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1. Introduction
The concept of fuzziness had a great impact in all branches of mathematics

which was put forth by Zadeh [13]. Later on, the idea of fuzziness and Topological
spaces were put together by C. L. Chang [3] and laid a foundation to the theory of
fuzzy topological spaces. By focussing the membership and non membership of the
elements, K. T. Attanasov [1] made out intuitionistic fuzzy sets and he extended
his research towards and gave out a generalization to intuitionistic L-fuzzy sets
with his friend Stoeva [2]. F. Smarandache [7], [8] put his thoughts towards the
degree of indeterminancy and bringforth the neutrosophic sets. Subsequently, the
neutrosophic topological spaces with the help of neutrosophic sets were found out
by A. A. Salama and S. A. Albowi [12]. By making all the works together as
inspiration, we [11] made Generalized topological spaces via neutrosophic sets and
named it as µNTS. The neutrosophic nowhere dense sets in NTS were put forth by
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R. Dhavaseelan [10]. Later on, R. Dhavaseelan [9] and his friends worked together
and made out neutrosophic Baire spaces. In this paper, we contemplated all the
important features of µN dense sets and µN Baire Space. Also a new type of µN

continuous function called µN contra-continuous were introduced.

2. Preliminaries

The concepts given here helps us to recall our memories regarding the basic
concepts of µN Topological Space.

Definition 2.1. [12] Let X be a non-empty fixed set. A Neutrosophic set [NS for
short] A is an object having the form A = {< x, µA(x), σA(x), γA(x) >: x ∈ X}
where µA(x), σA(x) and γA(x) which represents the degree of membership function,
the degree of indeterminacy and the degree of non-membership function respectively
of each element x ∈ X to the set A.

Remark 2.2. [12] A neutrosophic setA = {< x, µA(x), σA(x), γA(x) >: x ∈ X}
can be identified to an ordered triple A = {< µA(x), σA(x), γA(x) >} in ]−0, 1+[ on
X.

Remark 2.3. [12] For the sake of simplicity, we shall use the symbol A = {< µ(x),
σ(x), γ(x) >} for the neutrosophic set A = {< x, µA(x), σA(x), γA(x) >: x ∈ X}.
Remark 2.4. [12] Every intuitionistic fuzzy set A is a non empty set in X is
obviously on Neutrosophic sets having the form A = {< µA(x), 1− µA(x) + σA(x),
γA(x) >: x ∈ X}. In order to construct the tools for developing Neutrosophic Set
and Neutrosophic topology, here we introduce the neutrosophic sets 0N and 1N in
X as follows:
0N may be defined as follows
(01)0N = {< x, 0, 0, 1 >: x ∈ X}
(02)0N = {< x, 0, 1, 1 >: x ∈ X}
(03)0N = {< x, 0, 1, 0 >: x ∈ X}
(04)0N = {< x, 0, 0, 0 >: x ∈ X}
1N may be defined as follows
(11)1N = {< x, 1, 0, 0 >: x ∈ X}
(12)1N = {< x, 1, 0, 1 >: x ∈ X}
(13)1N = {< x, 1, 1, 0 >: x ∈ X}
(14)1N = {< x, 1, 1, 1 >: x ∈ X}
Definition 2.5. [12] Let A = {< µA, σA, γA >} be a NS on X, then the comple-
ment of the set A [ C(A) for short ] may be defined in three ways as follows:
(C1)C(A) = {< x, 1− µA(x), 1− σA(x), 1− γA(x) >: x ∈ X}
(C2)C(A) = {< x, γA(x), σA(x), µA(x) >: x ∈ X}
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(C3)C(A) = {< x, γA(x), 1− σA(x), µA(x) >: x ∈ X}
Definition 2.6. [12] Let X be a non-empty set and neutrosophic sets A and B in
the form A = {< x, µA(x), σA(x), γA(x) >: x ∈ X} and B = {< x, µB(x), σB(x),
γB(x) >: x ∈ X}. Then we may consider two possibilities for definitions for
subsets(A ⊆ B).
A ⊆ B may be defined as:
(A ⊆ B) ⇐⇒ µA(x) ≤ µB(x), σA(x) ≤ σB(x), γA(x) ≥ γB(x),∀x ∈ X
(A ⊆ B) ⇐⇒ µA(x) ≤ µB(x), σA(x) ≥ σB(x), γA(x) ≥ γB(x),∀x ∈ X
Proposition 2.7. [12] For any neutrosophic set A, the following conditions holds:
0N ⊆ A, 0N

A ⊆ 1N , 1N

Definition 2.8. [12] Let X be a non empty set and A = {< x, µA(x), σA(x), γA(x) >:
x ∈ X}, B = {< x, µB(x), σB(x), γB(x) >: x ∈ X} are NSs.
Then A ∩B may be defined as:
(I1)A ∩B =< x, µA(x) ∧ µB(x), σA(x) ∧ σB(x), γA(x) ∨ γB(x) >
(I2)A ∩B =< x, µA(x) ∧ µB(x), σA(x) ∧ σB(x), γA(x) ∨ γB(x) >
A ∪B may be defined as:
(I1)A ∪B =< x, µA(x) ∧ µB(x), σA(x) ∧ σB(x), γA(x) ∨ γB(x) >
(I2)A ∪B =< x, µA(x) ∧ µB(x), σA(x) ∧ σB(x), γA(x) ∨ γB(x) >

Definition 2.9. [11] A µN topology is a non - empty set X is a family of neutro-
sophic subsets in X satisfying the following axioms:
(µN1)0N ∈ µN

(µN2)G1 ∪G2 ∈ µN for any G1, G2 ∈ µN .

Remark 2.10. [11] The elements of µN are µN -open sets and their complement is
called µN closed sets.

Definition 2.11. [11] Let (X,µN) be a µN TS and A = {< x, µA(x), σA(x),
γA(x) >} be a neutrosophic set in X. Then the µN -Closure of A is the intersection
of all µN closed sets containing A.

Definition 2.12. [11] Let (X,µN) be a µN TS and A = {< x, µA(x), σA(x),
γA(x) >} be a neutrosophic set in X. Then the µN -Interior of A is the union of
all µN open sets contained in A.

Definition 2.13. [10] A neutrosophic set A in NTS is called neutrosophic dense
if there exists no neutrosophic closed sets B in (X,T ) such that A ⊂ B ⊂ 1N .

Definition 2.14. [9] The neutrosophic topological spaces is said to be neutrosophic
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Baire Space if NInt(∪∞i=1Gi) = 0N where Gi’s are neutrosophic nowhere dense set
in (X,T ).

3. µN Contra-continuous

Definition 3.1. The mapping f : (X, γ) → (Y, δ) is called as µN Contra-
continuous if the inverse image of µN - closed set in (Y, δ) is µN - open set in (X, γ).

Theorem 3.2. The mapping f : (X, γ) → (Y, δ) is µN Contra-continuous if and
only if the inverse image of µN -open set in (Y, δ) is µN -closed set in (X, γ).
Proof. Requisite Condition: Let f : (X, γ) → (Y, δ) be µN Contra-continuous
and V be a µN - open set in (Y, δ). From this we deduce that f−1(Y − V ) =
X−f−1(V ) is µN - open set in (X, γ) because f is µN Contra-continuous and hence
we conclude that f−1(V ) is µN -closed set in (X, γ).
Good enough Condition: Assume that f−1(V ) is µN - closed set in (X, γ) for
each µN - open set in (Y, δ). Let V be a µN - open set in (Y, δ) which obviously
gives us that Y − V is µN -closed set in (Y, δ). Now, f−1(Y − V ) = X − f−1(V )
is µN -open set in (Y, δ) which provides that f−1(V ) is µN - closed set in (X, γ).
Hence, f is µN Contra-continuous.

Theorem 3.3. For a function f : (X, γ) → (Y, δ) the following conditions are
equivalent.

(i) f is µN Contra-continuous.

(ii) The inverse image of µN - open set in (Y, δ) is µN - closed set in (X, γ).

(iii) For each x ∈ X and each µN - closed set V in(Y, δ) with f(x) ∈ V there exists
a µN - open set U in (X, γ) such that x ∈ X and f(U) ⊆ V .

Proof. (i)⇒ (ii) The proof is similar to the proof of theorem 3.2.
(i) ⇒ (iii) Let B be a µN - closed set such that f(x) ∈ B. We have that the
inverse image of µN - open set in (Y, δ) is µN - closed set in (X, γ) which yields us
that x ∈ f−1(B) which is µN - open in (X, γ). Let A = f−1(B) then x ∈ A and
f(A) ⊆ B. From this we obtain that for each x ∈ X and each µN - closed set V in
(Y, δ) with f(x) ∈ V there exists a µN - open set U in (X, γ) such that x ∈ X and
f(U) ⊂ V .
(iii) ⇒ (i) Let B be a µN - closed set in Y and x ∈ f−1(B) then we get f(x) ∈ B
and there exists a µN -open set U such that f(U) ⊆ B. Therefore, f−1(B) is equal
to the union of all µN - open sets of (X, γ). Thus, f is µN Contra-continuous.

Remark 3.4. The concept of µN Contra-continuous and µN -continuous are not
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depends on each other. This situation can be well explained by the upcoming exam-
ples.

Example 3.5. In this example we show that every µN -continuous need not be
µN Contra-continuous. Let X = {a, b} and Y = {u, v}, 0N = {< 0, 1, 1 >,
< 0, 1, 1 >}, P = {< 0.7, 0.3, 0.8 >,< 0.5, 0.8, 0.9 >}, Q = {< 0.4, 0.9, 0.9 >,
< 0.3, 0.9, 0.9 >}, R = {< 0.5, 0.8, 0.7 >,< 0.5, 0.8, 0.8 >}, S = {< 0.5, 0.8, 0.8 >,
< 0.5, 0.8, 0.7 >}, T = {< 0.3, 0.9, 0.9 >,< 0.4, 0.9, 0.9 >} we define a map-
ping from f : (X, γ) → (Y, δ) by f(a) = u, f(b) = v under the µN TS γ =
{P,Q,R, S, 0N} and δ = {S, T, 0N}. Here f−1(S) = S and f−1(T ) = T . Here the
mapping from f : (X, γ)→ (Y, δ) is µN -continuous but not µN Contra-continuous
since S and T are not µN - closed sets in(X, γ).

Example 3.6. In this example we made you to understand that every µN Contra-
continuous need not be µN -continuous. Let f : (X, γ) → (Y, δ) be a µN Contra-
continuous mapping which yields us that f−1(B) is µN closed in (X, γ). But
there is no way to establish f−1(B) as µN open. Hence we cannot establish µN

-continuous. Thus we conclude that every µN Contra-continuous need not be µN

-continuous. Let X = {a, b} and Y = {u, v}, 0N = {< 0, 1, 1 >< 0, 1, 1 >}, F =
{< 0.5, 0.7, 0.9 >< 0.3, 0.5, 0.7 >}, G = {< 0.8, 0.4, 0.7 >< 0.6, 0.50.7 >}, H =
{< 0.9, 0.3, 0.5 >< 0.7, 0.5, 0.3 >}, I = {< 0.7, 0.6, 0.8 >< 0.7, 0.5, 0.6 >}. We
define a mapping from f : (X, γ) → (Y, δ) by f(a) = u, f(b) = v under the µN

TS γ = {G,H, 0N} and δ = {F, I, 0N}. Here, f−1(F ) = Hc which is µN closed in
(X, γ). Also, f−1(I) = Gc which is µN closed in (X, γ). Both Hc and Gc are not
µN open in (X, γ).

Remark 3.7. Composition of two µN Contra-continuous need not be µN Contra-
continuous. Let f : (X, γ) → (Y, δ) and g : (Y, δ) → (Z, ρ) be two µN Contra-
continuous mappings. Let U be a µN open set in (Z, ρ). Since g is µN Contra-
continuous, g−1(U) is µN closed in (Y, δ). Since f is also µN Contra-continuous,
f−1(g−1(U)) is µN open in (X, γ). There are no possibilities to get f−1(g−1(U)) as
µN closed sets in (X, γ).

Example 3.8. In this example we show that Composition of two µN Contra-
continuous need not be µN Contra-continuous. Let X = {a, b} and Y = {u, v}, Z =
{l,m}, 0N = {< 0, 1, 1 >,< 0, 1, 1 >},M1 = {< 0.3, 0.2, 0.1 >,< 0.5, 0.4, 0.2 >},
M2 = {< 0.2, 0.4, 0.5 >,< 0.6, 0.3, 0.8 >},M3 = {< 0.3, 0.2, 0.1 >,< 0.6, 0.3,
0.2 >},M4 = {< 0.1, 0.8, 0.3 >,< 0.2, 0.6, 0.5 >},M5 = {< 0.5, 0.6, 0.2 >,
< 0.8, 0.7, 0.6 >,M6 = {< 0.1, 0.8, 0.3 >,< 0.2, 0.7, 0.6 >} we define the Contra-
continuous mappings from f : (X, γ) → (Y, δ) by f(a) = u, f(b) = v and also
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g : (Y, δ)→ (Z, ρ) by g(u) = l, g(v) = m under the µN TS γ = {M1,M2,M4, 0N},
δ = {M2,M3, 0N} and ρ = {M6, 0N}. Here g−1(M6) = {< 0.1, 0.8, 0.3 >,
< 0.2, 0.7, 0.6 >} which is µN -closed set in (Y, δ). From this we obtain that
f−1(g−1(M6)) = {< 0.1, 0.8, 0.3 >,< 0.2, 0.7, 0.6 >} which is not µN - closed set in
(X, γ). Thus g ◦ f need not be µN Contra-continuous.

Theorem 3.9. Let f : (X, γ) → (Y, δ) and g : (Y, δ) → (Z, ρ) be two functions
on µN TS. If g is µN -continuous and f is µN Contra-continuous then g ◦ f is µN

Contra-continuous.
Proof. Let U be a µN open set in (Z, ρ). Since g : (Y, δ)→ (Z, ρ) is µN -continuous,
g−1(U) is µN open in (Y, µ). Since f : (X, γ) → (Y, δ) is µN Contra-continuous,
f−1(g−1(U)) is µN closed in (X, γ). But f−1(g−1(U)) = (g ◦ f)−1(U) is µN closed
in (X, γ). Thus, g ◦ f is µN Contra-continuous.

Theorem 3.10. Let f : (X, γ) → (Y, δ) and g : (Y, δ) → (Z, ρ) be two functions
on µN TS. If g is µN Contra-continuous and f is µN continuous then g ◦ f is µN

Contra-continuous.
Proof. Let U be µN open set in (Z, ρ). Since g : (Y, δ) → (Z, ρ) is µN Contra-
continuous, g−1(U) is µN closed in (Y, δ). Also f : (X, γ)→ (Y, δ) is µN continuous,
f−1(g−1(U)) is µN closed in (X, γ). Hence, (g ◦ f)−1 is µN closed in (X, γ). Thus
g ◦ f is µN Contra-continuous.

Definition 3.11. The mapping f : (X, γ) → (Y, δ) is called as µN Perfectly-
continuous if the inverse image of µN - open set in (Y, δ) is µN - clopen set in
(X, γ).

Theorem 3.12. Every µN perfectly continuous is µN Contra-continuous.
Proof. Let f : (X, γ) → (Y, δ) be µN perfectly continuous and G be a µN open
set of (Y, δ). Since f is µN perfectly continuous, f−1(G) is µN -clopen set in (X, γ).
That is f−1(G) is both µN open and µN closed in (X, γ). Thus here we got the
inverse image of G ∈ (Y, δ) is µN closed in (X, γ). Thus, f : (X, γ)→ (Y, δ) is µN

Contra-continuous.

Remark 3.13. The contrary statement of the above theorem need not be true which
is established in the forthcoming example.

Example 3.14. Let X = {a, b} and Y = {u, v}, 0N = {< 0, 1, 1 >,< 0, 1, 1 >
}, A = {< 0.5, 0.7, 0.9 >,< 0.3, 0.5, 0.7 >}, B = {< 0.8, 0.4, 0.7 >,< 0.6, 0.5, 0.7 >
}, C = {< 0.9, 0.3, 0.5 >,< 0.7, 0.5, 0.3 >}, D = {< 0.7, 0.6, 0.8 >,< 0.7, 0.5, 0.6 >
}, we define a mapping from f : (X, γ) → (Y, δ) by f(a) = a, f(b) = b under the
µN TS γ = {B,C, 0N} and δ = {A,D, 0N}. Here, f−1(A) = Cc which is µN closed
in (X, γ). f−1(D) = Bc which is also µN closed in (X, γ). But both Cc and Bc are
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not µN open in (X, γ). Hence, f : (X, γ)→ (Y, δ) is µN Contra-continuous but not
µN perfectly continuous.

Theorem 3.15. If the mapping f : (X, γ)→ (Y, δ) is µN perfectly continuous then
f is both µN -continuous and µN Contra-continuous.
Proof. Let G be a µN open set in (Y, δ). Since, f is µN perfectly continuous,
f−1(G) is a µN - clopen in (X, γ) that implies us f−1(G) is both µN closed and µN

open in (X, γ). Thus f : (X, γ) → (Y, δ) is both µN -continuous and µN Contra-
continuous.

4. µN Dense Set

Definition 4.1. A neutrosophic set A in µN TS (X,µN) is called µN dense set if
there exists no µN closed set B in (X,µN) such that A ⊂ B ⊂ 1N .

Definition 4.2. A neutrosophic set A in µN TS is called µN nowhere dense set if ∃
no µN open set G in (X,µN) such that G ⊂ µNCl(A). (i.e) µNInt(µNCl(A)) = 0N .

Example 4.3. Let X = {a} define neutrosophic sets 0N = {< 0, 1, 1 >}, A =
{< 0.3, 0.3, 0.5 >}, B = {< 0.1, 0.2, 0.3 >}, C = {< 0.3, 0.2, 0.3 >}, D =
{< 0.3, 0.6, 0.2 >}, E = {< 0.3, 0.8, 0.5 >}, 1N = {< 1, 0, 0 >} and so we
define a µN TS µN = {0N , A,B,C}. Here, µNInt(µNCl(0N)) = {< 0, 1, 1 >},
µNInt(µNCl(A)) = {< 0.3, 0.2, 0.3 >}, µNInt(µNCl(B)) = {< 0.3, 0.2, 0.3 >},
µNInt(µNCl(C)) = {< 0.3, 0.2, 0.3 >}, µNInt(µNCl(D)) = {< 0.3, 0.2, 0.3 >},
µNInt(µNCl(E)) = {< 0, 1, 1 >}, µNInt(µNCl(1N)) = {< 0.3, 0.2, 0.3 >},
µNInt(µNCl(0N)c) = {< 0.3, 0.2, 0.3 >}, µNInt(µNCl(A)c) = {< 0, 1, 1 >},
µNInt(µNCl(B)c) = {< 0, 1, 1 >}, µNInt(µNCl(C)c) = {< 0, 1, 1 >},
µNInt(µNCl(D)c) = {< 0.3, 0.2, 0.3 >}, µNInt(µNCl(E)c) = {< 0.3, 0.2, 0.3 >},
µNInt(µNCl(1N)c) = {< 0, 1, 1 >}. Here, 0N , E,A

c, Bc, Cc, 1c
N are the µN

nowhere dense sets of (X,µN) and A,B,C,D, 1N , 0
c
N , E

c are not µN nowhere dense
sets of (X,µN).

Theorem 4.3. Every µN nowhere dense set is µN semi closed.
Proof. LetA ⊆ X be a µN nowhere dense set which gives us that µNInt(µNClA) =
0N . From this we retrieve that µNInt(µNClA) = 0N ⊆ A which implies us that
µNInt(µNClA) ⊆ A .

Remark 4.5. Reverse statement of the above proposition need not be true. It is
exemplified below.

Example 4.6. Let X = {a, b} and µN = {0N , A,B,C,D}, 0N = {< 0, 1, 1 >
< 0, 1, 1 >}, A = {< 0.6, 0.4, 0.8 >< 0.8, 0.6, 0.9 >}, B = {< 0.6, 0.3, 0.8 >
< 0.9, 0.2, 0.7 >}, C = {< 0.5, 0.4, 0.9 >< 0.7, 0.8, 0.9 >}, D = {< 0.4, 0.6, 0.9 >
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< 0.6, 0.8, 0.9 >}, E = {< 0.3, 0.7, 0.9 >< 0.5, 0.9, 0.9 >}, 1N = {< 1, 0, 0 >
< 1, 0, 0 >}. The µN semi- closed sets of (X,µN) are {E,A,B,Ac, Bc, Cc, Ec, (1N)c}.
The µN Nowhere Dense sets of (X,µN) are{E,Bc, 0N}. From this we can conclude
that Every µN semi closed sets need not be µN nowhere Dense.

Proposition 4.7. If A is a µN closed set in (X,µN) with µNInt(A) = 0N then A
is a µN nowhere dense set in (X,µN).
Proof. Let G1 be a µN Closed set in (X,µN) which yields that µNCl(G1) = G1.
Now let me Take that µNInt(µNCl(G1)). But we already know that G1 is µN

Closed which obviously leads us to µNInt(µNCl(G1)) = µNInt(G1) = 0N . Since
by going back to G1 is a µN Closed set in (X,µN) with µNInt(G1) = 0N . Hence,
we acquire that G1 is µN nowhere dense set in (X,µN).

Definition 4.8. A µN closed set in (X,µN) is said to be is µN nowhere dense set
then µNInt(A) = 0N .

Theorem 4.9. If A is µN nowhere dense set in (X,µN) then µNInt(A) = 0N .
Proof. Let A be a µN nowhere dense set in (X,µN). We are having that
A ⊆ µNCl(A) from this we acquire that µNInt(A) ⊆ µNInt(µNCl(A)) = 0N .
Because of A is µN nowhere dense set in (X,µN). Hence we come to a decision
that A is µN nowhere dense set in (X,µN) then µNInt(A) = 0N .

Remark 4.10. The reverse statement of the above theorem is not necessarily be
true. This can be exemplified as follows.

Example 4.11. Let X = {a} and µN = {0N , A, C} be a µN TS where
0N = {< 0, 1, 1 >}, A = {< 0.7, 0.8, 0.9 >}, B = {< 0.3, 0.4, 0.6 >}, C = {< 0.9,
0.7, 0.6 >}. Here, µNInt(B) = 0N but µNInt(µNCl(B)) = {< 0.9, 0.7, 0.6 >} 6=
0N . Hence B is not a µN nowhere dense set in (X,µN).

Remark 4.12. The complement of µN nowhere dense set need not be µN nowhere
dense set. This can be elaborated via an exemplary.

Example 4.13. Let µN = {0N , A,B} where 0N = {< 0, 1, 1 >}, A = {< 0.1, 0.4,
0.6 >}, B = {< 0.2, 0.3, 0.5 >}, C = {< 0.6, 0.6, 0.1 >}, D = {< 0.5, 0.7, 0.2 >}.
Here, {0N , C,D,A

c, Bc} are µN nowhere dense but their complements {(0N)c, Cc,
Dc, A,B} are µN Dense but not µN nowhere dense.

Theorem 4.14. If A is a µN nowhere dense set in (X,µN) then A is a µN dense
set in (X,µN).
Proof. Let A be a µN nowhere dense set in (X,µN). Already we have ”If A is a
µN nowhere dense set in (X,µN) then µNInt(A) = 0N”. Now let us consider that
µNCl((A) = (µNInt(A)) = (0N) = 1N . Hence, Ā is a µN dense set in (X,µN).
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Remark 4.15. The contrary statement of the above theorem need not be true.
That is, If A is a µN dense set in (X,µN) then A need not be a µN nowhere dense
set in (X,µN).

Example 4.16. Let X = {a} define neutrosophic sets 0N = {< 0, 1, 1 >},
A1 = {< 0.7, 0.8, 0.9 >}, A2 = {< 0.3, 0.4, 0.6 >}, A3 = {< 0.9, 0.7, 0.6 >},
1N = {< 1, 0, 0 >} and we define a µN TS µN = {0N , A1, A3}. Here, A2, A3, 1N are
µN dense sets in (X,µN) and (A3)

c, 0N are µN nowhere dense sets in (X,µN). Here,
A2 is µN dense set but its complement is not µN nowhere dense set in (X,µN).

Theorem 4.17. If A is a µN Dense, µN open in (XµN) provided B ⊆ A ,then B
is a µN nowhere dense in (X,µN).
Proof. Let us take that B ⊆ A

⇒ µNCl(B) ⊆ µNCl(A) = A

⇒ µNCl(B) ⊆ A

⇒ µNInt(µNCl(B)) ⊆ µNInt(A)

⇒ µNInt(µNCl(B)) ⊆ µNCl(A)

⇒ µNInt(µNCl(B)) ⊆ 1N

⇒ µNInt(µNCl(B)) ⊆ 0N

⇒ µNInt(µNCl(B)) = 0N

Hence B is µN nowhere dense in (X,µN).

Theorem 4.18. Let A be a µN closed set in (X,µN) then A is µN nowhere dense
in (X,µN) iff µNInt(A) = 0N .
Proof. Let A be a µN closed set in (X,µN) with µNInt(A) = 0N . By using already
existing statement,”If A is µN closed set in (X,µN) with µNInt(A) = 0N then A
is µN nowhere dense in (X,µN)”. Thus we conclude that A is µN nowhere dense
in (X,µN). Conversely assume that A be a µN nowhere dense in (X,µN). Then,
µNInt(µNCl(A)) = 0N which obviously yields us that µNInt(A) = 0N . Since A is
µN closed set in (X,µN), so µNCl(A) = A. Thus, we acquire that µNInt(A) = 0N .

Definition 4.19. A neutrosophic set U in µN TS is called to be as µN Rare set if
µNInt(U) = 0N .

Theorem 4.20. Every µN nowhere dense set in (X,µN) is µN rare set in (X,µN).
Proof. Let A be a µN nowhere dense set which brings us µNInt(µNCl(A)) = 0N .
Already we haveA ⊆ µNCl(A) by applying this we get µNIntA ⊆ µNInt(µNCl(A)).
From this we deduce that µNInt(A) = 0N which concludes that A is µN rare set
in (X,µN). Hence we come up with the decision that every µN nowhere dense set
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in (X,µN) is µN rare set in (X,µN).

Remark 4.21. The reverse concept of the above theorem need not be true which
is explained in detail with the help of an example inorder to help for the readers
understanding.

Example 4.22. Let X = {a} define neutrosophic sets 0N = {< 0, 1, 1 >},
U1 = {< 0.3, 0.3, 0.5 >}, U2 = {< 0.1, 0.2, 0.3 >}, U3 = {< 0.3, 0.2, 0.3 >},
U4 = {< 0.3, 0.6, 0.2 >}, U5 = {< 0.3, 0.8, 0.5 >}, 1N = {< 1, 0, 0 >} and we
define a µN TS µN = {0N , U1, U2, U3}. Here, {0N , U5, (U1)

c, (U2)
c, (U3)

c, (U4)
c} are

µN nowhere dense sets in (X,µN) and {0N , U4, U5, (U1)
c, (U2)

c, (U3)
c, U4

c} are µN

rare sets in (X,µN). From the above two collections we can observe that U4 is µN

rare set in (X,µN) but it is not µN nowhere dense set in (X,µN).

Remark 4.23. If A is µN closed and µN rare set in (X,µN) then A is µN nowhere
dense set in (X,µN). Proof is obvious.

Theorem 4.24. If A is a µN nowhere dense set in (X,µN) then µNClA is a µN

nowhere dense set in (X,µN).
Proof. Let us take µNCl(A) = B. Now consider µNInt(µNClB) = µNInt(µNCl(
µNCl(A))) which brings us that µNInt(µNClB) = µNInt(µNCl(A)) which obvi-
ously leads us into µNInt(µNClB) = 0N . Hence , B is µN nowhere dense set in
(X,µN). Thus we conclude that µNClA is a µN nowhere dense set in (X,µN).

Theorem 4.25. If A is a µN nowhere dense set in (X,µN) then (µNClA) is a µN

dense set in (X,µN).
Proof. We have “If A is a µN nowhere dense set in (XµN) then µNClA is a µN

nowhere dense set in (X,µN)”. From the above statement we acquire that µNCl(A)
is a µN nowhere dense set in (X,µN). Also we have, If A is a µN nowhere dense set
in (X,µN) then A is a µN dense set in (X,µN). From this we deduce that (µNClA)
is a µN dense set in (X,µN).

Theorem 4.26. If A is a µN dense set in (X,µN) and B is a µN nowhere dense
set in (X,µN) then A ∩B is a µN nowhere dense set in (X,µN).
Proof. Let B be a µN nowhere dense set in (X,µN) and A be a µN dense set in
(X,µN) which implies that µNClA = 1N . Now, we are yet to prove that A ∩ B is
µN nowhere dense set in (X,µN). Now let us consider,

µNInt(µNClA ∩B) ⊆ µNInt(µNClA) ∩ µNInt(µNClB)

⊆ µNInt(1N) ∩ µNInt(µNClB)

⊆ µNInt(µNClB) = 0N

Hence, µNInt(µNCl(A∩B)) = 0N which yields us that A∩B is µN nowhere dense
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set in (X,µN).
In general Neutrosophic Topological spaces,”If A is a µN dense set in (X,µN) and
B is a µN nowhere dense set in (X,µN) if and only if A∩B is a µN nowhere dense
set in (X,µN)”. But in µN Topological Spaces it is not necessary to be that if
A ∩ B is a µN nowhere dense set in (X,µN) then A is a µN dense set in (X,µN)
and B is a µN nowhere dense set in (X,µN).

Theorem 4.27. If A is a µN dense set in (X,µN) and also µN open set in (X,µN)
then A is a µN nowhere dense set in (X,µN).
Proof. Let A be a µN dense set in (X,µN) such that µNClA = 1N . Now con-
sider µNInt(µNClA) = (µNCl(µNInt(A))) = (µNCl(A)) = 0N . Thus, we get
µNInt(µNCl(A)) = 0N . Hence, we conclude thatA is µN nowhere dense set in
(X,µN).

Definition 4.28. The µN TS is called as µN open hereditarily irresolvable space
if µNInt(µNClA) 6= 0N , then µNInt(A) 6= 0N for any non-zero neutrusophic sets
in (X,µN).

Theorem 4.29. If (X,µN) is a µN be a µN open hereditarily irresolvable space,
any non zero neutrosophic set A with µNInt(A) = 0N is a µN nowhere dense set
in (X,µN).
Proof. Let A be a non zero neutrosophic set in µN open hereditarily irresolvable
space (X,µN) with µNInt(A) = 0N from this we retrieve that µNInt(µNClA) 6= 0N

which is contrary to µNInt(A) = 0N . Hence, we must obtain that µNInt(µNClA) =
0N . Hence, A is µN nowhere dense set in (X,µN).

5. µN Baire Space

Definition 5.1. Let (X,µN) be a µN Topological space A neutrosophic set in
(X,µN) is called µN first category if A = ∪∞i=1Gi where Gi’s are µN nowhere dense
set in (X,µN). The remaining neutrosophic sets in (X,µN) is said to be µN second
category.

Proposition 5.2. If A is a µN first category set in (X,µN), then A = ∩∞i=1Gi

where µNCl(Gi) = 1N .
Proof. Let A be a µN first category set in (X,µN) which yields us that A = ∪∞i=1Ai

where Ai’s are µN nowhere dense set in (X,µN).
Now, A = (∪∞i=1Ai) = ∩∞i=1(Ai), we have, If A is a µN nowhere dense set in (X,µN),
then A is µN dense set in (X,µN). Let us put Gi = (Ai). Thus, we get A = ∩∞i=1Gi

where µNCl(Gi) = 1N .

Remark 5.3. The reverse process of the above theorem need not be true. It can be
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explained below with the help of an example.
Let X = {a} define neutrosophic sets 0N = {< 0, 1, 1 >}, A1 = {< 0.7, 0.8,
0.9 >}, A2 = {< 0.3, 0.4, 0.6 >}, A3 = {< 0.9, 0.7, 0.6 >}, 1N = {< 1, 0, 0 >}
and we define a µN TS µN = {0N , A1, A3}. Here, A2, A3, 1N are µN dense sets in
(X,µN). In this case A = {< 0.3, 0.7, 0.6 >} from this we get A = {< 0.6, 0.3, 0.3 >
} which is not µN first category set in (X,µN).

Definition 5.4. Let A be a µN first category set in (X,µN) then A is called µN

Residual set in (X,µN).

Definition 5.5. The µN Topological spaces is said to be µN Baire Space if
µNInt(∪∞i=1Gi) = 0N where Gi’s are µN nowhere dense set in (X,µN).

Example 5.6. Let X = {a}, we define a neutrosophic sets in µN TS such that
0N = {< 0, 1, 1 >}, A = {< 0.1, 0.4, 0.6 >}, B = {< 0.2, 0.3, 0.5 >},
C = {< 0.6, 0.6, 0.1 >}, D = {< 0.5, 0.7, 0.2 >}. Let µN = {0N , A,B} be a µN TS.
Here, 0N , C,D,A

c, Bc are a µN nowhere dense set in (X,µN). C and Ac are of µN

first category set in (X,µN). The left out µN nowhere dense sets in (X,µN) are
of µN Second category set in (X,µN). Here, µNInt(0N ∪ C ∪D ∪ Ac ∪ Bc) = 0N .
Hence, (X,µN) is a µN Baire Space.

Theorem 5.7. If µNCl(∩∞i=1(Ui)) = 1N , where Ui’s are µN dense set in (X,µN)
and µN open sets in (X,µN), Then (X,µN) is a µN Baire Space.
Proof. We have µNCl(∩∞i=1Ui) = 1N , Now taking compliment on both sides we re-
trieve that (µNCl(∩∞i=1Ui) = 0N from this we easily acquire that µNInt(∪∞i=1(Ui)) =
0N . We put Vi = Ui. Then we get µNInt(∪∞i=1Vi) = 0N . Here Ui ∈ µN gives
us that (Ui) is µN closed which gives that Vi is µN closed. So, µNInt(Vi) =
µNInt(Ui) = (µNCl(Ui)) = 0N . Already we have, ”If A is a µN closed set in
(X,µN) with µNInt(A) = 0N then A is µN nowhere dense set in (X,µN)”. From
this we say that Vi is µN nowhere dense set in (X,µN). Thus we acquire that
µNInt(∪∞i=1Vi) = 0N ,Vi’s are µN nowhere dense set in (X,µN) that leads us into
(X,µN) is a µN Baire Space.
In the above theorem, U must be muN dense set and µN open set in (X,µN). If
anyone of the condition is not present then the theorem fails to occur. Counter
examples are provided to illustrate the scenario.

Example 5.8. Let X = {a} and µN = {0N , A, C,E} be a µN TS where
0N = {< 0, 1, 1 >}, A = {< 0.3, 0.4, 0.5 >}, B = {< 0.3, 0, 0.1 >},
C = {< 0.4, 0.6, 0.8 >}, D = {< 0.4, 0, 0.1 >}, E = {< 0.4, 0.4, 0.5 >},
1N = {< 1, 0, 0 >}. Here B and D are the only µN dense sets in (X,µN) but
not µN open in (X,µN). In this case we cannot get any µN no where dense sets



µN Dense sets and Its Nature 177

and so we cannot retrieve µN Baire Space.

Example 5.9. Let X = {a, b} and µN = {0N , A,B,C} be a µN TS where
0N = {< 0, 1, 1 >,< 0, 1, 1 >}, A = {< 0.7, 0.3, 0.8 >,< 0.5, 0.8, 0.9 >},
B = {< 0.8, 0.2, 0.7 >,< 0.7, 0.2, 0.4 >}, C = {< 0.5, 0.8.0.9 >,< 0.3, 0.8, 0.8 >},
D = {< 0.5, 0.8, 0.8 >,< 0, 5, 0.8, 0.8 >}, E = {< 0.7, 0.2, 0.8 >,< 0.8, 0.2, 0.7 >}.
Here A,B,C are µN open in (X,µN) but not µN dense sets in (X,µN). In this
case also we have not get any µN no where dense sets and so we cannot deduce µN

Baire Space.

Proposition 5.10. Let (X,µN) be a µN TS. Then the following are equivalent.

(i) (X,µN) is µN Baire Space.

(ii) µNInt(A) = 0N , for all µN first category set in (X,µN).

(iii) µNCl(A) = 1N , for every µN Residual set in (X,µN).

Proof. (i)⇒ (ii) Assume (X,µN) is a µN Baire Space. Let A be a µN first category
set in (X,µN) from this we obtain that A = ∪∞i=1Ai where Ai’s are µN nowhere
dense sets in (X,µN). Now µNInt(A) = µNInt(∪∞i=1Ai) = 0N . Since, (X,µN) is
µN Baire Space which obviously µNInt(A) = 0N .
(ii) ⇒ (iii) Assume µNInt(A) = 0N , for all µN first category set in (X,µN). Let
us assume B be a µN Residual set in (X,µN) then B will be a µN first category
set in (X,µN). By our assumption we get that µNInt(B) = 0N which yields us
that (µNCl(B)) = 0N . Now taking compliment on both sides we obtain that
µNCl(B) = (0N)⇒ µNCl(B) = 1N where B is a µN residual set in (X,µN).
(iii) ⇒ (i) Assume that µNCl(A) = 1N , µN residual set in (X,µN). Let A be a
µN first category set in (X,µN) which implies us that A = ∪∞i=1Ai, Ai’s are µN

nowhere dense set in (X,µN). We have,If A is µN first category set in (X,µN) then
A is µN residual set in (X,µN). Since,A is µN residual set in (X,µN) by (iii) we
get µNCl(A) = 1N which gives us that (µNInt(A)) = 1N . By taking complement
we deduce that µNInt(A) = 0N . From this we acquire that µNInt(∪∞i=1Ai) = 0N ,
Ai’s are µN nowhere dense set in (X,µN). Thus, (X,µN) is µN Baire Space.

Proposition 5.11. Every µN first category set in (X,µN) is µN Rare set.
Proof. Let A be a µN first category set in a µN Baire Space (X,µN) from this we
obtain that A = ∪∞i=1Ai where Ai’s are µN nowhere dense sets in (X,µN). Now
µNInt(A) = µNInt(∪∞i=1Ai) = 0N . Since, (X,µN) is µN Baire Space which obvi-
ously µNInt(A) = 0N . From this we say that A is µN Rare set.

Remark 5.12. The reverse process of the above statement need not be true. This
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can be illustrated with the help of the upcoming example.

Example 5.13. Let X = {a}, we define a neutrosophic sets in µN TS such
that 0N = {< 0, 1, 1 >}, A = {< 0.1, 0.4, 0.6 >}, B = {< 0.2, 0.3, 0.5 >},
C = {< 0.6, 0.6, 0.1 >}, D = {< 0.5, 0.7, 0.2 >}. Let µN = {0N , A,B} be a µN

TS. Here, 0N , C,D,A
c, Bc are a µN nowhere dense set in (X,µN). C and Ac are of

µN first category set in (X,µN). The µN Rare sets of (X,µN) are Ac, Bc, C,D, 0N .
From this we can observe that Bc, D, 0N are µN Rare sets of (X,µN) but not µN

first category set in (X,µN).

6. Conclusion

In this article, we have emanated some characterizations of µN Topological
Spaces. Here we discussed about µN Dense sets, µN Nowhere Dense sets, µN rare
set. Some comparisons were done. Some New type of µN continuous functions such
as µN Perfectly Continuous, µN Contra-Continuous functions were discovered and
their properties were listed out. In future, we wish to put our thoughts towards
µN -Connected, µN -Compact and so on.
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