ANNIHILATOR 3-UNIFORM HYPERGRAPHS OF RIGHT TERNARY NEAR-RINGS

Teresa Arockiamary S, Meera C* and Santhi ${ }^{*}$ **
Department of Mathematics, Stella Maris College (Autonomous), University of Madras, Chennai - 600086, Tamil Nadu, INDIA
E-mail : drtessys70@gmail.com
*Department of Mathematics, Bharathi Women's College, Chennai - 600108, Tamil Nadu, INDIA
E-mail : eya278@gmail.com
**Department of Mathematics, Presidency College, Chennai - 600005, Tamil Nadu, INDIA
E-mail : santhivaiyapuri2019@gmail.com

(Received: Jan. 17, 2021 Accepted: Jul. 15, 2021 Published: Aug. 30, 2021)

Abstract

The study of algebraic systems using graphs gives many interesting results. The ternary algebraic structures can be dealt with 3 -uniform hypergraphs in which hyperedges are of size three. Right ternary near-ring, a generalization of near-ring in ternary context, was introduced by Daddi and Pawar in 2011. In this paper, annihilator 3 -uniform hypergraph associated with the right ternary nearring N denoted by $A H_{3}(N)$ is introduced. $A H_{3}(N)$ is seen to be empty when N is a constant RTNR and it is complete when N is a zero RTNR. If N is integral, then the nature of $\mathrm{AH}_{3}(\mathrm{~N})$ is studied. A necessary condition for $\mathrm{AH}_{3}(\mathrm{~N})$ to be complete is derived. Hypergraph invariants of $A H_{3}\left(\mathbb{Z}_{n}\right)$ are obtained. For certain RTNR, the existence of BIBD is verified.

Keywords and Phrases: 3-uniform hypergraph, Clique, Right ternary near-ring, Annihilator.

2020 Mathematics Subject Classification: 05C65, 20N10, 16Y30, 05 E 99.

1. Introduction

The properties of algebraic structures can be studied using tools of graph theory and is an interesting topic of research in recent years. The concept of zero-divisor graphs associated with zero-divisors of a commutative ring was initiated by Beck [2] in 1988. Badawi [1] introduced annihilator graph for a commutative ring. Tamizh chelvam [12] introduced and studied about three types of annihilating ideal graphs of near-rings. Zero-annihilator graph of a commutative ring was studied by Hojjat Mostafanasab [7].
In this paper, a right ternary near-ring N, introduced by Daddi and Pawar [6], is associated with a 3 -uniform hypergraph denoted by $A H_{3}(N)$ using the concept of annihilator. A necessary condition for $\mathrm{AH}_{3}(N)$ to be complete is proved and a criterion for $\mathrm{AH}_{3}(N)$ to be nontrivial is derived. Hypergraph invariants of $A H_{3}\left(\mathbb{Z}_{n}\right)$ are obtained. It is shown that $A H_{3}\left(\mathbb{Z}_{n}\right)$ can be covered by cliques. Certain values of n are identified for which block designs exist in $A H_{3}\left(\mathbb{Z}_{n}\right)$.

2. Preliminaries

In this section, the basic definitions and results needed for the rest of the sections are given.

Definition 2.1. $[3,4,5]$ A hypergraph H is an ordered pair (V, E), where V is the set of vertices and E is a subset of the power set of V. H is called empty hypergraph if $V=\emptyset$ and $E=\emptyset$. H is said to be trivial if $V \neq \emptyset$ and $E=\emptyset$. A hypergraph H is called an r-uniform hypergraph if each hyperedge contains exactly r vertices. Also clique in H is a complete subhypergraph and the cardinality of largest maximal clique in H is called the clique number of H. The minimum and maximum degrees of hypergraph are denoted by δ and Δ respectively.
Definition 2.2. $[6,9]$ A right ternary near-ring (RTNR) is a nonempty set N with a binary operation + and a ternary operation [] satisfying the conditions :
(i) $(N,+)$ is a group (not necessarily abelian)
(ii) $(N,[])$ is a ternary semigroup $\left(\left[\begin{array}{lll}a & b & c\end{array}\right] d e\right]=\left[\begin{array}{lll}a & {\left[\begin{array}{ll}b & d\end{array}\right]}\end{array}\right]=\left[\begin{array}{llll}a & b & {\left[\begin{array}{ll}c & d\end{array}\right]}\end{array}\right]$ for all $a, b, c, d, e \in N)$
(iii) (Right distributive law) $[(a+b) c d]=[a c d]+[b c d]$ for all $a, b, c, d \in N$.

Note that in an RTNR N, for every $x, y, z \in N$, (i) $[0 x y]=0$; (ii) $\left[\begin{array}{lll}-x & y & z\end{array}\right]=$ $-\left[\begin{array}{ll}x & y \\ z\end{array}\right]$. The subsets $N_{0}=\left\{t \in N \left\lvert\,\left[\begin{array}{ll}t & 0\end{array}\right]=0\right.\right\}$ and $N_{c}=\left\{t \in N \left\lvert\,\left[\begin{array}{ll}0 & 0\end{array}\right]=t\right.\right\}$ are called the zero-symmetric part and the constant part of N respectively. N is called a zero-symmetric RTNR if $N=N_{0}$ and it is called a constant RTNR if $N=N_{c}$. An RTNR N is called (i) an integral RTNR if N has no zero divisors. (ii) a zero

RTNR if $[N N N]=\{0\}$, where $[N N N]=\{[x y z] \mid x, y, z \in N\}$. For $x, y \in N$, the sets $\left.\left[\begin{array}{ll}N & x\end{array}\right]\right]=\left\{\left.\left[\begin{array}{ll}x & y\end{array}\right] \right\rvert\, t \in N\right\}$ and $\left[\begin{array}{ll}x & N\end{array}\right],\left[\begin{array}{lll}x & y & N\end{array}\right]$ etc. are defined in the same way. An element $e \in N$ is a right unital element if $\left[\begin{array}{ll}x & e\end{array}\right]=x$, for every $x \in N$.

Definition 2.3. [9] If N is an RTNR and $x, s \in N$, then (i) the annihilator of x with respect to s is $(0: x)_{s}=\{t \in N \mid[t s x]=0\}$ and (ii) the annihilator of x is $(0: x)=\left\{t \in N \left\lvert\,\left[\begin{array}{lll}t & s & x\end{array}\right]=0\right.\right.$ for all $\left.s \in N\right\}$. It is to be noted that $(0: x)=\cap_{s \in N}(0: x)_{s}$ and x is said to have trivial annihilator if $(0: x)=\{0\}$.
Definition 2.4. [11, 9] A design is a pair (X, A), where X is a set of points called elements and A is a collection of nonempty subsets of X called blocks. A 3-uniform hypergraph $H=(V, E)$ is said to have friendship property if for every three vertices $x, y, z \in V$, there exists a unique vertex w, called the universal friend, such that $x y w, x z w, y z w \in E$. For positive integers v, k and λ such that $v>k \geq 2, a$ design (X, A) is called (v, k, λ) - balanced incomplete block design (abbreviated as $(v, k, \lambda)-$ BIBD $)$ if the following properties are satisfied:
(i) $|X|=v$
(ii) each block contains exactly k points
(iii) every pair of distinct points is contained in exactly λ blocks.

The incidence matrix of (X, A), where $X=\left\{x_{1}, \ldots, x_{v}\right\}$ and $A=\left\{A_{1}, \ldots, A_{b}\right\}$, is the $v \times b$, 0-1 matrix $M=\left(m_{i, j}\right)$ defined by the rule $m_{i, j}=\left\{\begin{array}{ll}1 & \text { if } x_{i} \in A_{j} \\ 0 & \text { if } x_{i} \notin A_{j}\end{array}\right.$.

3. Main Results: Annihilator 3-uniform hypergraph of RTNR

In this section, annihilator 3 -uniform hypergraph of RTNR is defined and some of the properties are illustrated with examples.
Definition 3.1. An annihilator 3-uniform hypergraph associated with an RTNR N denoted by $\mathrm{AH}_{3}(\mathrm{~N})$ is defined as a 3-uniform hypergraph whose vertex set is the set of all elements of N having nontrivial annihilators and three distinct vertices x, y and z are adjacent whenever the intersection of their annihilators is not $\{0\}$. In other words, $A H_{3}(N)=(V, E)$, where $V=N \backslash T, T=\{x \in N \mid(0: x)=\{0\}\}$ and $E=\{x y z \mid(0: x) \cap(0: y) \cap(0: z) \neq\{0\}, x \neq y \neq z\}$.
Example 3.2. Consider $N=D_{8}=\{0, a, 2 a, 3 a, b, a+b, 2 a+b, 3 a+b\}$, which forms a near-ring under the addition $(+)$ and the multiplication (\cdot) corresponding to Scheme $134:(0,1,14,5,15,21,17,23), p: 418$, Pilz [10]. Let the ternary product [] be defined by $[x y z]=(x \cdot y) \cdot z$ for all $x, y, z \in N$. Then $(N,+,[])$ is an RTNR and $A H_{3}(N)$ is a complete hypergraph on $V=\{0,2 a, b, a+b, 2 a+b, 3 a+b\}$, since $(0: 0)=N ;(0: a)=(0: 3 a)=\{0\} ;(0: 2 a)=(0: b)=(0: 2 a+b)=$
$\{0,2 a, a+b, 3 a+b\} ;(0: a+b)=(0: 3 a+b)=\{0,2 a, b, 2 a+b\}$.
Lemma 3.3. Let N be an RTNR. Then $A H_{3}(N)$ is
(i) an empty hypergraph if N is a constant RTNR.
(ii) a complete hypergraph if N is a zero RTNR.

Proof. Let N be an RTNR. Then
(i) If N is a constant RTNR, then for any $x, s \in N,(0: x)_{s}=\{t \in N \mid[t s x]=0\}$ $\left.=\left\{t \in N \left\lvert\,\left[\begin{array}{lll}t & 0 & 0\end{array}\right] s x\right.\right]=0\right\}=\left\{t \in N \left\lvert\,\left[\begin{array}{lll}t & 0 & \left.\left.\left[\begin{array}{lll}0 & s & x\end{array}\right]\right]=0\right\}=\{0\} \text { so that }\end{array}\right.\right.\right.$ $(0: x)=\cap_{s \in N}(0: x)_{s}=\{0\}$. Thus $V=\emptyset$ and $E=\emptyset$ in $A H_{3}(N)$, proving (i).
(ii) If N is a zero RTNR, then $[x y z]=0$ for every $x, y, z \in N$. Therefore for any $x, s \in N,(0: x)_{s}=\{t \in N \mid[t s x]=0\}=N$ so that $(0: x)=N$. Hence $V=N$ and $(0: x) \cap(0: y) \cap(0: z) \neq\{0\}$, for every $x, y, z \in V$. Thus $A H_{3}(N)$ is complete.

Lemma 3.4. Let N be an integral RTNR. Then $A H_{3}(N)$ is trivial if N is zerosymmetric.
Proof. Suppose N is zero-symmetric. Then ($0: 0)=\left\{t \left\lvert\,\left[\begin{array}{ll}t & s\end{array}\right]=0\right.\right\}=N$ and so $0 \in V$. If N is integral, then for $x(\neq 0) \in N,(0: x)=\{t \in N \mid[t s x]=0$ for every $s \in N\}=\{0\}$. Hence $A H_{3}(N)$ is trivial.

Lemma 3.5. Let N be an RTNR with $n(n \geq 3)$ elements. Then $|V| \leq n-m$ if N has m right unital elements.
Proof. Let N be an RTNR with $n(n \geq 3)$ elements and let $e \in N$ be a right unital element. Then $(0: e)_{e}=\{x \in N \mid[x e e]=0\}=\{0\}$ so that $(0: e)=\{0\}$. Therefore $e \notin V$. Hence if there are m right unital elements, then there can be at the most $n-m$ vertices.

Lemma 3.6. Let N be a commutative RTNR. Then the following assertions hold:
(i) $\mathrm{AH}_{3}(N)$ is trivial if every nonzero element in N has trivial annihilator.
(ii) $A H_{3}(N)$ is nontrivial if there exists $x(\neq 0) \in N$, which does not have additive self-inverse and $(0: x) \neq\{0\}$.
Proof. Let N be a commutative RTNR. Then for every $x \in N,\left[\begin{array}{lll}x & 0 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 0 & x\end{array}\right]=$ 0 . Therefore N is zero-symmetric and so $0 \in V$. \rightarrow (1)
(i) If $(0: x)=\{0\}$ for every $x \neq 0 \in N$, then $A H_{3}(N)$ is trivial by (1).
(ii) Let $x(\neq 0) \in N$ be such that $-x \neq x$ and $(0: x) \neq\{0\}$.

It is now claimed that $(0: x)=(0:(-x))$.
For, if $s \in N$ is given, then $(0:(-x))_{s}=\{t \in N \mid[t s(-x)]=0\}=(0: x)_{s}$, proving the claim.
Hence $(0: 0) \cap(0: x) \cap(0:(-x)) \neq\{0\}$. Thus $0 x(-x)$ is a hyperedge in $A H_{3}(N)$, proving (ii).

The following theorem gives a necessary condition for $\mathrm{AH}_{3}(\mathrm{~N})$ to be complete.
Theorem 3.7. Let N be an RTNR with $n(n \geq 3)$ elements whose annihilators are N. Then $A H_{3}(N)$ is complete.
Proof. Let N be an RTNR with $n(n \geq 3)$ elements and for every $x \in N,(0: x)=$ N. Then it is obvious that $V=N$ and for any $x, y, z \in N,(0: x) \cap(0: y) \cap(0: z)$ $=N \neq\{0\}$ and therefore $x y z \in E$. Hence $A H_{3}(N)$ is complete.
A necessary and sufficient condition for $A H_{3}(N)$ to be nontrivial is derived in the following theorem.
Theorem 3.8. Let N be a commutative $R T N R$. Then $A_{3}(N)$ is nontrivial if and only if $[N x z]=[N y z]=\{0\}$ for some $x, y, z \in N$.
Proof. Let N be a commutative RTNR. Then ($0: 0)=N$ and so $0 \in V$. Now, suppose that $A H_{3}(N)$ is nontrivial. Then there exists at least one hyperedge $0 x y$, where x and y are nonzero elements such that $(0: x) \cap(0: y) \neq\{0\}$. If there exists $z(\neq 0) \in(0: x) \cap(0: y)$, then $[z s x]=[z s y]=0$ for all $s \in N$, which implies $[N x z]=[N y z]=\{0\}$.
Conversely, suppose that $[N x z]=[N y z]=\{0\}$ for some nonzero $x, y, z \in N$. Then $\left[\begin{array}{ll}s & x \\ z\end{array}\right]=\left[\begin{array}{lll}s & y & z\end{array}\right]=0$ for all $s \in N$, which implies $z \in(0: x) \cap(0: y)$, as N is commutative. Hence $0, x, y \in V$ are distinct vertices and they satisfy $(0: 0) \cap(0: x) \cap(0: y) \neq\{0\}$ so that $0 x y$ is a hyperedge in $A H_{3}(N)$, proving the theorem.

4. Special Cases

Some of the properties of annihilator 3-uniform hypergraph of \mathbb{Z}_{n} are established in this section.

4.1. Annihilator 3 -uniform hypergraph of \mathbb{Z}_{n}

Consider $A H_{3}\left(\mathbb{Z}_{n}\right)$, where $n \geq 3$ and \mathbb{Z}_{n} is the RTNR with the usual addition modulo n and ternary multiplication induced by multiplication modulo n. Throughout this section, $A H_{3}\left(\mathbb{Z}_{n}\right)$ is denoted by (V, E) and the cardinality of V and E by $|V|$ and $|E|$ respectively.
Lemma 4.1.1. The following assertions hold in \mathbb{Z}_{n} :
(i) $(0: 1)=\{0\}$
(ii) $(0: 0)=\mathbb{Z}_{n}$
(iii) For any $x \in \mathbb{Z}_{n},(0: x)=(0: x)_{1}$.

Proof. (i) $(0: 1)_{1}=\left\{x \in \mathbb{Z}_{n} \mid[x 11]=0\right\}=\{0\}$ so that $(0: 1)=\{0\}$.
(ii) $[t s 0]=[0 s t]=0$ for every $t, s \in \mathbb{Z}_{n}$. Therefore $(0: 0)=\mathbb{Z}_{n}$.
(iii) It is obvious that $(0: x) \subseteq(0: x)_{1}$, for every $x \in \mathbb{Z}_{n}$. Now if $t \in(0: x)_{1}$, then $[t 1 x]=0$ and so for every $\left.s \in \mathbb{Z}_{n},\left[\begin{array}{lll}s & x\end{array}\right]=\left[\begin{array}{lll}s & 1 & 1\end{array}\right] x\right]=\left[\left[\begin{array}{lll}1 & x\end{array}\right] s 1\right]=0$, which shows $t \in(0: x)$. Therefore $(0: x)_{1} \subseteq(0: x)$, proving (iii).

In what follows some of the properties of annihilators in \mathbb{Z}_{n} are proved which are useful in the sequel of this section.

Lemma 4.1.2. Let $x \in \mathbb{Z}_{n}^{\star}$. Then $(0: x)=(0: c)$, where $c=(x, n)$, the g.c.d of x and n.
Proof. Let $x \in \mathbb{Z}_{n}^{\star}$ and $(x, n)=c$. Then there exist integers l and m such that $l x+m n=c$. Now $t \in(0: x) \Rightarrow t \in(0: x)_{1} \Rightarrow[t 1 x]=0 \Rightarrow t \cdot x=0$ (where \cdot denotes the multiplication modulo $n) \Rightarrow[t l x]=0 \Rightarrow[t 1 c]=0 \Rightarrow t \in(0: c)$. Thus $(0: x) \subseteq(0: c)$.
Also $t \in(0: c) \Rightarrow t \in(0: c)_{1} \Rightarrow[t 1 c]=0 \Rightarrow t \cdot c=0 \Rightarrow t k c=0$ (for an integer k such that $x=k c) \Rightarrow t \cdot x=0 \Rightarrow[t 1 x]=0 \Rightarrow t \in(0: x)$. Thus $(0: c) \subseteq(0: x)$, proving the result.
In the following lemma it is proved that the annihilator of a divisor $d(\neq 1)$ of n consists of all multiples of $\frac{n}{d}$.
Lemma 4.1.3. If $d \mid n$ and $d \neq 1$, then $(0: d) \neq\{0\}$.
Moreover, $(0: d)=\{k l \mid k \in\{1,2, \cdots, d\}\}=\langle l\rangle$ (say), where $l=\frac{n}{d}$.
Proof. Let $d \mid n$ and $d \neq 1$. Then $l d=n$ for some $l \in \mathbb{Z}_{n}^{\star}$, which implies $[l 1 d]=0$ $\Rightarrow l \in(0: d)_{1}=(0: d) \Rightarrow(0: d)$ is nontrivial. Also $t \in(0: d) \Rightarrow t \in(0: d)_{1} \Rightarrow$ $[t 1 d]=0 \Rightarrow t \cdot d=0 \Rightarrow t d=k n, k \in\{1, \cdots, d\} \Rightarrow t \in\langle l\rangle$, proving the result.
The following lemma establishes some of the relations between annihilators of two different divisors of n.

Lemma 4.1.4. Let d_{1} and d_{2} be two divisors of n. Then the following assertions hold:
(i) If $d_{1} \neq d_{2}$, then $\left(0: d_{1}\right) \neq\left(0: d_{2}\right)$.
(ii) If $d_{1} \mid d_{2}$, then $\left(0: d_{1}\right) \subset\left(0: d_{2}\right)$.
(iii) If $\left(d_{1}, d_{2}\right)=1$, then $\left(0: d_{1}\right) \cap\left(0: d_{2}\right)=\{0\}$.
(iv) If $\left(d_{1}, d_{2}\right)=r$, then $(0: r) \subset\left(0: d_{1}\right) \cap\left(0: d_{2}\right)$.

Proof. Let d_{1} and d_{2} be two divisors of n.
(i) If $d_{1} \neq d_{2}$, then by Lemma 4.1.3, $\left(0: d_{1}\right)=\left\langle l_{1}\right\rangle$ and $\left(0: d_{2}\right)=\left\langle l_{2}\right\rangle$, where $l_{1} d_{1}=n, l_{2} d_{2}=n$ and $l_{1} \neq l_{2}$. Hence $\left(0: d_{1}\right) \neq\left(0: d_{2}\right)$.
(ii) If $d_{1} \mid d_{2}$, then $d_{2}=k d_{1}, k \neq 1$. Hence $t \in\left(0: d_{1}\right)=\left(0: d_{1}\right)_{1}$, which implies $\left[t 1 d_{1}\right]=0 \Rightarrow t \cdot d_{1}=0 \Rightarrow(t \cdot k) \cdot d_{1}=0 \Rightarrow t \cdot d_{2}=0 \Rightarrow\left[\begin{array}{ll}t & 1\end{array} d_{2}\right]=0$ $\Rightarrow t \in\left(0: d_{2}\right)_{1}=\left(0: d_{2}\right)$. Also $\left|\left(0: d_{1}\right)\right|=d_{1}<d_{2}=\left|\left(0: d_{2}\right)\right|$. Thus $\left(0: d_{1}\right) \subset\left(0: d_{2}\right)$.
(iii) If $\left(d_{1}, d_{2}\right)=1$, then there exist integers r and s such that $r d_{1}+s d_{2}=1$.

Suppose $t \in\left(0: d_{1}\right) \cap\left(0: d_{2}\right)$. Then $\left[\begin{array}{lll}t & 1 & d_{1}\end{array}\right]=0$ and $\left[\begin{array}{lll}t & 1 & d_{2}\end{array}\right]=0$. Now $t r d_{1}+t s d_{2}=t$ and so $t=0$, proving (iii).
(iv) If $\left(d_{1}, d_{2}\right)=r \neq 1$, then $r \mid d_{1}$ and $r \mid d_{2}$. Hence $(0: r) \subset\left(0: d_{1}\right) \cap\left(0: d_{2}\right)$ by (ii).

Definition 4.1.5. On $\mathbb{Z}_{n}^{\star}=\{1,2, \cdots, n-1\}$, define a relation $\sim b y x \sim y$ if and only if $(x, n)=(y, n)$. Obviously, \sim is an equivalence relation on \mathbb{Z}_{n}^{\star} and the equivalence class of $x \in \mathbb{Z}_{n}^{\star}$ under \sim is given by $[x]_{\sim}=\left\{y \in \mathbb{Z}_{n}^{\star} \mid(x, n)=(y, n)\right\}$.
Remark 4.1.6. The equivalence relation \sim provides a partition of \mathbb{Z}_{n}^{\star}.
Lemma 4.1.7. For any n, $\mathbb{Z}_{n}^{\star}=\cup_{d \mid n}[d]_{\sim}$, where $[d]_{\sim}=\left\{x \in \mathbb{Z}_{n}^{\star} \mid(x, n)=d\right\}$.
Proof. If $x \in \mathbb{Z}_{n}^{\star}$, then by the above remark, $\mathbb{Z}_{n}^{\star}=\cup_{x \in \mathbb{Z}_{n}^{\star}}[x]_{\sim}$. If $(x, n)=1$, then $x \in[1]_{\sim}$. If $(x, n)=d$, then $x \in[d]_{\sim}$. Thus $\mathbb{Z}_{n}^{\star}=\cup_{x \in \mathbb{Z}_{n}^{\star}}[x]_{\sim}=[1]_{\sim} \cup\left(\cup_{(x, n)=d}[d]_{\sim}\right)=$ $\cup_{d \mid n}[d]_{\sim}$.
Lemma 4.1.8. $\mathbb{Z}_{n}^{\star}=[1]_{\sim} \cup\left(\cup_{d \mid n}[d]_{\sim}\right)$, where $[d]_{\sim}=\left\{x \in \mathbb{Z}_{n}^{\star} \mid(0: x)=(0: d)\right\}$.
In particular, $\mathbb{Z}_{n}^{\star}=[1]_{\sim}=\left\{x \in \mathbb{Z}_{n}^{\star} \mid(0: x)=\{0\}\right\}$, if n is prime.
Proof. From Lemma 4.1.7, $\mathbb{Z}_{n}^{\star}=\cup_{d \mid n}[d]_{\sim}$, where $[d]_{\sim}=\left\{x \in \mathbb{Z}_{n}^{\star} \mid(x, n)=d\right\}=$ $\left\{x \in \mathbb{Z}_{n}^{\star} \mid(0: x)=(0: d)\right\}$, using Lemma 4.1.2.
If n is prime, then $\mathbb{Z}_{n}^{\star}=[1]_{\sim}=\left\{x \in \mathbb{Z}_{n}^{\star} \mid(0: x)=(0: 1)\right\}=\left\{x \in \mathbb{Z}_{n}^{\star} \mid(0: x)=\{0\}\right\}$.
The following lemma is proved with the help of the notions given above.
Lemma 4.1.9. In $A H_{3}(N),|V|=\left\{\begin{array}{ll}n-\phi(n) & \text { ifn is not prime } \\ 1 & \text { ifn is prime }\end{array}\right.$.
Proof. If n is not prime, then $V=\{0\} \cup\left(\cup_{d \mid n}[d]_{\sim}, d \neq 1\right)=\mathbb{Z}_{n} \backslash[1]_{\sim}$. Hence $|V|=n-\phi(n)$. If n is prime, then $|V|=1$ as $\phi(n)=n-1$.
Note 4.1.10. For a composite number n, if F denotes the set of all proper divisors of n, then obviously, $d \in F$ implies $d \notin[1]_{\sim}$. Hence $V=\{0\} \cup\left(\cup_{d \mid n}[d]_{\sim}, d \neq 1\right)=$ $\{0\} \cup\left(\cup_{d \in F}[d]_{\sim}\right)$.
Lemma 4.1.11. $A H_{3}\left(\mathbb{Z}_{n}\right)$ is (i) trivial if n is prime (ii) nontrivial if $n(n \geq 6)$ is not prime.
Proof. It can be seen from Note 4.1.10 that $V=\{0\} \cup\left(\cup_{d \in F}[d]_{\sim}\right)$. Now,
(i) If n is prime, then $F=\emptyset$. Therefore $V=\{0\}$ and so $A H_{3}\left(\mathbb{Z}_{n}\right)$ is trivial.
(ii) If n is not prime, then $F \neq \emptyset$. If $d_{1} \in F$, then $d_{2}=\frac{n}{d_{2}} \in F$.

Let $d_{1}<d_{2}$. Then $d_{1}+d_{1} \in \mathbb{Z}_{n}$ and $\left(0: d_{1}\right) \subset=\left(0:\left(d_{1}+d_{1}\right)\right) \subset(0: 0)$.
Therefore $0 d_{1}\left(d_{1}+d_{1}\right)$ is a hyperedge in $A H_{3}\left(\mathbb{Z}_{n}\right)$, showing that it is nontrivial.
Notation 4.1.12. Given $n \geq 4$, (i) let $F=\{d|d| n, d \neq 1, d \neq n\}$;
$P=\{p \in F \mid p$ is prime $\} ; D=\{d \in F \mid d$ is composite $\}$;
$D_{p}=\{d \in D|p| d\}$, for $p \in P$. Then $F=P \cup D$, where $D=\cup_{p \in P} D_{p}$.
(ii) for $p \in P$, let $M_{p}=\left\{p, 2 p, \cdots,\left(\frac{n}{p}-1\right) p\right\}$.

Remark 4.1.13. If $d \in D_{p}, p \in P$, then $(0: d) \supset(0: p)$.
The following lemma shows that V can be described in terms of $M_{p}, p \in P$.
Lemma 4.1.14. In $A H_{3}\left(\mathbb{Z}_{n}\right)$, $V=\{0\} \cup\left(\cup_{p \in P} M_{p}\right)$, where $M_{p}=[p]_{\sim} \cup\left(\cup_{d \in D_{p}}[d]_{\sim}\right)$.
Proof. Let $p \in P$. Then it is observed that $M_{p}=[p]_{\sim} \cup\left(\cup_{d \in D_{p}}[d]_{\sim}\right)$.
Also, $[p]_{\sim}=\left\{x \in \mathbb{Z}_{n}^{\star} \mid(x, n)=p\right\}=\{k p \mid(k, n)=1\} \subseteq M_{p}$; Also if $d \in D_{p}$, then $d=l p, l \neq 1$ and $[d]_{\sim}=\left\{x \in \mathbb{Z}_{n}^{\star} \mid(x, n)=d\right\}=\{k p \mid(k, n)=l\} \subseteq M_{p}$.
Therefore $[p]_{\sim} \cup\left(\cup_{d \in D_{p}}[d]_{\sim}\right) \subseteq M_{p}$.
Now, let $x \in M_{p}$. Then $x=k p$, where either $(k, n)=1$ or $(k, n) \neq 1$.
If $(k, n)=1$, then $x \in[p]_{\sim}$ since $(x, n)=(k p, n)=p$.
If $(k, n)=l \neq 1$, then $x \in[l p]_{\sim}$ since $(x, n)=(k p, n)=l p$, where $l p \in D_{p}$.
Therefore $M_{p} \subseteq[p]_{\sim} \cup\left(\cup_{d \in D_{p}}[d]_{\sim}\right)$. Hence $M_{p}=[p]_{\sim} \cup\left(\cup_{d \in D_{p}}[d]_{\sim}\right)$.
Now, using Notation 4.1.12, $F=P \cup\left\{d \in D_{p} \mid p \in P\right\}$. Thus by Note 4.1.10 and the above observation $V=\{0\} \cup\left(\cup_{d \in F}[d]_{\sim}\right)=\{0\} \cup\left(\cup_{p \in P} M_{p}\right)$.
Illustration 4.1.15. Note that in $A H_{3}\left(\mathbb{Z}_{12}\right), F=P \cup D$, where $P=\{2,3\}$, $D=\{4,6\}$ and $D_{2}=\{4,6\} ; D_{3}=\{6\}$. It can be seen that $V=\{0\} \cup\left(M_{2} \cup M_{3}\right)$, where $M_{2}=[2]_{\sim} \cup\left([4]_{\sim} \cup[6]_{\sim}\right)$ and $M_{3}=[3]_{\sim} \cup[6]_{\sim}$.

Lemma 4.1.16. Let $p \in P$. Then $\{0\} \cup M_{p}$ forms a complete subhypergraph in $A H_{3}\left(\mathbb{Z}_{n}\right)$ with $\frac{n}{p}$ vertices.
Proof. Let $x, y, z \in\{0\} \cup M_{p}$, where $M_{p}=[p]_{\sim} \cup\left(\cup_{d \in D_{p}}[d]_{\sim}\right)$. Then the following cases arise:
(i) $x=0 ; y, z \in[p]_{\sim}$
(ii) $x=0 ; y, z \in[d]_{\sim}$
(iii) $x=0 ; y \in[p]_{\sim} ; z \in[d]_{\sim}$
(iv) $x \in[p]_{\sim} ; y, z \in[d]_{\sim}$
(v) $x, y \in[p]_{\sim} ; z \in[d] \sim$
(vi) $x, y, z \in[p]_{\sim}$
(vii) $x, y, z \in[d]_{\sim}$

By Remark 4.1.13, $\{0\} \neq(0: p) \subset(0: d)$ for every $d \in D_{p}$. Therefore in case (i) and case (vi), $(0: x) \cap(0: y) \cap(0: z)=(0: p) \neq\{0\}$. Hence $x y z \in E$.
In case (ii) - (v) and case (vii), $(0: x) \cap(0: y) \cap(0: z) \supset(0: p) \neq\{0\}$. Therefore $x y z \in E$. Thus $\{0\} \cup M_{p}$ forms a complete subhypergraph.
Also, it is obvious that $\left|\{0\} \cup M_{p}\right|=\frac{n}{p}$ from Notation 4.1.12(ii). Hence the proof.
Lemma 4.1.17. In $A H_{3}\left(\mathbb{Z}_{n}\right),\{0\} \cup M_{p}$ forms a maximal clique for every $p \in P$. Proof. Let $p \in P$. Then from the previous lemma it is observed that $\{0\} \cup M_{p}$ forms a clique. If $x, y \notin\{0\} \cup M_{p}$, then obviously $(x, p)=(y, p)=1$. Therefore $(0: x) \cap(0: y) \cap(0: p)=\{0\}$ and hence $x y p \notin E$. Thus $\{0\} \cup M_{p}$ forms a maximal clique.
Remark 4.1.18. (i) Let $|P|=k$. Then there are k maximal cliques formed by $\{0\} \cup M_{p}$, where $p \in P$, each of which has $\frac{n}{p}$ vertices and they cover $A H_{3}\left(\mathbb{Z}_{n}\right)$.
(ii) The clique number of $A H_{3}\left(\mathbb{Z}_{n}\right)$ is $\frac{n}{p}$, where p is the smallest prime factor of n.

Illustration 4.1.19. The annihilator 3 -uniform hypergraph of \mathbb{Z}_{12} is shown in Figure. 1, in which each triangle represents a hyperedge and there are two maximal cliques, namely, the subhypergraphs on $\{0\} \cup M_{3}$ (dotted lines) and $\{0\} \cup M_{2}$.

Figure 1: $A H_{3}\left(\mathbb{Z}_{12}\right)$

Lemma 4.1.20. $A H_{3}\left(\mathbb{Z}_{n}\right)$ has an isolated vertex if $n=2 q, q$ is prime and $n \geq 6$. Proof. Let $n(n \geq 6)$ be such that $n=2 q, q$ is prime. Then $V=\{0\} \cup M_{2} \cup M_{q}$, where $M_{2}=\{2,4, \cdots, 2(q-1)\}$ and $M_{q}=\{q\}$. Notice that for any $x(\neq 0) \in V$, $(0: x) \cap(0: q)=\{0\}$ since $(2, q)=1$. Thus q is an isolated vertex.
Illustration 4.1.21. In $A H_{3}\left(\mathbb{Z}_{14}\right), V=\{0\} \cup M_{2} \cup M_{7}$, where $M_{2}=\{2,4,6,8,10,12\}$, $M_{7}=\{7\}$ and there is no hyperedge containing 7 .
Lemma 4.1.22. Let $n(n \geq 6)$ be a composite number. Then $A H_{3}\left(\mathbb{Z}_{n}\right)$ is connected except when $n=2 q, q$ is prime.
Proof. Let $x, y \in V$. Then the proof is given by considering the number of prime factors of n.
case (i) If n has only one prime factor, then $n=p^{\alpha}, \alpha \geq 2$. It is noted that $V=\{0\} \cup M_{p}$, which forms a complete hypergraph by Lemma 4.1.17. Therefore $A H_{3}\left(\mathbb{Z}_{n}\right)$ is complete and hence is connected.
case (ii) If n has only two prime factors, then $n=p^{\alpha} q^{\beta}, \alpha \geq 1, \beta \geq 1$. Now, $V=\{0\} \cup M_{p} \cup M_{q}$.
If $x, y \in M_{p}$ or $x, y \in M_{q}$, then by Lemma 4.1.17, there is a hyperedge $0 x y$. Hence $A H_{3}\left(\mathbb{Z}_{n}\right)$ is connected.
Suppose $x \in M_{p}$ and $y \in M_{q}$. Consider the following subcases.
(a) $n=p^{\alpha} q^{\beta}, p=2, \alpha=1, \beta=1$.

That is, $n=2 q$ and $V=\{0\} \cup M_{2} \cup M_{q}$. Then as in Lemma 4.1.20, q is isolated. Therefore $\mathrm{AH}_{3}\left(\mathbb{Z}_{n}\right)$ is not connected.
(b) $n=p^{\alpha} q^{\beta}, p=2, \alpha=1, \beta \geq 2$.

That is, $n=2 q^{\beta}, \beta \geq 2$ and $V=\{0\} \cup M_{2} \cup M_{q}$, where $M_{2}=\left\{2,4, \cdots, 2\left(q^{\beta}-1\right)\right\}$ and $M_{q}=\left\{q, 2 q, \cdots,\left(2 q^{\beta-1}-1\right) q\right\}$. Hence by Lemma 4.1.17, for every $u=2 k \in M_{2}$ and $v=l q \in M_{q}$, there exist hyperedges $h_{1}=0 x u$ and $h_{2}=0 y v$, showing that $\mathrm{AH}_{3}\left(\mathbb{Z}_{n}\right)$ is connected.
(c) $n=p^{\alpha} q^{\beta}, p=2, \alpha \geq 2, \beta \geq 1$.

Now, $V=\{0\} \cup M_{2} \cup M_{q}$ and $M_{2}=\left\{2,4, \cdots, 2\left(2^{\alpha-1} q^{\beta}-1\right)\right\}$;
$M_{q}=\left\{q, 2 q, \cdots,\left(p^{\alpha} q^{\beta-1}-1\right) q\right\}$. Therefore by Lemma 4.1.17, for every $u=2 k$ and $v=l q$, there exist hyperedges $h_{1}=0 x u$ and $h_{2}=0 y v$, showing that $A H_{3}\left(\mathbb{Z}_{n}\right)$ is connected.
(d) $n=p^{\alpha} q^{\beta}, p \neq 2, \alpha \geq 1, \beta \geq 1$.

Now, $V=\{0\} \cup M_{p} \cup M_{q}$ and $M_{p}=\left\{p, 2 p, \cdots,\left(p^{\alpha-1} q^{\beta}-1\right) p\right\}$;
$M_{q}=\left\{q, 2 q, \cdots,\left(p^{\alpha} q^{\beta-1}-1\right) q\right\}$. Therefore as in (c), for every $u=k p \in M_{p}$ and $v=l q \in M_{q}$, there exist hyperedges $h_{1}=0 x u$ and $h_{2}=0 y v$. Hence $A H_{3}\left(\mathbb{Z}_{n}\right)$ is connected.
case (iii) If n has three or more prime factors, then a similar argument is carried out to prove that $A H_{3}\left(\mathbb{Z}_{n}\right)$ is connected. Thus, $A H_{3}\left(\mathbb{Z}_{n}\right)$ is connected except when $n=2 q, q$ is prime.

Lemma 4.1.23. $A H_{3}\left(\mathbb{Z}_{n}\right)$ is complete if and only if n has only one prime factor. Proof. Let n have only one prime factor. Then $n=p^{\alpha}, \alpha \geq 2$. Then $V=\{0\} \cup M_{p}$ forms a complete hypergraph by Lemma 4.1.17. Therefore $A H_{3}\left(\mathbb{Z}_{n}\right)$ is complete. Conversely, assume that $A H_{3}\left(\mathbb{Z}_{n}\right)$ is complete. Let if possible p and q be prime factors of n. Then $(0: p) \cap(0: q)=\{0\}$ and therefore there is no hyperedge in $A H_{3}\left(\mathbb{Z}_{n}\right)$ containing p and q, a contradiction to the assumption. Thus there can be only one prime factor for n. Hence the proof.

Lemma 4.1.24. $A H_{3}\left(\mathbb{Z}_{n}\right)$ is connected and the diameter is 2.
Proof. Let $x, y \in V$, where $V=\{0\} \cup\left(\cup_{p \in P} M_{p}\right)$. Then
Case (i) if $x, y \in\{0\} \cup M_{p}$, for $p \in P$, then by Lemma 4.1.17, there is a hyperedge $0 x y$. Therefore the distance between x and y is 1 in this case.
Case (ii) if $x \in M_{p}$ and $y \in M_{q}$ for $p, q(p \neq q) \in P$, then by Lemma 4.1.17, for every $u=k p$ and $v=l q$, there are hyperedges $h_{1}=0 x u, h_{2}=0 y v \in E$. Therefore the distance between x and y is 2 in this case. Hence the proof.
The remaining part of this section provides the enumeration of hyperedges in $A H_{3}\left(\mathbb{Z}_{n}\right)$, for certain values of n, using cliques.

Lemma 4.1.25. If $A H_{3}\left(\mathbb{Z}_{n}\right)$, $n=p^{\alpha}$, then $|E|=p^{\alpha-1} C_{3}$.
Proof. Let $n=p^{\alpha}$. Then by Lemma 4.1.23, $A H_{3}\left(\mathbb{Z}_{p^{\alpha}}\right)$ is complete. Therefore $|E|=p^{\alpha-1} C_{3}$ since $V=\{0\} \cup M_{p}$, where $M_{p}=\left\{p, 2 p, \ldots,\left(p^{\alpha-1}-1\right) p\right\}$.
Lemma 4.1.26. In $A H_{3}\left(\mathbb{Z}_{n}\right)$, if $n=2 q$, then $|E|=q C_{3}$.
Proof. Let $n=2 q$. Then $V=\{0\} \cup M_{2} \cup M_{q}$ and as seen in Lemma 4.1.20, $\{0\} \cup M_{2}$ has q vertices and q is isolated. Therefore the number of possible hyperedges in $A H_{3}\left(\mathbb{Z}_{n}\right)$ is $q C_{3}$.
Lemma 4.1.27. In $A H_{3}\left(\mathbb{Z}_{n}\right)$, if $n=p q(2 \neq p<q)$, then $|E|=p C_{3}+q C_{3}$.
Proof. Let $n=p q(2 \neq p<q)$. Then $V=\{0\} \cup M_{p} \cup M_{q}$, where
$M_{p}=\{p, 2 p, \cdots,(q-1) p\} ; M_{q}=\{q, 2 q, \cdots,(p-1) q\} ; M_{p} \cap M_{q}=\emptyset$. Obviously if $x \in M_{p}$ and $y \in M_{q}$, then $(0: x) \cap(0: y)=\{0\}$. Hence the possible number of hyperedges in $A H_{3}\left(\mathbb{Z}_{n}\right)$ is $|E|=p C_{3}+q C_{3}$.

Lemma 4.1.28. In $A H_{3}\left(\mathbb{Z}_{2^{2} q}\right),(q \geq 3),|E|=2 q C_{3}+4 C_{3}$.
Proof. Let $n=2^{2} q(q \geq 3)$. Then $V=\{0\} \cup M_{2} \cup M_{q}$, where
$M_{2}=\{2,4, \cdots,(q-1) 2,2 q, 2(q+1), \cdots, 2(2 q-1)\} ; M_{q}=\{q, 2 q, 3 q\}$. Note that $M_{2} \cap M_{q}=\{2 q\}$. Hence the total number of hyperedges in $A H_{3}\left(\mathbb{Z}_{n}\right)$ is $|E|=2 q C_{3}+4 C_{3}$.
Lemma 4.1.29. In $A H_{3}\left(\mathbb{Z}_{p^{2} q}\right)$, $(q \geq 3),|E|=p q C_{3}+p^{2} C_{3}-p C_{3}$.
Proof. Let $n=p^{2} q(q \geq 3)$. Then $V=\{0\} \cup M_{p} \cup M_{q}$, where
$M_{p}=\{p, 2 p, \cdots,(q-1) p, q p,(q+2) p, \cdots,(p q-1) p\} ;$
$M_{q}=\left\{q, 2 q, \cdots,(p-1) q, p q,(p+1) q, \cdots,\left(p^{2}-1\right) q\right\}$. Hence the subhypergraphs induced by $\{0\} \cup M_{p}$ and $\{0\} \cup M_{q}$ have $p q C_{3}$ and $p^{2} C_{3}$ hyperedges respectively. Now, $d \in M_{p} \cap M_{q} \Rightarrow p q \mid d \Rightarrow d \in\{p q, 2 p q, \cdots,(p-1) p q\}$, since $p^{2} q=n$ and so $\left|M_{p} \cap M_{q}\right|=p-1$. Hence $p C_{3}$ hyperedges are counted twice in the above enumeration process. Thus by eliminating repeated hyperedges, $|E|=p q C_{3}+p^{2} C_{3}-p C_{3}$.

Lemma 4.1.30. In $A H_{3}\left(\mathbb{Z}_{n}\right)$, if $n=p q r$, then
$|E|=p q C_{3}+p r C_{3}+q r C_{3}-p C_{3}-q C_{3}-r C_{3}$.
Proof. Let $n=p q r$. Then $V=\{0\} \cup M_{p} \cup M_{q} \cup M_{r}$. Notice that $\left|M_{p} \cap M_{q}\right|=r-1$; $\left|M_{q} \cap M_{r}\right|=p-1 ;\left|M_{p} \cap M_{r}\right|=q-1 ; M_{p} \cap M_{q} \cap M_{r}=\emptyset$. Therefore by a similar process of computation as in previous lemma, after eliminating repeated hyperedges, $|E|=p q C_{3}+p r C_{3}+q r C_{3}-p C_{3}-q C_{3}-r C_{3}$.

Illustration 4.1.31. The above process of enumeration is illustrated for $n=30$.
For $n=30, V=\{0\} \cup M_{2} \cup M_{3} \cup M_{5}$, where
$M_{2}=\{2,4,6,8,10,12,14,16,18,20,22,24,26,28\}$;
$M_{3}=\{3,6,9,12,15,18,21,24,27\} ; M_{5}=\{5,10,15,20,25\}$.
Therefore $|E|=15 C_{3}+10 C_{3}+6 C_{3}-3 C_{3}-5 C_{3}$.

4.2. Existence of BIBDs in $A H_{3}(N), N=\mathbb{Z}_{n}$, for certain values of n

In this section, the special RTNR $N=\left(\mathbb{Z}_{n},+_{n},[]\right)$, where [] is defined as $\left[\begin{array}{lll}x & y & z\end{array}\right]=\left\{\begin{array}{ll}x & \text { if } y=z=n-1 \\ 0 & \text { otherwise }\end{array}\right.$, for $x, y, z \in N$, is considered and certain values of n are identified for which block designs exist in $A H_{3}(N)$ and the properties of BIBD are verified. It is observed that block designs exist in $A H_{3}\left(\mathbb{Z}_{n}\right)$, for $n=5,9,11$.
Example 4.2.1. In $(V, E)=A H_{3}(N)$, where $N=\mathbb{Z}_{5}, V=\mathbb{Z}_{5} \backslash\{4\}=\{0,1,2,3\}$ and there is only one quad given by $\mathbf{1 2 3}(012,013,023)$. Also $A H_{3}(N)$ is a 3 uniform friendship hypergraph with universal friend 0 . It is observed that all the 4 vertices occur in $r=3$ hyperedges and any two distinct vertices occur in $\lambda=2$ hyperedges. The incidence matrix M satisfies $M M^{t}=(r-\lambda) I+\lambda J$, where I is the unit matrix of order $|V| \times|V|$ and J is a $|V| \times|V|$ matrix with entries 1 . Moreover $|V| r=3|E|$ and $\lambda(|V|-1)=2 r$. Thus (V, E) is a $(4,3,2)-$ BIBD.
Example 4.2.2. In $(V, E)=A H_{3}(N)$, where $N=\mathbb{Z}_{9}, V=\mathbb{Z}_{9} \backslash\{8\}$ and there are 14 quads which are given by

$$
\begin{array}{cll}
137(017,013,037), & \mathbf{1 2 4}(014,012,024), & \mathbf{2 3 5}(025,023,035), \\
\mathbf{3 4 6}(036,034,046), & \mathbf{4 5 7}(047,045,057), & \mathbf{1 5 6}(016,015,056), \\
\mathbf{2 6 7}(027,, 026,067), & \mathbf{1 2 3}(621,631,623), & \mathbf{2 5 7}(125,127,157), \\
467(146,147,167), & \mathbf{3 4 7}(234,237,247), & \mathbf{4 5 6}(245,246,256), \\
\mathbf{5 6 7}(356,357,367) . & &
\end{array}
$$

Thus, the annihilator 3-uniform hypergraph is a friendship 3-uniform hypergraph. It is easy to verify the properties of BIBD as in previous case and $A H_{3}(N)$ is seen to be a $(8,3,6)$-BIBD.
Example 4.2.3. In $(V, E)=A H_{3}(N)$, where $N=\mathbb{Z}_{11}, V=\mathbb{Z}_{11} \backslash\{10\}$ and there are 120 hyperedges and 30 quads. The annihilator 3 -uniform hypergraph is a friendship 3-uniform hypergraph and $A H_{3}(N)$ is a $(10,3,8)$-BIBD.

5. Conclusion

In this paper, it is proved that $A H_{3}(N)$ is empty if N is constant RTNR and it is complete if N is a zero RTNR. $A H_{3}\left(\mathbb{Z}_{n}\right)$ is seen to be nontrivial only when n is composite. A necessary and sufficient condition for $A H_{3}\left(\mathbb{Z}_{n}\right)$ to be complete is found as $n=p^{k}$ whereas it is connected except for $n=2 q, q$ is prime. The clique number for $A H_{3}\left(\mathbb{Z}_{n}\right)$ is found. Enumeration of hyperedges in $A H_{3}\left(\mathbb{Z}_{n}\right)$ is done for certain values of n by using cliques. It is observed that $A H_{3}\left(\mathbb{Z}_{n}\right)$, where \mathbb{Z}_{n} is special RTNR, exhibits $(n-1,3, n-3)-$ BIBD for some values of n.

References

[1] Badawi, A., The annihilator ideal graph of a commutative ring, Comm. Algebra, 42 (2014), 108-121.
[2] Beck, I., Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
[3] Berge, C., Hypergraphs, North-Holland, Amsterdam, (1989).
[4] Bretto, A., Hypergraph Theory Introduction, Springer, (2013).
[5] Buss, E., Han, Hiep, Schacht and Mathis, Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs, J. Combin. Theory Ser. B, 103(6) (2013), 658-678.
[6] Daddi, V. R. and Pawar Y. S., Right Ternary Near-rings, Bull. Calcutta Math. Soc., 103(1) (2011), 21-30.
[7] Hojjat Mostafanasab, Zero-Annihilator Graphs of Commutative Rings, Kragujevac Journal of Mathematics, (2017).
[8] Li, P. C., Van Rees, G. H. J., Seo, S. H., Singhi, N. M., Friendship 3hypergraphs, Discrete Math., 312 (2012), 1892-1899.
[9] Meera, C., An Algebraic Study on Right Ternary Near-rings and N-groups and fuzzy soft Right Ternary Near-rings and N-subgroups with some Applications (Ph.D, thesis), (2016).
[10] Pilz, G., Near-rings, North-Holland, Amsterdam, (1983).
[11] Stinson, D. R., Combinatorial Designs: Constructions and Analysis, Springer, (2004).
[12] Tamizh Chelvam, T. and Rammurthy, S., On annihilator graphs of near-rings, Palestine Journal of Mathematics, 5(Special Issue: 1) (2016), 100-107.

