South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, Proceedings (2021), pp. 101-108

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

ON SOFT CONTRA $g^*\beta$ -CONTINUOUS FUNCTIONS IN SOFT TOPOLOGICAL SPACES

Punitha Tharani A. and Sujitha H.

Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi - 628001, Tamil Nadu, INDIA

E-mail : punitha_tharani@yahoo.co.in, suji.sujitha16@gmail.com

(Received: Aug. 08, 2021 Accepted: Oct. 01, 2021 Published: Nov. 30, 2021)

Special Issue Proceedings of International Virtual Conference on "Mathematical Modelling, Analysis and Computing IC- MMAC- 2021"

Abstract: We introduce a new class of soft contra generalized star beta continuous function (contra $g^*\beta^s$ -conts function) in soft topological spaces. Also we present almost contra $g^*\beta^s$ -continuous functions and we derive some basic properties.

Keywords and Phrases: Contra $g^*\beta^s$ -continuous, almost contra $g^*\beta^s$ -continuous, contra $g^*\beta^s$ -irresolute.

2020 Mathematics Subject Classification: 54A40, 54C05, 54C10, 54C08.

1. Introduction

Initially the concept of generalized closed sets were introduced by Levine [3] in topological spaces in 1970. Molodtsov [4] pioneered the study of soft set theory as a new mathematical tool and confronted the fundamental results of the soft sets in 1996. Soft topological spaces(STS) are defined over an initial universe with a fixed set of parameters and was introduced by Munazza Naz & Muhammad Shabir [5]. The authors [6, 7] introduced the concept of generalized star β -closed sets in TS and soft $g^*\beta$ -closed sets in STS. In this paper we introduced the new concept of contra $g^*\beta^s$ -continuous function and contra $g^*\beta^s$ -irresolute functions and we have discussed some properties. Also we present almost contra $g^*\beta^s$ -continuous functions and we derive some of its characteristics and several properties are investigated. For the concepts of STS we refer [1, 2, 6, 7, 9].

2. Soft Contra $g^*\beta$ -Continuous Function

Definition 2.1. A function $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is said to be soft contra $g^*\beta$ -continuous, denoted by contra $g^*\beta^s$ -conts function, if $g^{-1}(F, \mathcal{K})$ is $g^*\beta^s$ -closed in (\mathcal{U}, τ, E) for every soft open (briefly, open^s)set (F, \mathcal{K}) of $(\mathcal{V}, \mu, \mathcal{K})$.

Theorem 2.2.

- (a) Every soft contra conts is contra $g^*\beta^s$ conts.
- (b) Every contra g^s conts is contra $g^*\beta^s$ conts.
- (c) Every contra gs^s conts is contra $g^*\beta^s$ conts.
- (d) Every contra α^s -conts is contra $g^*\beta^s$ conts.
- (e) Every contra $g\alpha^s$ -conts is contra $g^*\beta^s$ conts.
- (f) Every contra πg^s -conts is contra $g^*\beta^s$ conts.
- (g) Every contra πgb^s -conts is contra $g^*\beta^s$ conts.
- (h) Every contra β^s conts is contra $g^*\beta^s$ conts.
- (i) Every contra $g\beta^s$ conts is contra $g^*\beta^s$ conts.
- (j) Every contra $rg\beta^s$ conts is contra $g^*\beta^s$ conts.

Proof.

- (a) Let a function $g: (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is soft contra conts and let (F, \mathcal{K}) be a open^s in $(\mathcal{V}, \mu, \mathcal{K})$. Then $g^{-1}(F, \mathcal{K})$ is closed^s in (\mathcal{U}, τ, E) . Because every closed^s set is $g^*\beta^s$ -closed, so $g^{-1}(F, \mathcal{K})$ is $g^*\beta^s$ -closed in (\mathcal{U}, τ, E) . Therefore g is contra $g^*\beta^s$ -conts.
- (b) Let a function $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra g^{s} conts and let (F, \mathcal{K}) be a open^s in $(\mathcal{V}, \mu, \mathcal{K})$. Then $g^{-1}(F, \mathcal{K})$ is g^{s} - closed in (\mathcal{U}, τ, E) . Because every g^{s} - closed set is $g^{*}\beta^{s}$ -closed, so $g^{-1}(F, \mathcal{K})$ is $g^{*}\beta^{s}$ -closed in (\mathcal{U}, τ, E) . Therefore q is contra $q^{*}\beta^{s}$ -conts.

(c) Let a function $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ contra gs^{s} - conts and let (F, \mathcal{K}) be a open^s in $(\mathcal{V}, \mu, \mathcal{K})$. Then $g^{-1}(F, \mathcal{K})$ is gs^{s} - closed in (\mathcal{U}, τ, E) . Because every gs^{s} - closed set is $g^{*}\beta^{s}$ -closed, so $g^{-1}(F, \mathcal{K})$ is $g^{*}\beta^{s}$ -closed in (\mathcal{U}, τ, E) . Therefore g is contra $g^{*}\beta^{s}$ -conts.

The proof will same for remaining.

Example 2.3. Make $\mathcal{U} = \{p, q, r\} = \mathcal{V}, E = \{e_1, e_2\}.$ Let $F_1, F_2, F_3, F_4, F_5, F_6, F_7$ are functions from E to $P(\mathcal{U})$ and are defined as follows: $F_1(e_1) = \{p\}, F_1(e_2) = \{p\}, F_2(e_1) = \{q\}, F_2(e_2) = \{q\}, F_3(e_1) = \{r\}, F_3(e_2) = \{p\}, F_4(e_1) = \{p, q\}, F_4(e_2) = \{p, q\}, F_5(e_1) = \{p, r\}, F_5(e_2) = \{p\}, F_6(e_1) = \{q, r\}, F_6(e_2) = \{q\}$

Then $\tau = \{\Phi, \mathcal{U}, (F_1, E), \dots, (F_6, E)\}$ is a soft topology and elements in τ are open^s sets.

Let $\mathcal{H}_1, \mathcal{H}_2, \mathcal{H}_3, \mathcal{H}_4, \mathcal{H}_5, \mathcal{H}_6$ are functions from E to $P(\mathcal{K})$ and are defined as follows: $\mathcal{H}_1(e_1) = \{r\}, \mathcal{H}_1(e_2) = \{q\}, \mathcal{H}_2(e_1) = \{r\}, \mathcal{H}_2(e_2) = \{p\}, \mathcal{H}_3(e_1) = \{r\}, \mathcal{H}_3(e_2) = \{q, p\}, \mathcal{H}_4(e_1) = \{p, r\}, \mathcal{H}_4(e_2) = \{p\}, \mathcal{H}_5(e_1) = \{r, p\}, \mathcal{H}_5(e_2) = \{q, p\}, \mathcal{H}_6(e_1) = \{p, r\}, \mathcal{H}_6(e_2) = \{q\}.$

So, $\mu = \{\Phi, \mathcal{V}, (\mathcal{H}_1, E), \dots, (\mathcal{H}_6, E)\}$ is a soft topology on \mathcal{V} .

Defined an identity map $g: \mathcal{U} \to \mathcal{V}$. Now the inverse image of the open^s set in (\mathcal{V}, μ) is $g^*\beta$ -closed. Then g is contra $g^*\beta^s$ -conts.

Hence $(\mathcal{S}, E) = \{\{p\}, \{p,q\}\}, \{\{p,r\}, \{p\}\}, \{\{p,q\}, \{q\}\}, \{\{p,r\}, \{p,q\}\} \text{ in } (\mathcal{V}, \mu) \text{ is closed}^s, g^s\text{-closed}, gs^s\text{-closed}, \alpha^s\text{- closed}, g\alpha^s\text{-closed}, \pi g^s\text{- closed}, \pi gb^s\text{-closed}, \beta^s\text{-closed}, g\beta^s\text{-closed}, \pi g\beta^s\text{-close}, \pi$

Therefore g is contra $g^*\beta^s$ -conts is not soft contra conts, contra g^s - conts, contra gs^s - conts, contra $g\alpha^s$ -conts, contra πg^s -conts, contra πgb^s -conts, contra πgb^s -conts, contra $g\beta^s$ - conts, contra $rg\beta^s$ - conts, contra $rg\beta^s$ - conts.

Theorem 2.4. If $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ be a function is contra $g^*\beta^s$ -conts and (\mathcal{H}, E) is open^s in (\mathcal{U}, τ, E) , then $(g/\mathcal{H}) : (\mathcal{H}, \tau', E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -conts.

Proof. Consider (F, \mathcal{K}) be soft closed in \mathcal{V} . Since $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -conts, $g^{-1}(F, \mathcal{K})$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) . Then $(g/\mathcal{H})^{-1}(F, \mathcal{K}) = g^{-1}((F, \mathcal{K}) \cap (\mathcal{H}, E))$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) . Therefore $(g/\mathcal{H})^{-1}(F, \mathcal{K})$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) .

Theorem 2.5. Let $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ be a function, then the following are equivalent

(a) g is contra $g^*\beta^s$ -conts.

b) For every closed^s set (F, \mathcal{K}) of $(\mathcal{V}, \mu, \mathcal{K})$, $g^{-1}(F, \mathcal{K})$ $g^*\beta^s$ -open.

Proof. Straightforward. Thus $(a) \Leftrightarrow (b)$ is obvious.

Definition 2.6. A STS (\mathcal{U}, τ, E) is said to be $g^*\beta^s$ -locally indiscrete, denoted by $g^*\beta^s$ - lc.indisc, if every $g^*\beta^s$ -open is closed^s.

Theorem 2.7. If a function $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -conts and \mathcal{U} be a $g^*\beta^s$ - lc.indisc, then g is soft contra conts.

Proof. Consider (\mathcal{S}, E) be open^s in $(\mathcal{V}, \mu, \mathcal{K})$. Then $g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) . Since \mathcal{U} is $g^*\beta^s$ - lc.indisc, $g^{-1}(\mathcal{S}, E)$ is closed in (\mathcal{U}, τ, E) . Therefore g is soft contra continuous.

Theorem 2.8. If $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -conts and the space (\mathcal{U}, τ, E) is $g^*\beta^s$ -space then g is soft contra continuous.

Proof. Consider (\mathcal{S}, E) be open^s in $(\mathcal{V}, \mu, \mathcal{K})$. Since g is contra $g^*\beta^s$ -conts, $g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) . Since \mathcal{U} is $g^*\beta^s$ - space, $g^{-1}(\mathcal{S}, E)$ is closed set in \mathcal{U} . Therefore g is soft contra continuous.

Remark 2.9. The composition of two contra $g^*\beta^s$ -conts functions need not be contra $g^*\beta^s$ -conts.

Theorem 2.10. Let $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -conts and $h : (\mathcal{V}, \mu, \mathcal{K}) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is soft continuous then $h \circ g : (\mathcal{U}, \tau, E) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is contra $g^*\beta^s$ -conts.

Proof. Let (\mathcal{S}, E) be open^s in $(\mathcal{W}, \gamma, \mathcal{Z})$. Because h is soft conts, So $h^{-1}(\mathcal{S}, E)$ is open^s in $(\mathcal{V}, \mu, \mathcal{K})$. Then $g^{-1}(h^{-1}(\mathcal{S}, E))$ is $g^*\beta^s$ -closed in (\mathcal{U}, τ, E) . Since g is contra $g^*\beta^s$ -conts. So $(h \circ g)^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -closed in \mathcal{U} . Therefore $h \circ g$ is contra $g^*\beta^s$ -conts.

Theorem 2.11. Let $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -conts and $h : (\mathcal{V}, \mu, \mathcal{K}) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is contra $g^*\beta^s$ -conts then $h \circ g : (\mathcal{U}, \tau, E) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is soft conts.

Proof. Straightforward.

Definition 2.12. A function $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is soft contra $g^*\beta$ -irresolute, denoted by contra $g^*\beta^s$ -ir.solute, if $g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -closed in (\mathcal{U}, τ, E) for each $g^*\beta^s$ -open in (\mathcal{S}, E) in $(\mathcal{V}, \mu, \mathcal{K})$.

Theorem 2.13. If a function $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -irresolute and \mathcal{U} be a $g^*\beta^s$ - lc.indisc, then g is soft contra conts. **Proof.** Obvious.

Theorem 2.14. Let $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -ir.solute and

 $h : (\mathcal{V}, \mu, \mathcal{K}) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is soft conts then $h \circ g : (\mathcal{U}, \tau, E) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is contra $g^*\beta^s$ -conts.

Proof. Let (\mathcal{S}, E) be closed^s in $(\mathcal{W}, \gamma, \mathcal{Z})$. As h is soft conts then $h^{-1}(\mathcal{S}, E)$ is closed^s in $(\mathcal{V}, \mu, \mathcal{K})$. Then $g^{-1}(h^{-1}(\mathcal{S}, E))$ is $g^*\beta^s$ -closed in (\mathcal{U}, τ, E) . Since g is contra $g^*\beta^s$ -ir.solute. So $(h \circ g)^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -open in \mathcal{U} . Therefore $h \circ g$ is contra $g^*\beta^s$ -conts.

Theorem 2.15. Let $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -ir.solute and $h : (\mathcal{V}, \mu, \mathcal{K}) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is contra $g^*\beta^s$ -conts then $h \circ g : (\mathcal{U}, \tau, E) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is contra $g^*\beta^s$ -conts.

Proof. Let (\mathcal{S}, E) be closed^s in $(\mathcal{W}, \gamma, \mathcal{Z})$. As h is contra $g^*\beta^s$ -conts then $h^{-1}(\mathcal{S}, E)$ is closed^s in $(\mathcal{V}, \mu, \mathcal{K})$. Since g is contra $g^*\beta^s$ -ir.solute, then $g^{-1}(h^{-1}(\mathcal{S}, E))$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) . Therefore $h \circ g$ is contra $g^*\beta^s$ -conts.

Theorem 2.16. Let $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ contra $g^*\beta^s$ -ir.solute and $h : (\mathcal{V}, \mu, \mathcal{K}) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is contra $g^*\beta^s$ -ir.solute then $h \circ g : (\mathcal{U}, \tau, E) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is contra $g^*\beta^s$ -ir.solute.

Proof. Let (\mathcal{S}, E) be closed^s in $(\mathcal{W}, \gamma, \mathcal{Z})$. As h is contra $g^*\beta^s$ -ir.solute, then $h^{-1}(\mathcal{S}, E)$ is closed^s in $(\mathcal{V}, \mu, \mathcal{K})$. Since g is contra $g^*\beta^s$ -ir.solute, then $g^{-1}(h^{-1}(\mathcal{S}, E))$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) . Therefore $h \circ g$ is contra $g^*\beta^s$ -ir.solute.

Theorem 2.17. Let $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ and $h : (\mathcal{V}, \mu, \mathcal{K}) \to (\mathcal{W}, \gamma, \mathcal{Z})$ be a two functions in STS such that $h \circ g : (\mathcal{U}, \tau, E) \to (\mathcal{W}, \gamma, \mathcal{Z})$

- 1. If g is contra $g^*\beta^s$ -ir.solute and h is contra $g^*\beta^s$ -conts, then $h \circ g$ is contra $g^*\beta^s$ -conts.
- 2. If g is $g^*\beta^s$ -ir.solute and h is contra $g^*\beta^s$ -ir.solute, then $h \circ g$ is contra $g^*\beta^s$ -ir.solute.

Proof. Obvious.

3. Soft Almost Contra $g^*\beta$ - Continuous Function

Definition 3.1. A function $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is soft almost contra $g^*\beta$ continuous, denoted by Alm.contra $g^*\beta^s$ -conts, if $g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -closed in (\mathcal{U}, τ, E) for each soft regular open (briefly, r^s -open) in $(\mathcal{V}, \mu, \mathcal{K})$.

Theorem 3.2. If $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ contra $g^*\beta^s$ -conts then it is Alm.contra $g^*\beta^s$ -conts.

Proof. Since every r^s -open set is open set.

Theorem 3.3. Let $g: (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ be a function then every $g^*\beta^s$ -ir.solute continuous is Alm.contra $g^*\beta^s$ -conts.

Theorem 3.4. A function $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$, then the following conditions are equivalent.

(a) g is Alm.contra $g^*\beta^s$ -conts.

(b) The inverse image of each r^s - closed in $(\mathcal{V}, \mu, \mathcal{K})$ is $g^*\beta^s$ -open.

Proof. $(a) \Rightarrow (b)$: Let (\mathcal{S}, E) is r^s - closed in $(\mathcal{V}, \mu, \mathcal{K})$. Thus $\mathcal{V} - (\mathcal{S}, E)$ is r^s -open set in $(\mathcal{V}, \mu, \mathcal{K})$. Hence by $(a), g^{-1}(\mathcal{V} - (\mathcal{S}, E)) = \mathcal{U} - g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -closed in (\mathcal{U}, τ, E) . Therefore $g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) $(b) \Rightarrow (a)$: Let (\mathcal{S}, E) is r^s - open in $(\mathcal{V}, \mu, \mathcal{K})$. Thus $\mathcal{V} - (\mathcal{S}, E)$ is r^s closed set in $(\mathcal{V}, \mu, \mathcal{K})$. Hence by $(b), g^{-1}(\mathcal{V} - (\mathcal{S}, E)) = \mathcal{U} - g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) . Therefore

 $g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -closed in (\mathcal{U}, τ, E) .

Theorem 3.5. If $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is Alm. contra $g^*\beta^s$ -cont and $h : (\mathcal{V}, \mu, \mathcal{K}) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is r^s -set connected, then $h \circ g : (\mathcal{U}, \tau, E) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is Alm. contra $g^*\beta^s$ -cont and Alm. $g^*\beta^s$ -conts

Proof. Let (\mathcal{S}, E) is r^s open in \mathcal{W} . As h is r^s -connected set, then $h^{-1}(\mathcal{S}, E)$ is clopen^s in $(\mathcal{V}, \mu, \mathcal{K})$. Since g is Alm.contra $g^*\beta^s$ -conts, then $g^{-1}(h^{-1}(\mathcal{S}, E))$ is $g^*\beta^s$ -open and $g^*\beta^s$ -closed in (\mathcal{U}, τ, E) . Therefore $h \circ g$ is Alm.contra $g^*\beta^s$ -conts and Alm $g^*\beta^s$ -conts.

Theorem 3.6. If $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is contra $g^*\beta^s$ -conts and $h : (\mathcal{V}, \mu, \mathcal{K}) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is r^s -set connected, then $h \circ g : (\mathcal{U}, \tau, E) \to (\mathcal{W}, \gamma, \mathcal{Z})$ is $g^*\beta^s$ conts and $Alm.g^*\beta^s$ -conts. **Proof.** Obvious.

Theorem 3.7. If $g : (\mathcal{U}, \tau, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is an Alm.contra $g^*\beta^s$ -conts and (\mathcal{H}, E) is open^s subset of \mathcal{U} , then the restriction $g/(\mathcal{H}, E) : (\mathcal{H}, E) \to (\mathcal{V}, \mu, \mathcal{K})$ is Alm.contra $g^*\beta^s$ -conts.

Proof. Let (\mathcal{S}, E) is r^s - closed in \mathcal{V} . Because g is Alm.contra $g^*\beta^s$ -conts, $g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -open in (\mathcal{U}, τ, E) . Since (\mathcal{H}, E) is open^s. Hence $(g/(\mathcal{H}, E))^{-1}(\mathcal{S}, E) = (\mathcal{H}, E) \cap g^{-1}(\mathcal{S}, E)$ is $g^*\beta^s$ -open in (\mathcal{H}, E) . Thus $g/(\mathcal{H}, E)$ is Alm.contra $g^*\beta^s$ -conts.

References

[1] Arockiarani I. and Arockia Lancy A., Generalized Soft $g\beta$ Closed Sets and Soft $gs\beta$ Closed Sets in Soft Topological Spaces, International Journal of Mathematical Archive, 4(2) (2013), 17-23.

- [2] Kannan K., Soft Generalized Closed Sets in Soft Topological Spaces, Journal of Theoretical and Applied information Technology, Vol. 37, No. 1 (2012), 17-21.
- [3] Levine N., Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, Vol. 19, No. 2 (1970), 89-96.
- [4] Molodstov D., Soft Set Theory-First Results, Computers and Mathematics with applications, 37 (1999), 19-31.
- [5] Muhammad Shabir and Munazza Naz, On Soft Topological Spaces, Computers and Mathematics with applications, Vol. 61, issue 7 (2011), 1786-1799.
- [6] Punitha Tharani A. and Sujitha H., The Concept of g*β-Closed Sets in Topological Spaces, International Journal of Mathematical Archive, Vol. 11(4) (2020), 14-23.
- [7] Punitha Tharani A. and Sujitha H., Soft g^{*}β Closed Sets in Soft Topological Spaces, Journal of Mechanics of Continua and Mathematical Sciences, Vol. 15(8) (2020), 188-195.
- [8] Punitha Tharani A. and Sujitha H., On $g^*\beta$ Compactness and $g^*\beta$ Connectedness in Topological Spaces, Malaya Journal of Mathematik, Vol. 08(4) (2020), 1370-1374.
- [9] Punitha Tharani A. and Sujitha H., A New Set of Soft Generalized^{*} β-Locally Closed Sets in Soft Topological Spaces, Reprint.