed, gss-closed, αs- closed, gαs-closed, πgs- closed, πgbs-closed, βs-
closed, gβs-closed, rgβs-closed in U .
Therefore g is contra g∗βs-conts is not soft contra conts, contra gs- conts, contra
gss- conts, contra αs-conts, contra gαs-conts, contra πgs-conts, contra πgbs-conts,
contra βs- conts, contra gβs- conts, contra rgβs- conts .

Theorem 2.4. If g : (U , τ, E) → (V , µ,K) be a function is contra g∗βs-conts and
(H, E) is opens in (U , τ, E), then (g/H) : (H, τ ′

, E) → (V , µ,K) is contra g∗βs-
conts.
Proof. Consider (F,K) be soft closed in V . Since g : (U , τ, E) → (V , µ,K) is
contra g∗βs-conts, g−1(F,K) is g∗βs-open in (U , τ, E). Then (g/H)−1(F,K) =
g−1((F,K) ∩ (H, E)) is g∗βs-open in (U , τ, E). Therefore (g/H)−1(F,K) is g∗βs-
open in (U , τ, E).

Theorem 2.5. Let g : (U , τ, E) → (V , µ,K) be a function, then the following are
equivalent

(a) g is contra g∗βs-conts.



104 South East Asian J. of Mathematics and Mathematical Sciences

b) For every closeds set (F,K) of (V , µ,K), g−1(F,K) g∗βs-open.

Proof. Straightforward. Thus (a)⇔ (b) is obvious.

Definition 2.6. A STS (U , τ, E) is said to be g∗βs-locally indiscrete, denoted by
g∗βs- lc.indisc, if every g∗βs-open is closeds.

Theorem 2.7. If a function g : (U , τ, E) → (V , µ,K) is contra g∗βs-conts and U
be a g∗βs- lc.indisc, then g is soft contra conts.
Proof. Consider (S, E) be opens in (V , µ,K). Then g−1(S, E) is g∗βs -open in
(U , τ, E). Since U is g∗βs- lc.indisc, g−1(S, E) is closed in (U , τ, E). Therefore g is
soft contra continuous.

Theorem 2.8. If g : (U , τ, E) → (V , µ,K) is contra g∗βs-conts and the space
(U , τ, E) is g∗βs-space then g is soft contra continuous.
Proof. Consider (S, E) be opens in (V , µ,K). Since g is contra g∗βs-conts,
g−1(S, E) is g∗βs-open in (U , τ, E). Since U is g∗βs- space, g−1(S, E) is closed
set in U . Therefore g is soft contra continuous.

Remark 2.9. The composition of two contra g∗βs-conts functions need not be
contra g∗βs-conts.

Theorem 2.10. Let g : (U , τ, E) → (V , µ,K) is contra g∗βs-conts and h :
(V , µ,K) → (W , γ,Z) is soft continuous then h ◦ g : (U , τ, E) → (W , γ,Z) is
contra g∗βs-conts.
Proof. Let (S, E) be opens in (W , γ,Z). Because h is soft conts, So h−1(S, E)
is opens in (V , µ,K). Then g−1(h−1(S, E)) is g∗βs-closed in (U , τ, E) . Since g is
contra g∗βs-conts. So (h ◦ g)−1(S, E) is g∗βs-closed in U . Therefore h ◦ g is contra
g∗βs-conts.

Theorem 2.11. Let g : (U , τ, E) → (V , µ,K) is contra g∗βs-conts and
h : (V , µ,K)→ (W , γ,Z) is contra g∗βs-conts then h ◦ g : (U , τ, E)→ (W , γ,Z) is
soft conts.
Proof. Straightforward.

Definition 2.12. A function g : (U , τ, E)→ (V , µ,K) is soft contra g∗β -irresolute,
denoted by contra g∗βs -ir.solute, if g−1(S, E) is g∗βs-closed in (U , τ, E) for each
g∗βs-open in (S, E) in (V , µ,K).

Theorem 2.13. If a function g : (U , τ, E) → (V , µ,K) is contra g∗βs -irresolute
and U be a g∗βs - lc.indisc, then g is soft contra conts.
Proof. Obvious.

Theorem 2.14. Let g : (U , τ, E) → (V , µ,K) is contra g∗βs -ir.solute and
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h : (V , µ,K) → (W , γ,Z) is soft conts then h ◦ g : (U , τ, E) → (W , γ,Z) is
contra g∗βs-conts.
Proof. Let (S, E) be closeds in (W , γ,Z). As h is soft conts then h−1(S, E) is
closeds in (V , µ,K). Then g−1(h−1(S, E)) is g∗βs-closed in (U , τ, E). Since g is
contra g∗βs-ir.solute. So (h ◦ g)−1(S, E) is g∗βs -open in U . Therefore h ◦ g is
contra g∗βs-conts.

Theorem 2.15. Let g : (U , τ, E) → (V , µ,K) is contra g∗βs-ir.solute and h :
(V , µ,K) → (W , γ,Z) is contra g∗βs-conts then h ◦ g : (U , τ, E) → (W , γ,Z) is
contra g∗βs-conts.
Proof. Let (S, E) be closeds in (W , γ,Z). As h is contra g∗βs-conts then h−1(S, E)
is closeds in (V , µ,K). Since g is contra g∗βs-ir.solute, then g−1(h−1(S, E)) is g∗βs-
open in (U , τ, E). Therefore h ◦ g is contra g∗βs-conts.

Theorem 2.16. Let g : (U , τ, E) → (V , µ,K) contra g∗βs -ir.solute and h :
(V , µ,K)→ (W , γ,Z) is contra g∗βs-ir.solute then h ◦ g : (U , τ, E)→ (W , γ,Z) is
contra g∗βs-ir.solute.
Proof. Let (S, E) be closeds in (W , γ,Z). As h is contra g∗βs-ir.solute, then
h−1(S, E) is closeds in (V , µ,K) . Since g is contra g∗βs-ir.solute, then g−1(h−1(S, E))
is g∗βs-open in (U , τ, E). Therefore h ◦ g is contra g∗βs-ir.solute.

Theorem 2.17. Let g : (U , τ, E) → (V , µ,K) and h : (V , µ,K) → (W , γ,Z) be a
two functions in STS such that h ◦ g : (U , τ, E)→ (W , γ,Z)

1. If g is contra g∗βs-ir.solute and h is contra g∗βs-conts, then h ◦ g is contra
g∗βs-conts.

2. If g is g∗βs-ir.solute and h is contra g∗βs-ir.solute, then h ◦ g is contra g∗βs-
ir.solute.

Proof. Obvious.

3. Soft Almost Contra g∗β- Continuous Function

Definition 3.1. A function g : (U , τ, E) → (V , µ,K) is soft almost contra g∗β-
continuous, denoted by Alm.contra g∗βs-conts, if g−1(S, E) is g∗βs-closed in (U , τ, E)
for each soft regular open (briefly, rs-open) in (V , µ,K).

Theorem 3.2. If g : (U , τ, E)→ (V , µ,K) contra g∗βs-conts then it is Alm.contra
g∗βs-conts.
Proof. Since every rs-open set is open set.

Theorem 3.3. Let g : (U , τ, E)→ (V , µ,K) be a function then every g∗βs-ir.solute
continuous is Alm.contra g∗βs-conts.
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Theorem 3.4. A function g : (U , τ, E)→ (V , µ,K), then the following conditions
are equivalent.

(a) g is Alm.contra g∗βs-conts.

(b) The inverse image of each rs- closed in (V , µ,K) is g∗βs-open.

Proof. (a)⇒ (b):
Let (S, E) is rs- closed in (V , µ,K). Thus V − (S, E) is rs-open set in (V , µ,K).
Hence by (a), g−1(V−(S, E)) = U−g−1(S, E) is g∗βs-closed in (U , τ, E). Therefore
g−1(S, E) is g∗βs-open in (U , τ, E)
(b)⇒ (a):
Let (S, E) is rs- open in (V , µ,K). Thus V − (S, E) is rs closed set in (V , µ,K).
Hence by (b), g−1(V − (S, E)) = U − g−1(S, E) is g∗βs-open in (U , τ, E). Therefore
g−1(S, E) is g∗βs-closed in (U , τ, E).

Theorem 3.5. If g : (U , τ, E) → (V , µ,K) is Alm. contra g∗βs-cont and h :
(V , µ,K) → (W , γ,Z) is rs-set connected, then h ◦ g : (U , τ, E) → (W , γ,Z) is
Alm. contra g∗βs-cont and Alm. g∗βs-conts
Proof. Let (S, E) is rs open in W . As h is rs-connected set, then h−1(S, E)
is clopens in (V , µ,K). Since g is Alm.contra g∗βs-conts, then g−1(h−1(S, E)) is
g∗βs-open and g∗βs-closed in (U , τ, E). Therefore h ◦ g is Alm.contra g∗βs-conts
and Alm g∗βs-conts.

Theorem 3.6. If g : (U , τ, E)→ (V , µ,K) is contra g∗βs-conts and h : (V , µ,K)→
(W , γ,Z) is rs-set connected, then h ◦ g : (U , τ, E)→ (W , γ,Z) is g∗βs conts and
Alm.g∗βs-conts.
Proof. Obvious.

Theorem 3.7. If g : (U , τ, E) → (V , µ,K) is an Alm.contra g∗βs-conts and
(H, E) is opens subset of U , then the restriction g/(H, E) : (H, E) → (V , µ,K)
is Alm.contra g∗βs-conts.
Proof. Let (S, E) is rs- closed in V . Because g is Alm.contra g∗βs-conts, g−1(S, E)
is g∗βs-open in (U , τ, E). Since (H, E) is opens. Hence (g/(H, E))−1(S, E) =
(H, E) ∩ g−1(S, E) is g∗βs -open in (H, E). Thus g/(H, E) is Alm.contra g∗βs-
conts.
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