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Abstract: The study of algebraic systems using graphs gives many interesting
results. The ternary algebraic structures can be dealt with 3-uniform hypergraphs
in which hyperedges are of size three. Right ternary near-ring, a generalization of
near-ring in ternary context, was introduced by Daddi and Pawar in 2011. In this
paper, annihilator 3-uniform hypergraph associated with the right ternary near-
ring N denoted by AH3(N) is introduced. AH3(N) is seen to be empty when N
is a constant RTNR and it is complete when N is a zero RTNR. If N is integral,
then the nature of AH3(N) is studied. A necessary condition for AH3(N) to be
complete is derived. Hypergraph invariants of AH3(Zn) are obtained. For certain
RTNR, the existence of BIBD is verified.

Keywords and Phrases: 3-uniform hypergraph, Clique, Right ternary near-ring,
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1. Introduction

The properties of algebraic structures can be studied using tools of graph theory
and is an interesting topic of research in recent years. The concept of zero-divisor
graphs associated with zero-divisors of a commutative ring was initiated by Beck [2]
in 1988. Badawi [1] introduced annihilator graph for a commutative ring. Tamizh
chelvam [12] introduced and studied about three types of annihilating ideal graphs
of near-rings. Zero-annihilator graph of a commutative ring was studied by Hojjat
Mostafanasab [7].
In this paper, a right ternary near-ring N , introduced by Daddi and Pawar [6],
is associated with a 3-uniform hypergraph denoted by AH3(N) using the concept
of annihilator. A necessary condition for AH3(N) to be complete is proved and a
criterion for AH3(N) to be nontrivial is derived. Hypergraph invariants of AH3(Zn)
are obtained. It is shown that AH3(Zn) can be covered by cliques. Certain values
of n are identified for which block designs exist in AH3(Zn).

2. Preliminaries

In this section, the basic definitions and results needed for the rest of the sections
are given.

Definition 2.1. [3, 4, 5] A hypergraph H is an ordered pair (V,E), where V is the
set of vertices and E is a subset of the power set of V . H is called empty hypergraph
if V = ∅ and E = ∅. H is said to be trivial if V 6= ∅ and E = ∅. A hypergraph
H is called an r-uniform hypergraph if each hyperedge contains exactly r vertices.
Also clique in H is a complete subhypergraph and the cardinality of largest maximal
clique in H is called the clique number of H. The minimum and maximum degrees
of hypergraph are denoted by δ and ∆ respectively.

Definition 2.2. [6, 9] A right ternary near-ring(RTNR) is a nonempty set N with
a binary operation + and a ternary operation [ ] satisfying the conditions :
(i) (N,+) is a group (not necessarily abelian)
(ii) (N, [ ]) is a ternary semigroup ([[a b c] d e] = [a [b c d] e] = [a b [c d e]] for all
a, b, c, d, e ∈ N)
(iii) (Right distributive law) [(a+ b) c d] = [a c d] + [b c d] for all a, b, c, d ∈ N .
Note that in an RTNR N, for every x, y, z ∈ N , (i) [0 x y] = 0; (ii) [−x y z] =
−[x y z]. The subsets N0 = {t ∈ N | [t 0 0] = 0} and Nc = {t ∈ N | [t 0 0] = t} are
called the zero-symmetric part and the constant part of N respectively. N is called
a zero-symmetric RTNR if N = N0 and it is called a constant RTNR if N = Nc.
An RTNR N is called (i) an integral RTNR if N has no zero divisors. (ii) a zero
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RTNR if [N N N ] = {0}, where [N N N ] = {[x y z] | x, y, z ∈ N}. For x, y ∈ N ,
the sets [N x y] = {[t x y] | t ∈ N} and [x N y], [x y N ] etc. are defined in the
same way. An element e ∈ N is a right unital element if [x e e] = x, for every
x ∈ N .

Definition 2.3. [9] If N is an RTNR and x, s ∈ N , then (i) the annihilator of
x with respect to s is (0 : x)s = {t ∈ N | [t s x] = 0} and (ii) the annihilator
of x is (0 : x) = {t ∈ N | [t s x] = 0 for all s ∈ N}. It is to be noted that
(0 : x) = ∩s∈N(0 : x)s and x is said to have trivial annihilator if (0 : x) = {0}.
Definition 2.4. [11, 9] A design is a pair (X,A), where X is a set of points called
elements and A is a collection of nonempty subsets of X called blocks. A 3-uniform
hypergraph H = (V,E) is said to have friendship property if for every three vertices
x, y, z ∈ V , there exists a unique vertex w, called the universal friend, such that
xyw, xzw, yzw ∈ E. For positive integers v, k and λ such that v > k ≥ 2, a
design (X,A) is called (v, k, λ) - balanced incomplete block design (abbreviated as
(v, k, λ)-BIBD) if the following properties are satisfied :
(i) |X| = v
(ii) each block contains exactly k points
(iii) every pair of distinct points is contained in exactly λ blocks.
The incidence matrix of (X,A), where X = {x1, ..., xv} and A = {A1, ..., Ab}, is

the v × b, 0 - 1 matrix M = (mi,j) defined by the rule mi,j =

{
1 if xi ∈ Aj
0 if xi /∈ Aj

.

3. Main Results: Annihilator 3-uniform hypergraph of RTNR

In this section, annihilator 3-uniform hypergraph of RTNR is defined and some
of the properties are illustrated with examples.

Definition 3.1. An annihilator 3-uniform hypergraph associated with an RTNR
N denoted by AH3(N) is defined as a 3-uniform hypergraph whose vertex set is the
set of all elements of N having nontrivial annihilators and three distinct vertices
x, y and z are adjacent whenever the intersection of their annihilators is not {0}.
In other words, AH3(N) = (V,E), where V = N\T , T = {x ∈ N | (0 : x) = {0}}
and E = {xyz | (0 : x) ∩ (0 : y) ∩ (0 : z) 6= {0}, x 6= y 6= z}.
Example 3.2. Consider N = D8 = {0, a, 2a, 3a, b, a + b, 2a + b, 3a + b}, which
forms a near-ring under the addition (+) and the multiplication (·) corresponding
to Scheme 134 : (0, 1, 14, 5, 15, 21, 17, 23), p : 418, Pilz [10]. Let the ternary product
[ ] be defined by [x y z] = (x · y) · z for all x, y, z ∈ N . Then (N,+, [ ]) is an
RTNR and AH3(N) is a complete hypergraph on V = {0, 2a, b, a+b, 2a+b, 3a+b},
since (0 : 0) = N ; (0 : a) = (0 : 3a) = {0}; (0 : 2a) = (0 : b) = (0 : 2a + b) =
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{0, 2a, a+ b, 3a+ b}; (0 : a+ b) = (0 : 3a+ b) = {0, 2a, b, 2a+ b}.
Lemma 3.3. Let N be an RTNR. Then AH3(N) is
(i) an empty hypergraph if N is a constant RTNR.
(ii) a complete hypergraph if N is a zero RTNR.
Proof. Let N be an RTNR. Then
(i) If N is a constant RTNR, then for any x, s ∈ N , (0 : x)s = {t ∈ N | [t s x] = 0}
= {t ∈ N | [[t 0 0] s x] = 0} = {t ∈ N | [t 0 [0 s x]] = 0} = {0} so that
(0 : x) = ∩s∈N(0 : x)s = {0}. Thus V = ∅ and E = ∅ in AH3(N), proving (i).
(ii) If N is a zero RTNR, then [x y z] = 0 for every x, y, z ∈ N . Therefore for
any x, s ∈ N , (0 : x)s = {t ∈ N | [t s x] = 0} = N so that (0 : x) = N . Hence
V = N and (0 : x)∩ (0 : y)∩ (0 : z) 6= {0}, for every x, y, z ∈ V . Thus AH3(N) is
complete.

Lemma 3.4. Let N be an integral RTNR. Then AH3(N) is trivial if N is zero-
symmetric.
Proof. Suppose N is zero-symmetric. Then (0 : 0) = {t | [t s 0] = 0} = N and
so 0 ∈ V . If N is integral, then for x(6= 0) ∈ N, (0 : x) = {t ∈ N | [t s x] = 0 for
every s ∈ N} = {0}. Hence AH3(N) is trivial.

Lemma 3.5. Let N be an RTNR with n(n ≥ 3) elements. Then |V | ≤ n −m if
N has m right unital elements.
Proof. Let N be an RTNR with n(n ≥ 3) elements and let e ∈ N be a right
unital element. Then (0 : e)e = {x ∈ N | [x e e] = 0} = {0} so that (0 : e) = {0}.
Therefore e /∈ V . Hence if there are m right unital elements, then there can be at
the most n−m vertices.

Lemma 3.6. Let N be a commutative RTNR. Then the following assertions hold:
(i) AH3(N) is trivial if every nonzero element in N has trivial annihilator.
(ii) AH3(N) is nontrivial if there exists x( 6= 0) ∈ N , which does not have additive
self-inverse and (0 : x) 6= {0}.
Proof. Let N be a commutative RTNR. Then for every x ∈ N , [x 0 0] = [0 0 x] =
0. Therefore N is zero-symmetric and so 0 ∈ V.→ (1)
(i) If (0 : x) = {0} for every x 6= 0 ∈ N , then AH3(N) is trivial by (1).
(ii) Let x(6= 0) ∈ N be such that −x 6= x and (0 : x) 6= {0}.
It is now claimed that (0 : x) = (0 : (−x)).
For, if s ∈ N is given, then (0 : (−x))s = {t ∈ N | [t s (−x)] = 0} = (0 : x)s,
proving the claim.
Hence (0 : 0)∩ (0 : x)∩ (0 : (−x)) 6= {0}. Thus 0x(−x) is a hyperedge in AH3(N),
proving (ii).
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The following theorem gives a necessary condition for AH3(N) to be complete.

Theorem 3.7. Let N be an RTNR with n(n ≥ 3) elements whose annihilators are
N . Then AH3(N) is complete.
Proof. Let N be an RTNR with n(n ≥ 3) elements and for every x ∈ N , (0 : x) =
N . Then it is obvious that V = N and for any x, y, z ∈ N , (0 : x)∩ (0 : y)∩ (0 : z)
= N 6= {0} and therefore xyz ∈ E. Hence AH3(N) is complete.

A necessary and sufficient condition for AH3(N) to be nontrivial is derived in the
following theorem.

Theorem 3.8. Let N be a commutative RTNR. Then AH3(N) is nontrivial if and
only if [N x z] = [N y z] = {0} for some x, y, z ∈ N .
Proof. Let N be a commutative RTNR. Then (0 : 0) = N and so 0 ∈ V . Now,
suppose that AH3(N) is nontrivial. Then there exists at least one hyperedge 0xy,
where x and y are nonzero elements such that (0 : x)∩ (0 : y) 6= {0}. If there exists
z(6= 0) ∈ (0 : x) ∩ (0 : y), then [z s x] = [z s y] = 0 for all s ∈ N , which implies
[Nxz] = [Nyz] = {0}.
Conversely, suppose that [N x z] = [N y z] = {0} for some nonzero x, y, z ∈ N .
Then [s x z] = [s y z] = 0 for all s ∈ N , which implies z ∈ (0 : x) ∩ (0 : y),
as N is commutative. Hence 0, x, y ∈ V are distinct vertices and they satisfy
(0 : 0) ∩ (0 : x) ∩ (0 : y) 6= {0} so that 0xy is a hyperedge in AH3(N), proving the
theorem.

4. Special Cases

Some of the properties of annihilator 3-uniform hypergraph of Zn are established
in this section.

4.1. Annihilator 3-uniform hypergraph of Zn

Consider AH3(Zn), where n ≥ 3 and Zn is the RTNR with the usual addi-
tion modulo n and ternary multiplication induced by multiplication modulo n.
Throughout this section, AH3(Zn) is denoted by (V,E) and the cardinality of V
and E by |V | and |E| respectively.

Lemma 4.1.1. The following assertions hold in Zn:
(i) (0 : 1) = {0} (ii) (0 : 0) = Zn (iii) For any x ∈ Zn, (0 : x) = (0 : x)1.
Proof. (i) (0 : 1)1 = {x ∈ Zn | [x 1 1] = 0} = {0} so that (0 : 1) = {0}.
(ii) [t s 0] = [0 s t] = 0 for every t, s ∈ Zn. Therefore (0 : 0) = Zn.
(iii) It is obvious that (0 : x) ⊆ (0 : x)1, for every x ∈ Zn. Now if t ∈ (0 : x)1, then
[t 1 x] = 0 and so for every s ∈ Zn, [t s x] = [t [s 1 1] x] = [[t 1 x] s 1] = 0, which
shows t ∈ (0 : x). Therefore (0 : x)1 ⊆ (0 : x), proving (iii).
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In what follows some of the properties of annihilators in Zn are proved which are
useful in the sequel of this section.

Lemma 4.1.2. Let x ∈ Z?n. Then (0 : x) = (0 : c), where c = (x, n), the g.c.d of x
and n.
Proof. Let x ∈ Z?n and (x, n) = c. Then there exist integers l and m such that
lx + mn = c. Now t ∈ (0 : x) ⇒ t ∈ (0 : x)1 ⇒ [t 1 x] = 0 ⇒ t · x = 0 (where ·
denotes the multiplication modulo n) ⇒ [t l x] = 0 ⇒ [t 1 c] = 0 ⇒ t ∈ (0 : c).
Thus (0 : x) ⊆ (0 : c).
Also t ∈ (0 : c) ⇒ t ∈ (0 : c)1 ⇒ [t 1 c] = 0 ⇒ t · c = 0 ⇒ tkc = 0 (for an integer k
such that x = kc) ⇒ t · x = 0 ⇒ [t 1 x] = 0 ⇒ t ∈ (0 : x). Thus (0 : c) ⊆ (0 : x),
proving the result.

In the following lemma it is proved that the annihilator of a divisor d(6= 1) of n
consists of all multiples of n

d
.

Lemma 4.1.3. If d | n and d 6= 1, then (0 : d) 6= {0}.
Moreover, (0 : d) = {kl|k ∈ {1, 2, · · · , d}} = 〈l〉 (say), where l = n

d
.

Proof. Let d | n and d 6= 1. Then ld = n for some l ∈ Z?n, which implies [l 1 d] = 0
⇒ l ∈ (0 : d)1=(0 : d) ⇒ (0 : d) is nontrivial. Also t ∈ (0 : d) ⇒ t ∈ (0 : d)1 ⇒
[t 1 d] = 0 ⇒ t · d = 0 ⇒ td = kn, k ∈ {1, · · · , d} ⇒ t ∈ 〈l〉, proving the result.
The following lemma establishes some of the relations between annihilators of two
different divisors of n.

Lemma 4.1.4. Let d1 and d2 be two divisors of n. Then the following assertions
hold:
(i) If d1 6= d2, then (0 : d1) 6= (0 : d2).
(ii) If d1 | d2, then (0 : d1) ⊂ (0 : d2).
(iii) If (d1, d2) = 1, then (0 : d1) ∩ (0 : d2) = {0}.
(iv) If (d1, d2) = r, then (0 : r) ⊂ (0 : d1) ∩ (0 : d2).
Proof. Let d1 and d2 be two divisors of n.
(i) If d1 6= d2, then by Lemma 4.1.3, (0 : d1) = 〈l1〉 and (0 : d2) = 〈l2〉, where
l1d1 = n, l2d2 = n and l1 6= l2. Hence (0 : d1) 6= (0 : d2).
(ii) If d1|d2, then d2 = kd1, k 6= 1. Hence t ∈ (0 : d1) = (0 : d1)1, which im-
plies [t 1 d1] = 0 ⇒ t · d1 = 0 ⇒ (t · k) · d1 = 0 ⇒ t · d2 = 0 ⇒ [t 1 d2] = 0
⇒ t ∈ (0 : d2)1 = (0 : d2). Also |(0 : d1)| = d1 < d2 = |(0 : d2)|. Thus
(0 : d1) ⊂ (0 : d2).
(iii) If (d1, d2) = 1, then there exist integers r and s such that rd1 + sd2 = 1.
Suppose t ∈ (0 : d1) ∩ (0 : d2). Then [t 1 d1] = 0 and [t 1 d2] = 0. Now
trd1 + tsd2 = t and so t = 0, proving (iii).
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(iv) If (d1, d2) = r 6= 1, then r | d1 and r | d2. Hence (0 : r) ⊂ (0 : d1) ∩ (0 : d2) by
(ii).

Definition 4.1.5. On Z?n = {1, 2, · · · , n–1}, define a relation ∼ by x ∼ y if and
only if (x, n) = (y, n). Obviously, ∼ is an equivalence relation on Z?n and the equiv-
alence class of x ∈ Z?n under ∼ is given by [x]∼ = {y ∈ Z?n|(x, n) = (y, n)}.
Remark 4.1.6. The equivalence relation ∼ provides a partition of Z?n.

Lemma 4.1.7. For any n, Z?n = ∪d|n[d]∼, where [d]∼ = {x ∈ Z?n|(x, n) = d}.
Proof. If x ∈ Z?n, then by the above remark, Z?n=∪x∈Z?n [x]∼. If (x, n) = 1, then
x ∈ [1]∼. If (x, n) = d, then x ∈ [d]∼. Thus Z?n = ∪x∈Z?n [x]∼ = [1]∼∪(∪(x,n)=d[d]∼) =
∪d|n[d]∼.

Lemma 4.1.8. Z?n = [1]∼ ∪ (∪d|n[d]∼), where [d]∼ = {x ∈ Z?n|(0 : x) = (0 : d)}.
In particular, Z?n = [1]∼ = {x ∈ Z?n|(0 : x) = {0}}, if n is prime.
Proof. From Lemma 4.1.7, Z?n = ∪d|n[d]∼, where [d]∼ = {x ∈ Z?n|(x, n) = d} =
{x ∈ Z?n|(0 : x) = (0 : d)}, using Lemma 4.1.2.
If n is prime, then Z?n = [1]∼ = {x ∈ Z?n|(0 : x) = (0 : 1)} = {x ∈ Z?n|(0 : x) = {0}}.
The following lemma is proved with the help of the notions given above.

Lemma 4.1.9. In AH3(N), |V | =

{
n− φ(n) if n is not prime

1 if n is prime
.

Proof. If n is not prime, then V = {0} ∪
(
∪d|n[d]∼, d 6= 1

)
= Zn\[1]∼. Hence

|V | = n− φ(n). If n is prime, then |V | = 1 as φ(n) = n− 1.

Note 4.1.10. For a composite number n, if F denotes the set of all proper divisors
of n, then obviously, d ∈ F implies d /∈ [1]∼. Hence V = {0} ∪

(
∪d|n[d]∼, d 6= 1

)
=

{0} ∪ (∪d∈F [d]∼).

Lemma 4.1.11. AH3(Zn) is (i) trivial if n is prime (ii) nontrivial if n(n ≥ 6) is
not prime.
Proof. It can be seen from Note 4.1.10 that V = {0} ∪ (∪d∈F [d]∼). Now,
(i) If n is prime, then F = ∅. Therefore V = {0} and so AH3(Zn) is trivial.
(ii) If n is not prime, then F 6= ∅. If d1 ∈ F , then d2 = n

d2
∈ F .

Let d1 < d2. Then d1 + d1 ∈ Zn and (0 : d1) ⊂= (0 : (d1 + d1)) ⊂ (0 : 0).
Therefore 0d1(d1 + d1) is a hyperedge in AH3(Zn), showing that it is nontrivial.

Notation 4.1.12. Given n ≥ 4, (i) let F = {d | d | n, d 6= 1, d 6= n};
P = {p ∈ F | p is prime}; D = {d ∈ F | d is composite};
Dp = {d ∈ D | p | d}, for p ∈ P . Then F = P ∪D, where D = ∪p∈PDp.

(ii) for p ∈ P , let Mp =
{
p, 2p, · · · ,

(
n
p
− 1
)
p
}

.
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Remark 4.1.13. If d ∈ Dp, p ∈ P , then (0 : d) ⊃ (0 : p).

The following lemma shows that V can be described in terms of Mp, p ∈ P .

Lemma 4.1.14. In AH3(Zn), V = {0}∪(∪p∈PMp), where Mp = [p]∼∪
(
∪d∈Dp [d]∼

)
.

Proof. Let p ∈ P . Then it is observed that Mp = [p]∼ ∪
(
∪d∈Dp [d]∼

)
.

Also, [p]∼ = {x ∈ Z?n | (x, n) = p} = {kp | (k, n) = 1} ⊆ Mp; Also if d ∈ Dp, then
d = lp, l 6= 1 and [d]∼ = {x ∈ Z?n | (x, n) = d} = {kp | (k, n) = l} ⊆Mp.
Therefore [p]∼ ∪

(
∪d∈Dp [d]∼

)
⊆Mp.

Now, let x ∈Mp. Then x = kp, where either (k, n) = 1 or (k, n) 6= 1.
If (k, n) = 1, then x ∈ [p]∼ since (x, n) = (kp, n) = p.
If (k, n) = l 6= 1, then x ∈ [lp]∼ since (x, n) = (kp, n) = lp, where lp ∈ Dp.
Therefore Mp ⊆ [p]∼ ∪

(
∪d∈Dp [d]∼

)
. Hence Mp = [p]∼ ∪

(
∪d∈Dp [d]∼

)
.

Now, using Notation 4.1.12, F = P ∪ {d ∈ Dp | p ∈ P}. Thus by Note 4.1.10 and
the above observation V = {0} ∪ (∪d∈F [d]∼) = {0} ∪ (∪p∈PMp).

Illustration 4.1.15. Note that in AH3(Z12), F = P ∪ D, where P = {2, 3},
D = {4, 6} and D2 = {4, 6};D3 = {6}. It can be seen that V = {0} ∪ (M2 ∪M3),
where M2 = [2]∼ ∪ ([4]∼ ∪ [6]∼) and M3 = [3]∼ ∪ [6]∼.

Lemma 4.1.16. Let p ∈ P . Then {0} ∪Mp forms a complete subhypergraph in
AH3(Zn) with n

p
vertices.

Proof. Let x, y, z ∈ {0}∪Mp, where Mp = [p]∼∪
(
∪d∈Dp [d]∼

)
. Then the following

cases arise:

(i) x = 0; y, z ∈ [p]∼ (ii) x = 0; y, z ∈ [d]∼
(iii) x = 0; y ∈ [p]∼; z ∈ [d]∼ (iv) x ∈ [p]∼; y, z ∈ [d]∼
(v) x, y ∈ [p]∼; z ∈ [d] ∼ (vi) x, y, z ∈ [p]∼ (vii) x, y, z ∈ [d]∼

By Remark 4.1.13, {0} 6= (0 : p) ⊂ (0 : d) for every d ∈ Dp. Therefore in case (i)
and case (vi), (0 : x) ∩ (0 : y) ∩ (0 : z) = (0 : p) 6= {0}. Hence xyz ∈ E.
In case (ii) - (v) and case (vii), (0 : x) ∩ (0 : y) ∩ (0 : z) ⊃ (0 : p) 6= {0}. Therefore
xyz ∈ E. Thus {0} ∪Mp forms a complete subhypergraph.
Also, it is obvious that |{0} ∪Mp| = n

p
from Notation 4.1.12(ii). Hence the proof.

Lemma 4.1.17. In AH3(Zn), {0} ∪Mp forms a maximal clique for every p ∈ P .
Proof. Let p ∈ P . Then from the previous lemma it is observed that {0} ∪Mp

forms a clique. If x, y /∈ {0} ∪Mp, then obviously (x, p) = (y, p) = 1. Therefore
(0 : x)∩ (0 : y)∩ (0 : p) = {0} and hence xyp /∈ E. Thus {0}∪Mp forms a maximal
clique.

Remark 4.1.18. (i) Let |P | = k. Then there are k maximal cliques formed by
{0} ∪Mp, where p ∈ P , each of which has n

p
vertices and they cover AH3(Zn).



Annihilator 3-uniform Hypergraphs of Right Ternary Near-Rings 259

(ii) The clique number of AH3(Zn) is n
p
, where p is the smallest prime factor of n.

Illustration 4.1.19. The annihilator 3-uniform hypergraph of Z12 is shown in
Figure. 1, in which each triangle represents a hyperedge and there are two maxi-
mal cliques, namely, the subhypergraphs on {0}∪M3(dotted lines) and {0}∪M2.

2 4

0 6

8 10

3

9

Figure 1: AH3(Z12)

Lemma 4.1.20. AH3(Zn) has an isolated vertex if n = 2q, q is prime and n ≥ 6.
Proof. Let n(n ≥ 6) be such that n = 2q, q is prime. Then V = {0} ∪M2 ∪Mq,
where M2 = {2, 4, · · · , 2(q − 1)} and Mq = {q}. Notice that for any x( 6= 0) ∈ V ,
(0 : x) ∩ (0 : q) = {0} since (2, q) = 1. Thus q is an isolated vertex.

Illustration 4.1.21. InAH3(Z14), V = {0}∪M2∪M7, whereM2 = {2, 4, 6, 8, 10, 12},
M7 = {7} and there is no hyperedge containing 7.

Lemma 4.1.22. Let n(n ≥ 6) be a composite number. Then AH3(Zn) is connected
except when n = 2q, q is prime.
Proof. Let x, y ∈ V . Then the proof is given by considering the number of prime
factors of n.
case (i) If n has only one prime factor, then n = pα, α ≥ 2. It is noted that
V = {0} ∪Mp, which forms a complete hypergraph by Lemma 4.1.17. Therefore
AH3(Zn) is complete and hence is connected.
case (ii) If n has only two prime factors, then n = pαqβ, α ≥ 1, β ≥ 1. Now,
V = {0} ∪Mp ∪Mq.
If x, y ∈Mp or x, y ∈Mq, then by Lemma 4.1.17, there is a hyperedge 0xy. Hence
AH3(Zn) is connected.
Suppose x ∈Mp and y ∈Mq. Consider the following subcases.
(a) n = pαqβ, p = 2, α = 1, β = 1.
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That is, n = 2q and V = {0} ∪M2 ∪Mq. Then as in Lemma 4.1.20, q is isolated.
Therefore AH3(Zn) is not connected.
(b) n = pαqβ, p = 2, α = 1, β ≥ 2.
That is, n = 2qβ, β ≥ 2 and V = {0}∪M2 ∪Mq, where M2 = {2, 4, · · · , 2(qβ − 1)}
and Mq = {q, 2q, · · · , (2qβ−1−1)q}. Hence by Lemma 4.1.17, for every u = 2k ∈M2

and v = lq ∈ Mq, there exist hyperedges h1 = 0xu and h2 = 0yv, showing that
AH3(Zn) is connected.
(c) n = pαqβ, p = 2, α ≥ 2, β ≥ 1.
Now, V = {0} ∪M2 ∪Mq and M2 = {2, 4, · · · , 2(2α−1qβ − 1)};
Mq = {q, 2q, · · · , (pαqβ−1 − 1)q}. Therefore by Lemma 4.1.17, for every u = 2k
and v = lq, there exist hyperedges h1 = 0xu and h2 = 0yv, showing that AH3(Zn)
is connected.
(d) n = pαqβ, p 6= 2, α ≥ 1, β ≥ 1.
Now, V = {0} ∪Mp ∪Mq and Mp = {p, 2p, · · · , (pα−1qβ − 1)p};
Mq = {q, 2q, · · · , (pαqβ−1 − 1)q}. Therefore as in (c), for every u = kp ∈ Mp and
v = lq ∈ Mq, there exist hyperedges h1 = 0xu and h2 = 0yv. Hence AH3(Zn) is
connected.
case (iii) If n has three or more prime factors, then a similar argument is carried
out to prove that AH3(Zn) is connected. Thus, AH3(Zn) is connected except when
n = 2q, q is prime.

Lemma 4.1.23. AH3(Zn) is complete if and only if n has only one prime factor.
Proof. Let n have only one prime factor. Then n = pα, α ≥ 2. Then V = {0}∪Mp

forms a complete hypergraph by Lemma 4.1.17. Therefore AH3(Zn) is complete.
Conversely, assume that AH3(Zn) is complete. Let if possible p and q be prime
factors of n. Then (0 : p) ∩ (0 : q) = {0} and therefore there is no hyperedge in
AH3(Zn) containing p and q, a contradiction to the assumption. Thus there can
be only one prime factor for n. Hence the proof.

Lemma 4.1.24. AH3(Zn) is connected and the diameter is 2.
Proof. Let x, y ∈ V , where V={0} ∪ (∪p∈PMp). Then
Case (i) if x, y ∈ {0} ∪Mp, for p ∈ P , then by Lemma 4.1.17, there is a hyperedge
0xy. Therefore the distance between x and y is 1 in this case.
Case (ii) if x ∈ Mp and y ∈ Mq for p, q(p 6= q) ∈ P , then by Lemma 4.1.17, for
every u = kp and v = lq, there are hyperedges h1 = 0xu, h2 = 0yv ∈ E. Therefore
the distance between x and y is 2 in this case. Hence the proof.

The remaining part of this section provides the enumeration of hyperedges in
AH3(Zn), for certain values of n, using cliques.
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Lemma 4.1.25. If AH3(Zn), n = pα , then |E| = pα−1C3.
Proof. Let n = pα. Then by Lemma 4.1.23, AH3(Zpα) is complete. Therefore
|E| = pα−1C3 since V = {0} ∪Mp, where Mp = {p, 2p, . . . , (pα−1 − 1)p}.
Lemma 4.1.26. In AH3(Zn), if n = 2q, then |E| = qC3.
Proof. Let n = 2q. Then V = {0} ∪ M2 ∪ Mq and as seen in Lemma 4.1.20,
{0} ∪M2 has q vertices and q is isolated. Therefore the number of possible hyper-
edges in AH3(Zn) is qC3.

Lemma 4.1.27. In AH3(Zn), if n = pq(2 6= p < q), then |E| = pC3 + qC3.
Proof. Let n = pq(2 6= p < q). Then V = {0} ∪Mp ∪Mq, where
Mp = {p, 2p, · · · , (q − 1)p}; Mq = {q, 2q, · · · , (p − 1)q}; Mp ∩Mq = ∅. Obviously
if x ∈ Mp and y ∈ Mq, then (0 : x) ∩ (0 : y) = {0}. Hence the possible number of
hyperedges in AH3(Zn) is |E| = pC3 + qC3.

Lemma 4.1.28. In AH3(Z22q), (q ≥ 3), |E| = 2qC3 + 4C3.
Proof. Let n = 22q(q ≥ 3). Then V = {0} ∪M2 ∪Mq, where
M2 = {2, 4, · · · , (q − 1)2, 2q, 2(q + 1), · · · , 2(2q − 1)}; Mq = {q, 2q, 3q}. Note
that M2 ∩ Mq = {2q}. Hence the total number of hyperedges in AH3(Zn) is
|E| = 2qC3 + 4C3.

Lemma 4.1.29. In AH3(Zp2q), (q ≥ 3), |E| = pqC3 + p2C3 − pC3.
Proof. Let n = p2q(q ≥ 3). Then V = {0} ∪Mp ∪Mq, where
Mp = {p, 2p, · · · , (q − 1)p, qp, (q + 2)p, · · · , (pq − 1)p};
Mq = {q, 2q, · · · , (p − 1)q, pq, (p + 1)q, · · · , (p2 − 1)q}. Hence the subhypergraphs
induced by {0} ∪Mp and {0} ∪Mq have pqC3 and p2C3 hyperedges respectively.
Now, d ∈ Mp ∩Mq ⇒ pq|d ⇒ d ∈ {pq, 2pq, · · · , (p − 1)pq}, since p2q = n and so
|Mp ∩Mq| = p− 1. Hence pC3 hyperedges are counted twice in the above enumer-
ation process. Thus by eliminating repeated hyperedges, |E| = pqC3 + p2C3− pC3.

Lemma 4.1.30. In AH3(Zn), if n = pqr, then
|E| = pqC3 + prC3 + qrC3 − pC3 − qC3 − rC3.
Proof. Let n = pqr. Then V = {0}∪Mp∪Mq∪Mr. Notice that |Mp∩Mq| = r−1;
|Mq ∩Mr| = p− 1; |Mp ∩Mr| = q − 1; Mp ∩Mq ∩Mr = ∅. Therefore by a similar
process of computation as in previous lemma, after eliminating repeated hyper-
edges, |E| = pqC3 + prC3 + qrC3 − pC3 − qC3 − rC3.

Illustration 4.1.31. The above process of enumeration is illustrated for n = 30.
For n = 30, V = {0} ∪M2 ∪M3 ∪M5, where
M2 = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28};
M3 = {3, 6, 9, 12, 15, 18, 21, 24, 27}; M5 = {5, 10, 15, 20, 25}.
Therefore |E| = 15C3 + 10C3 + 6C3 − 3C3 − 5C3.
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4.2. Existence of BIBDs in AH3(N), N = Zn, for certain values of n
In this section, the special RTNR N = (Zn,+n, [ ]), where [ ] is defined as

[x y z] =

{
x if y = z = n− 1

0 otherwise
, for x, y, z ∈ N , is considered and certain values

of n are identified for which block designs exist in AH3(N) and the properties
of BIBD are verified. It is observed that block designs exist in AH3(Zn), for
n = 5, 9, 11.

Example 4.2.1. In (V,E) = AH3(N), where N = Z5, V = Z5 \ {4} = {0, 1, 2, 3}
and there is only one quad given by 123(012, 013, 023). Also AH3(N) is a 3-
uniform friendship hypergraph with universal friend 0. It is observed that all the
4 vertices occur in r = 3 hyperedges and any two distinct vertices occur in λ = 2
hyperedges. The incidence matrix M satisfies MM t = (r–λ)I + λJ , where I is the
unit matrix of order |V |× |V | and J is a |V |× |V | matrix with entries 1. Moreover
|V |r = 3|E| and λ(|V | − 1) = 2r. Thus (V,E) is a (4, 3, 2 )–BIBD.

Example 4.2.2. In (V,E) = AH3(N), where N = Z9, V = Z9 \ {8} and there are
14 quads which are given by

137(017, 013, 037), 124(014, 012, 024), 235(025, 023, 035),
346(036, 034, 046), 457(047, 045, 057), 156(016, 015, 056),
267(027,, 026, 067), 123(621, 631, 623), 257(125, 127, 157),
467(146, 147, 167), 347(234, 237, 247), 456(245, 246, 256),
567(356, 357, 367).

Thus, the annihilator 3-uniform hypergraph is a friendship 3-uniform hypergraph.
It is easy to verify the properties of BIBD as in previous case and AH3(N) is seen
to be a (8, 3, 6)-BIBD.

Example 4.2.3. In (V,E) = AH3(N), where N = Z11, V = Z11 \ {10} and
there are 120 hyperedges and 30 quads. The annihilator 3-uniform hypergraph is
a friendship 3-uniform hypergraph and AH3(N) is a (10, 3, 8)-BIBD.

5. Conclusion
In this paper, it is proved that AH3(N) is empty if N is constant RTNR and

it is complete if N is a zero RTNR. AH3(Zn) is seen to be nontrivial only when
n is composite. A necessary and sufficient condition for AH3(Zn) to be complete
is found as n = pk whereas it is connected except for n = 2q, q is prime. The
clique number for AH3(Zn) is found. Enumeration of hyperedges in AH3(Zn) is
done for certain values of n by using cliques. It is observed that AH3(Zn), where
Zn is special RTNR, exhibits (n− 1, 3, n− 3)–BIBD for some values of n.
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