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Abstract: The N-transform (so-called natural transform) of a function, which
may combine Laplace and Sumudu transforms, has been introduced and investi-
gated. Recently q-analogues of the N-transform has been presented and studied.
Among q-extensions of a number of polynomials and functions, the q-Humbert
functions and some of their interesting identities and properties have recently been
introduced and provided. In this paper, we aim to present q-natural transforms
of a finite product of the q-Humbert functions. Some particular cases of our main
identities are also considered.
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1. Introduction and Preliminaries
Some notations and known facts about q-analogues are recalled (see, e.g., [14],

[16], [19], [20], [26, Chapter 6]). The q-shifted factorial (a; q)n is defined by

(a; q)n :=


1 (n = 0),
n−1∏
k=0

(
1− a qk

)
(n ∈ N),

(1.1)

where a, q ∈ C and it is assumed that a 6= q−m (m ∈ N0). Here and in the following,
let N, Z, R, R+, and C denote the sets of positive integers, integers, real numbers,
positive real numbers, and complex numbers, respectively. Also let N0 := N∪ {0}.
The q-shifted factorial for non-positive integer subscript is defined by

(a; q)−n :=
1

(1− aq−1) (1− aq−2) · · · (1− aq−n)
(n ∈ N0) , (1.2)

which gives

(a; q)−n =
1

(aq−n; q)n
=

(−q/a)n q(
n
2)

(q/a; q)n
(n ∈ Z) . (1.3)

We also recall

(a; q)∞ :=
∞∏
k=0

(
1− a qk

)
(a, q ∈ C, |q| < 1) . (1.4)

It follows from (1.1), (1.2) and (1.4) that

(a; q)n =
(a; q)∞

(aqn; q)∞
(n ∈ Z), (1.5)

which can be extended to n = α ∈ C as follows:

(a; q)α =
(a; q)∞

(aqα; q)∞
(α ∈ C; |q| < 1). (1.6)

Here and elsewhere, the principal value of qα is assumed.
The q-analogue (or q-extension) of n ∈ N is defined by

[n]q =
1− qn

1− q
= 1 + q + · · ·+ qn−1 (n ∈ N), (1.7)
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whose extension is given by

[z]q =
1− qz

1− q
(z ∈ C, q ∈ C \ {1}, qz 6= 1). (1.8)

The q-analogue of n! is defined by

[n]q! :=

 1 (n = 0),
n∏
k=1

[k]q (n ∈ N).
(1.9)

The q-binomial coefficient (or the Gaussian polynomial analogous to
(
n
k

)
) is defined

by [
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
(n, k ∈ N0, 0 ≤ k ≤ n) . (1.10)

A q-analogue of the classical exponential function ez is defined by

eq(z) :=
∞∑
n=0

zn

[n]q!
=
∞∑
n=0

[(1− q)z]n

(q; q)n
=

1

((1− q)z; q)∞

(
|z| < 1

1− q
= [∞]q

)
,

(1.11)
and another q-analogue of the classical exponential function ez is defined by

Eq(z) :=
∞∑
n=0

q(
n
2) zn

[n]q!
=
∞∑
n=0

q(
n
2) [(1− q)z]n

(q; q)n
= (−(1− q)z; q)∞ (|z| <∞).

(1.12)
The q-exponential functions are related as follows:

eq(−z)Eq(z) = eq(z)Eq(−z) = 1, (1.13)

and
e1/q(z) = Eq(z). (1.14)

Remark 1.1. The q-exponential functions are often defined by using the following
Euler’s formulae (see, e.g., [1, 2, 5], [26, p. 487]):

eq(z) :=
∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
(|q| < 1, |z| < 1) (1.15)

and

Eq(z) :=
∞∑
n=0

(−1)n q(
n
2) zn

(q; q)n
= (z; q)∞ (|q| < 1, z ∈ C) . (1.16)
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We find from (1.11) and (1.12) that

eq(z) = eq((1− q)z), eq(z) = eq

(
z

1− q

)
(1.17)

and

Eq(z) = Eq(−(1− q)z), Eq(z) = Eq

(
− z

1− q

)
. (1.18)

F. H. Jackson [19] may be recognized as the first to develop q-calculus in a
systematic way. The q-derivative of a function f(t) is defined by

Dq {f(t)} :=
dqf(t)

dqt
=
f(qt)− f(t)

(q − 1)t
. (1.19)

Obviously

lim
q→1

Dq {f(t)} =
d

dt
{f(t)} ,

if f(t) is differentiable. Some formulas involving the q-derivative are recalled:

Dq {f(t)g(t)} = f(qt)Dq {g(t)}+ g(t)Dq {f(t)} , (1.20)

which, upon exchanging f and g, gives

Dq {f(t)g(t)} = f(t)Dq {g(t)}+ g(qt)Dq {f(t)} ; (1.21)

Dq

{
f(t)

g(t)

}
=
g(qt)Dq {f(t)} − f(t)Dq {g(t)}

g(t)g(qt)
; (1.22)

Dq {tα} = [α]q t
α−1 (α ∈ C);

The following q-analogue of the function (t+ a)n (n ∈ N0) (see [25])

(t+ a)nq =
n−1∏
j=0

(
t+ qja

)
= tn

(
−a
t
; q
)
n
, (1.23)

an empty product, here and in the following, being conventionally understood to
be 1, is the unique solution of the differential equation

Dq

{
(t+ a)nq

}
= [n]q (t+ a)n−1q , (t+ a)0q = 1; (1.24)
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Similarly as in (1.6),

(1 + t)αq :=
(1 + t)∞q

(1 + qαt)∞q
=

(−t; q)∞
(−qαt; q)∞

(t, α ∈ C; |q| < 1); (1.25)

The following generalizations of (1.24) where n ∈ Z, and a, b, β ∈ C are given

Dq

{
(at+ b)nq

}
= a [n]q (at+ b)n−1q , (1.26)

Dq

{
(a+ bt)nq

}
= b [n]q (a+ bqt)n−1q , (1.27)

Dq

{
(1 + bt)βq

}
= b [β]q (1 + bqt)β−1q ; (1.28)

The chain rule for the usual derivatives is among most useful and important formu-
las. Regrettably it is noted (see [20, pp. 3–4]) that there does not exist a general
chain rule for q-derivatives. Yet, there is an exception taken by

Dq {f(u(t))} = Dqβ {f(u)} ·Dq {u(t)} , (1.29)

where u = u(t) = α tβ, α and β being constants.
Suppose that 0 < a < b. The (Jackson’s) definite q-integral is defined as follows

(see, e.g., [19], [20, Section 19], [26, Chapter 6]):∫ b

0

f(t) dqt = (1− q)
∞∑
j=0

qjb f
(
qjb
)

(1.30)

and ∫ b

a

f(t) dqt =

∫ b

0

f(t) dqt−
∫ a

0

f(t) dqt. (1.31)

A more general version of (1.30) is given by∫ b

0

f(t) dqg(t) =
∞∑
j=0

f
(
qjb
) (
g
(
qjb
)
− g

(
qj+1b

))
. (1.32)

The improper q-integral of f(t) on [0,∞) is defined by∫ ∞
0

f(t) dqt = (1− q)
∞∑

j=−∞

f
(
qj
)
qj (0 < q < 1) (1.33)
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and ∫ ∞
0

f(t) dqt =
q − 1

q

∞∑
j=−∞

f
(
qj
)
qj (q > 1). (1.34)

Also (see [19], [25]) ∫ ∞/A
0

f(t) dqt = (1− q)
∑
k∈Z

qk

A
f

(
qk

A

)
. (1.35)

It is noted from [20, p. 68, Theorem 19.1] and [20, p. 71, Proposition 19.1]
that the improper q-integrals (1.33) and (1.34) converges if tαf(t) is bounded in a
neighborhood of t = 0 for some 0 ≤ α < 1 and tβf(t) is bounded for sufficiently
large t with some β > 1, respectively.

The formula for q-integration by parts is given as follows:∫ b

a

f(t)dqg(t) = f(t)g(t)
∣∣∣b
a
−
∫ b

a

g(qt)dqf(t) (0 ≤ a < b ≤ ∞). (1.36)

Jackson [19] defined the q-gamma function Γq(t) by

Γq(t) =
(q; q)∞
(qt; q)∞

(1− q)1−t = (1− q)t−1q (1− q)1−t (0 < q < 1; t > 0) . (1.37)

The correct integral representation of Γq(t) (e.g., [25, Eq. (1.11)]) is

Γq(t) =

∫ 1
1−q

0

ut−1 Eq(−qu) dqu (0 < q < 1, t > 0). (1.38)

Another integral representation of q-gamma function denoted by qΓ(t) is given by
(see [25, Eq. (1.19)])

qΓ(t) = K(A, t)

∫ ∞/A(1−q)
0

ut−1 eq(−u) dqu (0 < q < 1, t > 0), (1.39)

where K(η, t) is the notable function (see [25, Eq. (1.18)])

K(η, t) := ηt−1

(
− q
η
; q
)
∞

(−η; q)∞(
− qt

η
; q
)
∞

(−q1−tη; q)∞

(η ∈ C \ {0}, t ∈ C; 0 < q < 1) .

(1.40)
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The function K(η, t) satisfies K(qη, t) = K(η, t), which is meant to be a q-constant
in η.

The series representations of Γq(t) and qΓ(t) are given as follows:

Γq(t) = (q; q)∞(1− q)1−t
∞∑
k=0

qkt

(q; q)k
(1.41)

and

qΓ(t) =
K(A; t)

(1− q)t−1
(
− 1
A

; q
)
∞

∑
k∈Z

(
qk

A

)t(
− 1

A
; q

)
k

, (1.42)

where 0 < q < 1 and t > 0. Indeed, apply Euler’s formula (see, e.g., [9, p. 490,
Corollary 10.2.2]) to the first equality of (1.37) to give (1.41). Also, use the third
equality of (1.11) and (1.35) in (1.39) to get (1.42).

Suppose that f(t) is a real-(or complex-) valued function of the (time) variable
t > 0 and s is a real or complex parameter. The Laplace transform of the function
f(t) is defined by

F (s) = L{f (t) : s} =

∫ ∞
0

e−st f (t) dt

= lim
τ→∞

∫ τ

0

e−st f (t) dt,

(1.43)

whenever the limit exits (as a finite number). The so-called Sumudu transform is
an integral transform which was defined and studied by Watugala [30] to facilitate
the process of solving differential and integral equations in the time domain. The
Sumudu transform has been used in various applications of system engineering and
applied physics. For some fundamental properties of the Sumudu transform, one
may refer to the works including (for example) [10-12, 30]. It turns out that the
Sumudu transform has very special properties which are useful in solving prob-
lems involving kinetic equations in science and engineering. Let A be the class of
exponentially bounded functions f : R→ R, that is,

|f(t)| <


M exp

(
− t

τ1

)
(t 5 0),

M exp

(
t

τ2

)
(t = 0),

(1.44)
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where M , τ1 and τ2 are some positive real constants. The Sumudu transform
defined on the set A is given by the following formula (see [30]; see also [13], [22])

G (u) = S [f (t) ;u] :=

∫ ∞
0

e−t f (ut) dt (−τ1 < u < τ2) . (1.45)

The Sumudu transform given in (1.45) can also be derived directly from the Fourier
integral. Moreover, it can be easily verified that the Sumudu transform is a linear
operator and the function G(u) in (1.45) keeps the same units as f(t); that is, for
any real or complex number λ, we have

S[f(λt);u] = G(λu).

The Sumudu transform G(u) and the Laplace transform F (s) exhibit a duality
relation that may be expressed as follows:

G

(
1

s

)
= s F (s) or G (u) =

1

u
F

(
1

u

)
. (1.46)

The Sumudu transform has been shown to be the theoretical dual of the Laplace
transform.

The q-analogues of the Laplace transform (1.43) of a function f(t) are defined
by (see, e.g., [6], [8], [15], [24])

Lq {f(t); s} =
1

1− q

∫ 1
s

0

Eq

(
− qst

1− q

)
f(t) dqt (1.47)

and

qL {f(t); s} =
1

1− q

∫ ∞
0

eq

(
− st

1− q

)
f(t) dqt. (1.48)

Use (1.30) and (1.33) in (1.47) and (1.48) with (1.6), respectively, to give the
following summation representations:

Lq {f(t); s} =
(q; q)∞
s

∞∑
j=0

qj

(q; q)j
f
(
qj/s

)
(1.49)

and

qL {f(t); s} =
1

(−s; q)∞

∑
j∈Z

(−s; q)j qj f
(
qj
)
. (1.50)

The bilateral summation (1.50) may be a corrected form of the corresponding
formula in [2, p. 243].
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Khan and Khan [21] introduced and investigated N-transform of f(t) defined
on [0,∞), which is a new and interesting integral transform which may combine
the Laplace and Sumudu transforms, defined by

N {f(t)} (u; v) =

∫ ∞
0

e−vt f (ut) dt (1.51)

provided this integral converges. Obviously, for u, v > 0,

N {f(t)} (u; v) =
1

u

∫ ∞
0

exp

(
−vt
u

)
f(t) dt =

1

u
L
{
f (t) :

v

u

}
, (1.52)

and

N {f(t)} (u; v) =
1

v

∫ ∞
0

e−tf

(
ut

v

)
dt =

1

v
S
[
f (t) ;

u

v

]
(f(t) ∈ A). (1.53)

Let A1 be the class of Eq-bounded functions f : R→ R, that is,

|f(t)| <


M Eq

(
t

(1− q)τ1

)
(t 5 0),

M Eq

(
− t

(1− q)τ2

)
(t = 0),

(1.54)

where M , τ1 and τ2 are some positive real constants. Albayrak et al. [1, 2] intro-
duced the q-analogue of Sumudu transform of the function f(t) ∈ A1 as follows
(see also [7], [28]):

Sq {f(t); s} =
1

(1− q)s

∫ s

0

Eq

(
− qt

(1− q)s

)
f(t) dqt (s ∈ (−τ1, τ2)) . (1.55)

Let A2 be the class of eq-bounded functions f : R→ R, that is,

|f(t)| <


M eq

(
− t

(1− q)τ1

)
(t 5 0),

M eq

(
t

(1− q)τ2

)
(t = 0),

(1.56)

where M , τ1 and τ2 are some positive real constants. Albayrak et al. [1, 2] in-
troduced another q-analogue of Sumudu transform of the function f(t) ∈ A2 as
follows:

qS {f(t); s} =
1

(1− q)s

∫ ∞
0

eq

(
− t

(1− q)s

)
f(t) dqt (s ∈ (−τ1, τ2)) . (1.57)
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Al-Omari [5] introduced q-analogues of the N-transform as follows:

Nq {f(t)} (u; v) =
1

(1− q)u

∫ u
v

0

f(t) Eq

(
− qv

(1− q)u
t

)
dqt (f ∈ A1) (1.58)

and

qN {f(t)} (u; v) =
1

1− q

∫ ∞
0

f(t) eq

(
− v

(1− q)u
t

)
dqt (f ∈ A2) . (1.59)

Remark 1.2. Use (1.5), (1.12), (1.30), and (1.58) to give

Nq {f(t)} (u; v) =
(q; q)∞
v

∞∑
k=0

qk

(q; q)k
f
(
qk
u

v

)
(f ∈ A1) . (1.60)

Similarly, we have

qN {f(t)} (u; v) =
1(

− v
u
; q
)
∞

∑
k∈Z

(
−v
u

; q
)
k
qk f

(
qk
)

(f ∈ A2) . (1.61)

The Humbert function Jm,n(x) is defined by means of the generating function
(see, e.g., [17, 18, 23, 27, 29])

exp

[
x

3

(
u+ t− 1

ut

)]
=

∞∑
m,n=−∞

Jm,n(x)um tn. (1.62)

Or, explicitly,

Jm,n(x) =
∞∑
k=0

(−1)k

k! Γ(m+ k + 1)Γ(n+ k + 1)

(x
3

)m+n+3k

=
(x

3

)m+n 1

Γ(m+ 1)Γ(n+ 1)
0F2

(
; m+ 1, n+ 1 ; −x

3

27

)
.

(1.63)

Srivastava and Shehata [27] introduced the following three q-extensions of the

Humbert functions: The q-Humbert function H (1)
m,n(x|q) of the first kind is defined

by means of the generating function

eq

(xu
3

)
eq

(
xt

3

)
eq

(
− x

3ut

)
=

∞∑
m,n=−∞

H (1)
m,n(x|q)um tn. (1.64)
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An explicit representation of H (1)
m,n(x|q) is given by

H (1)
m,n(x|q) =

∞∑
k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k

(
(1− q)x

3

)m+n+3k

. (1.65)

The q-Humbert function H (2)
m,n(x|q) of the second kind is defined by means of

the generating function

Eq

(xu
3

)
Eq

(
xt

3

)
Eq

(
− qx

3ut

)
=

∞∑
m,n=−∞

q(
m
2 )+(n2)H (2)

m,n(x|q)um tn. (1.66)

An explicit representation of H (2)
m,n(x|q) is given by

H (2)
m,n(x|q) =

∞∑
k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k
q

1
2
k[3k+2(m+n)−1]

(
(1− q)x

3

)m+n+3k

.

(1.67)

The q-Humbert function H (3)
m,n(x|q) of the third kind is defined by means of the

generating function

eq

(xu
3

)
eq

(
xt

3

)
Eq

(
− qx

3ut

)
=

∞∑
m,n=−∞

H (3)
m,n(x|q)um tn. (1.68)

An explicit representation of H (3)
m,n(x|q) is given by

H (3)
m,n(x|q) =

∞∑
k=0

(−1)k

(q; q)k (q; q)m+k (q; q)n+k
qk+1

(
(1− q)x

3

)m+n+3k

. (1.69)

Remark 1.3. Using the ratio test to the series expressions of the q-Humbert
functions of the first, second, and third kinds (1.65), (1.67), and (1.69), we find
that, for 0 < q < 1,

(i) The series H (1)
m,n(x|q) in (1.65) converges absolutely for |x| < 3

1−q ;

(ii) The series H (2)
m,n(x|q) in (1.67) converges absolutely for |x| <∞;

(iii) The series H (3)
m,n(x|q) in (1.69) converges absolutely for |x| < 3

3
√
q (1−q) .

For q-analogues of other transforms, one may be referred (for example) to [3],
[4].

In this paper, we aim to provide q-natural transforms of a finite product of
the q-Humbert functions. Among numerous particular cases of our main identities,
some of them are also considered.
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2. Nq-Transforms of the q-Humbert functions
The Nq-transforms of the q-Humbert functions are given. Here and elsewhere,

a multiple-valued function assumes to be taken as its principal value.

Theorem 2.1. Let 0 < q < 1. Also let n ∈ N, u, v ∈ R+, and aj ∈ C \ {0} (j =
1, . . . , n), ω ∈ C with <(ω) > 1. Further let µj, νj ∈ Z with < (ω + µj + νj) > 0
(j = 1, . . . , n), and u

v
< 1

a(1−q)3 where a = min{|aj| : j = 1, . . . , n}. Then the
Nq-transform of the q-Humbert functions of the first kind is given by

Nq

{
tω−1

n∏
j=1

H (1)
3µj ,3νj

(
3(ajt)

1
3

∣∣ q)}(u; v) =
1

v

(
(1− q)u

v

)w−1

×
n∏
j=1

∞∑
`=0

(−1)`
(
(1− q)aj uv

)µj+νj+`
[`]q! [3µj + `]q! [3νj + `]q!

Γq (ω + µj + νj + `) .

(2.1)

Proof. Let

f1(t) := tω−1
n∏
j=1

H (1)
3µj ,3νj

(
3(ajt)

1
3

∣∣ q). (2.2)

Then employ (1.65) in f1(t) in (2.2) to get

f1(t) =
∞∑
k=0

n∏
j=1

(−1)k (1− q)3µj+3νj+3k a
µj+νj+k
j tµj+νj+k+ω−1

(q; q)k (q; q)3µj+k (q; q)3νj+k
. (2.3)

Since 0 < t < u
v
, we have |t| < 1

a(1−q)3 . we find from Remark 1.3, (i) and

assumptions that f1 ∈ A1. Then using f1(t) in (2.3) to Eq. (1.60) and simplifying
the resulting identity with the aid of some chosen identities given in Section 1, we
can obtain the desired identity (2.1).

Theorem 2.2. Let 0 < q < 1. Also let n ∈ N, u, v ∈ R+, and aj ∈ C \ {0} (j =
1, . . . , n), ω ∈ C with <(ω) > 1. Further let µj, νj ∈ Z with < (ω + µj + νj) > 0
(j = 1, . . . , n). Then the Nq-transform of the q-Humbert functions of the second
kind is given by

Nq

{
tω−1

n∏
j=1

H (2)
3µj ,3νj

(
3(ajt)

1
3

∣∣ q)}(u; v) =
1

v

(
(1− q)u

v

)w−1

×
n∏
j=1

∞∑
`=0

(−1)` q
`
2
[3`+2(3µj+3νj)−1]

(
(1− q)aj uv

)µj+νj+`
[`]q! [3µj + `]q! [3νj + `]q!

Γq (ω + µj + νj + `) .

(2.4)
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Proof. Using (1.60) and (1.67), similarly as in the proof of Theorem 2.1, we can
prove the identity (2.4). We omit the details.

Theorem 2.3. Let 0 < q < 1. Also let n ∈ N, u, v ∈ R+, and aj ∈ C \ {0} (j =
1, . . . , n), ω ∈ C with <(ω) > 1. Further let µj, νj ∈ Z with < (ω + µj + νj) > 0
(j = 1, . . . , n), and u

v
< q

a(1−q)3 where a = min{|aj| : j = 1, . . . , n}. Then the
Nq-transform of the q-Humbert functions of the third kind is given by

Nq

{
tω−1

n∏
j=1

qµj+νjH (3)
3µj ,3νj

(
3
(
q−2ajt

) 1
3
∣∣ q)}(u; v) =

q

v

(
(1− q)u

v

)w−1

×
n∏
j=1

∞∑
`=0

(−1)`
(

(1−q)u
qv

aj

)µj+νj+`
[`]q! [3µj + `]q! [3νj + `]q!

Γq (ω + µj + νj + `) .

(2.5)

Proof. Use (1.60) and (1.69). The proof would run parallel with that of Theorem
2.1. The details are omitted.

3. qN-Transforms of the q-Humbert functions

The qN-transforms of the q-Humbert functions are presented.

Theorem 3.1. Let 0 < q < 1. Also let n ∈ N, u, v ∈ R+, and aj ∈ C \ {0} (j =
1, . . . , n), ω ∈ C with <(ω) > 1. Further let µj, νj ∈ Z with < (ω + µj + νj) > 0
(j = 1, . . . , n), and u

v
< 1

a(1−q)3 where a = min{|aj| : j = 1, . . . , n}. Then the

qN-transform of the q-Humbert functions of the first kind is given by

qN

{
tω−1

n∏
j=1

H (1)
3µj ,3νj

(
3(ajt)

1
3

∣∣ q)}(u; v) =
1

1− q

(
(1− q)u

v

)w

×
n∏
j=1

∞∑
`=0

(−1)`
(
(1− q)aj uv

)µj+νj+`
[`]q! [3µj + `]q! [3νj + `]q!

qΓ (ω + µj + νj + `)

K
(
u
v
;ω + µj + νj + `

) . (3.1)

Proof. Use (1.42), (1.61), and (1.65). We can prove the identity (3.1) as in the
proof of Theorem 2.1. We omit the details.

Theorem 3.2. Let 0 < q < 1. Also let n ∈ N, u, v ∈ R+, and aj ∈ C \ {0} (j =
1, . . . , n), ω ∈ C with <(ω) > 1. Further let µj, νj ∈ Z with < (ω + µj + νj) > 0
(j = 1, . . . , n), and u

v
< q

a(1−q)3 where a = min{|aj| : j = 1, . . . , n}. Then the
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qN-transform of the q-Humbert functions of the third kind is given by

qN

{
tω−1

n∏
j=1

qµj+νjH (3)
3µj ,3νj

(
3
(
q−2ajt

) 1
3
∣∣ q)}(u; v) =

q

1− q

(
(1− q)u

v

)w−1

×
n∏
j=1

∞∑
`=0

(−1)`
(

(1−q)u
qv

aj

)µj+νj+`
[`]q! [3µj + `]q! [3νj + `]q!

qΓ (ω + µj + νj + `)

K
(
u
v
;ω + µj + νj + `

) . (3.2)

Proof. Use (1.42), (1.61), and (1.69). The proof would run parallel with that of
Theorem 2.1. The details are omitted.

4. Special cases
Among numerous particular cases of the main identities in Sections 2 and 3,

we consider only the case n = 1 with a1 = a, µ1 = µ, and ν1 = ν in the following
corollaries.

Corollary 4.1. Let 0 < q < 1. Also let u, v ∈ R+, a ∈ C \ {0}, and ω ∈ C with
<(ω) > 1. Further let µ, ν ∈ Z with < (ω + µ+ ν) > 0, and u

v
< 1

a(1−q)3 where

a = |a|. Then the Nq-transform of the q-Humbert functions of the first kind is
given by

Nq

{
tω−1H (1)

3µ,3ν

(
3(at)

1
3

∣∣ q)}(u; v) =
1

v

(
(1− q)u

v

)w−1
×
∞∑
`=0

(−1)`
(
(1− q)au

v

)µ+ν+`
[`]q! [3µ+ `]q! [3ν + `]q!

Γq (ω + µ+ ν + `) .

(4.1)

Corollary 4.2. Let 0 < q < 1. Also let u, v ∈ R+, a ∈ C \ {0}, and ω ∈ C with
<(ω) > 1. Further let µ, ν ∈ Z with < (ω + µ+ ν) > 0. Then the Nq-transform of
the q-Humbert functions of the second kind is given by

Nq

{
tω−1H (2)

3µ,3ν

(
3(at)

1
3

∣∣ q)}(u; v) =
1

v

(
(1− q)u

v

)w−1
×
∞∑
`=0

(−1)` q
`
2
[3`+2(3µ+3ν)−1] ((1− q)au

v

)µ+ν+`
[`]q! [3µ+ `]q! [3ν + `]q!

Γq (ω + µ+ ν + `) .

(4.2)

Corollary 4.3. Let 0 < q < 1. Also let u, v ∈ R+, a ∈ C \ {0}, and ω ∈ C with
<(ω) > 1. Further let µ, ν ∈ Z with < (ω + µ+ ν) > 0, and u

v
< q

a(1−q)3 where
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a = |a|. Then the Nq-transform of the q-Humbert functions of the third kind is
given by

Nq

{
tω−1H (3)

3µ,3ν

(
3
(
q−2at

) 1
3
∣∣ q)}(u; v) =

q

v

(
(1− q)u

v

)w−1

×
∞∑
`=0

(−1)`
(

(1−q)u
qv

a
)µ+ν+`

[`]q! [3µ+ `]q! [3ν + `]q!
Γq (ω + µ+ ν + `) .

(4.3)

Corollary 4.4. Let 0 < q < 1. Also let u, v ∈ R+, a ∈ C \ {0}, and ω ∈ C with
<(ω) > 1. Further let µ, ν ∈ Z with < (ω + µ+ ν) > 0, and u

v
< 1

a(1−q)3 where

a = |a|. Then the qN-transform of the q-Humbert functions of the first kind is
given by

qN

{
tω−1H (1)

3µ,3ν

(
3(at)

1
3

∣∣ q)}(u; v) =
1

1− q

(
(1− q)u

v

)w
×
∞∑
`=0

(−1)`
(
(1− q)au

v

)µ+ν+`
[`]q! [3µ+ `]q! [3ν + `]q!

qΓ (ω + µ+ ν + `)

K
(
u
v
;ω + µ+ ν + `

) . (4.4)

Corollary 4.5. Let 0 < q < 1. Also let u, v ∈ R+, a ∈ C \ {0}, and ω ∈ C with
<(ω) > 1. Further let µ, ν ∈ Z with < (ω + µ+ ν) > 0, and u

v
< q

a(1−q)3 where

a = |a|. Then the qN-transform of the q-Humbert functions of the third kind is
given by

qN

{
tω−1qµ+νH (3)

3µ,3ν

(
3
(
q−2at

) 1
3
∣∣ q)}(u; v) =

q

1− q

(
(1− q)u

v

)w−1

×
∞∑
`=0

(−1)`
(

(1−q)u
qv

a
)µ+ν+`

[`]q! [3µ+ `]q! [3ν + `]q!
qΓ (ω + µ+ ν + `)

K
(
u
v
;ω + µ+ ν + `

) . (4.5)

5. Concluding remarks
The q-natural transforms of a finite product of the q-Humbert functions are

investigated. The main identities in this paper are easily recognized to yield diverse
and numerous special identities. For example, the cases u = 1 and v = 1 of the
main results in Sections 2 and 3 can yield, respectively, the corresponding q-Laplace
and q-Sumudu transform formulas.
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Posing a problem. Establish the qN-transform of the q-Humbert functions
of the second kind as in Section 3.

De Sole and Kac [25, p. 13] commented that the simplest proof of the second
equalities in (1.11) and (1.12) due to Euler can be conducted by using the q-
analogue of Taylor’s formula (see, e.g., [26, p. 486, Theorem 6.3], [25, p. 75,
Theorem 20.2]). Here we try to prove (1.12) by using the q-analogue of Taylor’s
formula. Indeed, let

f(t) = (−(1− q)t; q)∞ =
∞∏
k=0

(
1 + t(1− q)qk

)
(0 < q < 1).

Applying f(t) to the q-analogue of Taylor’s formula, we obtain

f(t) =
n∑
j=0

q(
j
2) bj

[j]q!
+Rn,q, (5.1)

where

Rn,q =
1

[n]q!

∫ b

0

f
(
qn+1t

)
(b− qt)nq dqt

(
b ∈ R+

)
.

Using (1.23) and (1.30), we have

Rn,q =
(1− q) bn+1

[n]q!

∞∑
k=0

qk f
(
qn+1+kb

) n−1∏
µ=0

(
1− qk+µ+1

)
. (5.2)

We find that

n−1∏
µ=0

(
1− qk+µ+1

)
≤

n−1∏
µ=0

(
1− qk+n−1+1

)
=
(
1− qn+k

)n
and

f
(
qn+1+kb

)
=
∞∏
j=0

(
1 + (1− q)qn+1+kqjb

)
≤
∞∏
j=0

(
1 + b(1− q)qj

)
= f(b)

Apply these two inequalities in (5.2) to give

Rn,q ≤ (1− q)f(b)
bn+1

[n]q!

∞∑
k=0

qk
(
1− qn+k

)n
. (5.3)
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We observe that

∞∑
k=0

qk
(
1− qn+k

)n
=
∞∑
k=0

qk
n∑
j=0

(−1)j
(
n

j

)
qj(n+k)

=
n∑
j=0

(−1)j
(
n

j

)
qjn

∞∑
k=0

qk(j+1)

=
n∑
j=0

(−1)j
(
n

j

)
qjn

1− qj+1
,

and ∣∣∣∣∣
n∑
j=0

(−1)j
(
n

j

)
qjn

1− qj+1

∣∣∣∣∣ ≤
n∑
j=0

(
n

j

)
qjn

1− qj+1
≤

n∑
j=0

(−1)j
(
n

j

)
qjn

1− q

= O ((1 + qn)n) = O
(
qn

2
)
≤ O

(
qn(n−1)

)
≤ O

(
q
n(n−1)

2

) (5.4)

for sufficiently large n ∈ N. Employing the inequality (5.4) in (5.3), we get

Rn,q = O

(
q(

n
2) bn

[n]q!

)
(5.5)

for sufficiently large n ∈ N. Since the radius of convergence of the series in the first
equality in (1.12) is ∞, we find from (5.5) that Rn,q → 0 as n→∞ for all b ∈ R+.
In view of (5.1) and (1.12), we get

Eq(b) =
∞∑
n=0

q(
n
2) bn

[n]q!
= (−(1− q)b; q)∞

(
b ∈ R+

)
. (5.6)

Finally, by the principle of analytic continuation, the second equality in (5.6) holds
true for all z ∈ C.
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