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1. Introduction, Definitions and Notations
Let us consider that the reader is familiar with the fundamental results and the

standard notations of the Nevanlinna theory of meromorphic functions which are
available in [7, 9, 14]. We also use the standard notations and definitions of the
theory of entire functions which are available in [13] and therefore we do not explain
those in details. Let f be an entire function and Mf (r) = max{|f(z)| : |z| = r}.
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When f is meromorphic, the Nevanlinna’s characteristic function Tf (r) (see [7, p.
4]) plays the same role as Mf (r), which is defined as

Tf (r) = Nf (r) +mf (r),

wherever the function Nf (r, a)(N f (r, a)) known as counting function of a-points
(distinct a-points) of meromorphic f is defined as follows:

Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+ nf (0, a) log r

(
N f (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+ nf (0, a) log r

)
,

in addition we represent by nf (r, a)(nf (r, a)) the number of a-points (distinct a-
points) of f in |z| ≤ r and an ∞ -point is a pole of f . In many occasions Nf (r,∞)
and N f (r,∞) are symbolized by Nf (r) and N f (r) respectively.

On the other hand, the function mf (r,∞) alternatively indicated by mf (r)
known as the proximity function of f is defined as:

mf (r) =
1

2π

2π∫
0

log+ |f(reiθ)|dθ, where

log+ x = max(log x, 0) for all x > 0 .

Also we may employ m(r, 1
f−a) by mf (r, a).

For an entire function f, the Nevanlinna’s characteristic function Tf (r) of f is
defined as

Tf (r) = mf (r).

Moreover, if f is non-constant entire then Tf (r) is also strictly increasing and
continuous function of r. Therefore its inverse T−1f : (Tf (0),∞) → (0,∞) exists

and is such that lim
s→∞

T−1f (s) = ∞. For x ∈ [0,∞) and k ∈ N where N is the

set of all positive integers, we define iterations of the exponential and logarithmic
functions as exp[k] x = exp(exp[k−1] x) and log[k] x = log(log[k−1] x), with convention
that log[0] x = x, log[−1] x = expx, exp[0] x = x, and exp[−1] x = log x. Further we
assume that p and q always denote positive integers. Now considering this, let us
recall that Juneja et al. [8] defined the (p, q)-th order and (p, q)-th lower order of
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an entire function as follows:

Definition 1. [8] Let p ≥ q. The (p, q)-th order ρ(p,q)(f) and (p, q)-th lower order
λ(p,q)(f) of an entire function f are defined as:

ρ(p,q)(f) = lim sup
r→+∞

log[p]Mf (r)

log[q] r
and λ(p,q)(f) = lim inf

r→+∞

log[p]Mf (r)

log[q] r
.

If f is a meromorphic function, then

ρ(p,q)(f) = lim sup
r→+∞

log[p−1] Tf (r)

log[q] r
and λ(p,q)(f) = lim inf

r→+∞

log[p−1] Tf (r)

log[q] r
.

For any entire function f , using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r)
{cf. [7]}, one can easily verify that

ρ(p,q)(f) = lim sup
r→+∞

log[p]Mf (r)

log[q] r
= lim sup

r→+∞

log[p−1] Tf (r)

log[q] r

and λ(p,q)(f) = lim inf
r→+∞

log[p]Mf (r)

log[q] r
= lim inf

r→+∞

log[p−1] Tf (r)

log[q] r
.

when p ≥ 2.
The function f is said to be of regular (p, q) growth when (p, q) -th order and

(p, q)-th lower order of f are the same. Functions which are not of regular (p, q)
growth are said to be of irregular (p, q) growth.

Extending the notion of (p, q)-th order, recently Shen et al. [11] introduced the
new concept of [p, q]-ϕ order of entire and meromorphic functions where p ≥ q.
Later on, combining the definition of (p, q)-order and [p, q]-ϕ order, Biswas (see,
e.g., [2]) redefined the (p, q)-order of entire and meromorphic functions without
restriction p ≥ q.

However the above definition is very useful for measuring the growth of entire
and meromorphic functions. If p = l and q = 1 then we write ρ(l,1)(f) = ρ(l)(f) and
λ(l,1)(f) = λ(l)(f) where ρ(l)(f) and λ(l)(f) are respectively known as generalized
order and generalized lower order of entire or meromorphic function f . For details
about generalized order one may see [10]. Also for p = 2 and q = 1, we respectively
denote ρ(2,1)(f) and λ(2,1)(f) by ρ(f) and λ(f) which are classical growth indicators
such as order and lower order of entire or meromorphic function f .

Now let L be a class of continuous non-negative functions α defined on (−∞,+∞)
such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞. For any
α ∈ L, we say that α ∈ L0

1, if α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞ and
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α ∈ L0
2, if α(exp((1 + o(1))x)) = (1 + o(1))α(exp(x)) as x→ +∞. Finally for any

α ∈ L, we also say that α ∈ L1, if α(cx) = (1+o(1))α(x) as x0 ≤ x→ +∞ for each
c ∈ (0,+∞) and α ∈ L2, if α(exp(cx)) = (1 + o(1))α(exp(x)) as x0 ≤ x→ +∞ for
each c ∈ (0,+∞). Clearly, L1 ⊂ L0

1, L2 ⊂ L0
2 and L2 ⊂ L1. Further we assume

that throughout the present paper α2, β, β1, β2 ∈ L1 and α1 ∈ L2 unless otherwise
specifically stated.

Considering the above, Sheremeta [12] introduced the concept of generalized
order (α, β) of an entire function. For details about generalized order (α, β) one
may see [12].

Now, we shall give the definition of the generalized order (α, β) of a entire func-
tion which considerably extend the definition of ϕ-order introduced by Chyzhykov
et al. [6]. In order to keep accordance with Definition 1, have gave a minor mod-
ification to the original definition of generalized order (α, β) of an entire function
(e.g. see, [12]).

Definition 2. The generalized order (α, β) denoted by ρ(α,β)[f ] and generalized
lower order (α, β) denoted by λ(α,β)[f ] of an entire function f are defined as:

ρ(α,β)[f ] = lim sup
r→+∞

α(Mf (r))

β(r)
, and

λ(α,β)[f ] = lim inf
r→+∞

α(Mf (r))

β(r)
where α ∈ L1.

If f is a meromorphic function, then

ρ(α,β)[f ] = lim sup
r→+∞

α(exp(Tf (r)))

β(r)
, and

λ(α,β)[f ] = lim inf
r→+∞

α(exp(Tf (r)))

β(r)
where α ∈ L2.

Using the inequality Tf (r) ≤ logMf (r) ≤ 3Tf (2r) {cf.[7]}, for an entire func-
tion f , one may easily verify that

ρ(α,β)[f ] = lim sup
r→+∞

α(Mf (r))

β(r)
= lim sup

r→+∞

α(exp(Tf (r)))

β(r)
, and

λ(α,β)[f ] = lim inf
r→+∞

α(Mf (r))

β(r)
lim inf
r→+∞

α(exp(Tf (r)))

β(r)
when α ∈ L2.

Definition 1 is a special case of Definition 2 for α(r) = log[p] r and β(r) = log[q] r.
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Now in order to refine the growth scale namely the generalized order (α, β),
we introduce the definitions of another growth indicators, called generalized type
(α, β) and generalized lower type (α, β) respectively of an entire function which
are as follows:

Definition 3. The generalized type (α, β) denoted by σ(α,β)[f ] and generalized
lower type (α, β) denoted by σ(α,β)[f ] of an entire function f having finite positive
generalized order (α, β) (0 < ρ(α,β)[f ] <∞) are defined as :

σ(α,β)[f ] = lim sup
r→+∞

exp(α(Mf (r)))

(exp(β(r)))ρ(α,β)[f ]
and

σ(α,β)[f ] = lim inf
r→+∞

exp(α(Mf (r)))

(exp(β(r)))ρ(α,β)[f ]
, (α ∈ L1).

If f is a meromorphic function, then

σ(α,β)[f ] = lim sup
r→+∞

exp(α(exp(Tf (r))))

(exp(β(r)))ρ(α,β)[f ]
and

σ(α,β)[f ] = lim inf
r→+∞

exp(α(exp(Tf (r))))

(exp(β(r)))ρ(α,β)[f ]
, (α ∈ L2).

It is obvious that 0 ≤ σ(α,β)[f ] ≤ σ(α,β)[f ] ≤ ∞.
Analogously, to determine the relative growth of two entire functions having

same non-zero finite generalized lower order (α, β), one can introduced the defini-
tion of generalized weak type (α, β) and generalized upper weak type (α, β) of a
entire function f of finite positive generalized lower order (α, β), λ(α,β)[f ] in the
following way:

Definition 4. The generalized upper weak type (α, β) denoted by τ (α,β)[f ] and gen-
eralized weak type (α, β) denoted by τ(α,β)[f ] of an entire function f having finite
positive generalized lower order (α, β) (0 < λ(α,β)[f ] <∞) are defined as:

τ (α,β)[f ] = lim sup
r→+∞

exp(α(Mf (r)))

(exp(β(r)))λ(α,β)[f ]
and

τ(α,β)[f ] = lim inf
r→+∞

exp(α(Mf (r)))

(exp(β(r)))λ(α,β)[f ]
, (α ∈ L1).

If f is a meromorphic function, then

τ (α,β)[f ] = lim sup
r→+∞

exp(α(exp(Tf (r))))

(exp(β(r)))λ(α,β)[f ]
and

τ(α,β)[f ] = lim inf
r→+∞

exp(α(exp(Tf (r))))

(exp(β(r)))λ(α,β)[f ]
, (α ∈ L2).
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It is obvious that 0 ≤ τ(α,β)[f ] ≤ τ (α,β)[f ] ≤ ∞.
In this paper we wish to prove some results related to the growth rates of

composite entire and meromorphic functions on the basis of their generalized order
(α, β), generalized type (α, β) and generalized weak type (α, β). In fact some works
in this direction have already been explored in [3, 4, 5].

2. Main Results
First we present a lemma which will be needed in the sequel.

Lemma 1. [1] Let f be meromorphic and g be entire then for all sufficiently large
values of r,

Tf(g)(r) 6 {1 + o(1)} Tg(r)

logMg(r)
Tf (Mg(r)).

Now we present the main results of the paper.

Theorem 1. Let f be meromorphic and g be an entire function such that 0 <
λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ] <∞ and σ(α2,β2)[g] <∞ where β1(r) ≤ exp(α2(r)). Then

lim sup
r→+∞

α1(exp(Tf(g)(r)))

α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))
≤
σ(α2,β2)[g] · ρ(α1,β1)[f ]

λ(α1,β1)[f ]
.

Proof. We get from Lemma 1 and the inequality Tg(r) ≤ logMg(r) {cf.[7]} for
all sufficiently large values of r that

α1(exp(Tf(g)(r))) 6 (1 + o(1))α1(exp(Tf (Mg(r))))

i.e., α1(exp(Tf(g)(r))) 6 (1 + o(1))(ρ(α1,β1)[f ] + ε)β1(Mg(r))

i.e., α1(exp(Tf(g)(r))) 6 (1 + o(1))(ρ(α1,β1)[f ] + ε) exp(α2(Mg(r)))

i.e., α1(exp(Tf(g)(r))) 6

(1 + o(1))(ρ(α1,β1)[f ] + ε)(σ(α2,β2)[g] + ε)(exp(β2(r)))
ρ(α2,β2)[g]. (2.1)

Now from the definition of λ(α1,β1)[f ], we obtain for all sufficiently large values
of r that

α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g]))) ≥ (λ(α1,β1)[f ]−ε)(exp(β2(r)))
ρ(α2,β2)[g]. (2.2)

Therefore from (2.1) and (2.2), it follows for all sufficiently large values of r
that

α1(exp(Tf(g)(r)))

α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))
≤
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(1 + o(1))(ρ(α1,β1)[f ] + ε)(σ(α2,β2)[g] + ε)(exp(β2(r)))
ρ(α2,β2)[g]

(λ(α1,β1)[f ]− ε)(exp(β2(r)))
ρ(α2,β2)[g]

i.e., lim sup
r→+∞

α1(exp(Tf(g)(r)))

α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))
≤
σ(α2,β2)[g] · ρ(α1,β1)[f ]

λ(α1,β1)[f ]
.

Thus the theorem is established.

Remark 1. In Theorem 1, if we replace the condition “σ(α2,β2)[g] < ∞” by
“τ (α2,β2)[g] < ∞ ” and other conditions remain same, then Theorem 1 remains
valid with “λ(α2,β2)[g]” and “τ (α2,β2)[g]” instead of “ρ(α2,β2)[g]” and “σ(α2,β2)[g] ” re-
spectively.

Remark 2. In Theorem 1, if we replace the conditions “0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)

[f ] <∞ and σ(α2,β2)[g] <∞ ” by “ρ(α1,β1)[f ] <∞, λ(α2,β2)[g] > 0 and σ(α2,β2)[g] <
∞ where α2 ∈ L2 ” and other condition remains same, then Theorem 1 remains
valid with “α2(exp(Tg(β

−1
2 (exp(β2(r)))

ρ(α2,β2)[g]))) ” and “λ(α2,β2)[g]” instead of

“α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))” and “λ(α1,β1)[f ] ” respectively.

Remark 3. In Theorem 1, if we replace the conditions “0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)

[f ] <∞ and σ(α2,β2)[g] <∞ ” by “ρ(α1,β1)[f ] <∞, λ(α2,β2)[g] > 0 and τ (α2,β2)[g] <
∞ where α2 ∈ L2” and other condition remains same, then Theorem 1 remains
valid with “α2(exp(Tg(β

−1
2 (exp(β2(r)))

λ(α2,β2)[g])))”, “λ(α2,β2)[g]” and “τ (α2,β2)[g]”

instead of “α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))”, “λ(α1,β1)[f ] ” and “σ(α2,β2)[g]”
respectively.

Using the notion of generalized lower type (α, β) we may state the following
theorem without its proof because it can be carried out in the line of Theorem 1.

Theorem 2. Let f be meromorphic and g be an entire function such that 0 <
λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ] <∞ and σ(α2,β2)[g] <∞ where β1(r) ≤ exp(α2(r)). Then

lim inf
r→+∞

α1(exp(Tf(g)(r)))

α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))
≤
σ(α2,β2)[g] · ρ(α1,β1)[f ]

λ(α1,β1)[f ]
.

Remark 4. In Theorem 2, if we replace the conditions “0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)

[f ] < ∞ and σ(α2,β2)[g] < ∞” by “ρ(α1,β1)[f ] < ∞, λ(α2,β2)[g] > 0 and σ(α2,β2)[g] <
∞ where α2 ∈ L2” and other condition remains same, then Theorem 2 remains
valid with “α2(exp(Tg(β

−1
2 (exp(β2(r)))

ρ(α2,β2)[g])))” and “λ(α2,β2)[g]” instead of

“α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))” and “λ(α1,β1)[f ] ” respectively.

Remark 5. In Theorem 2, if we replace the condition “σ(α2,β2)[g] < ∞” by
“τ(α2,β2)[g] < ∞ ” and other conditions remain same, then Theorem 2 remains
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valid with
“α1(exp(Tf (β

−1
1 (exp(β2(r)))

λ(α2,β2)[g])))” and “τ(α2,β2)[g]” instead of

“α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))” and “σ(α2,β2)[g] ” respectively.

Remark 6. In Theorem 2, if we replace the conditions “0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)

[f ] <∞ and σ(α2,β2)[g] <∞” by “ρ(α1,β1)[f ] <∞, λ(α2,β2)[g] > 0 and τ(α2,β2)[g] <∞
where α2 ∈ L2” and other condition remains same, then Theorem 2 remains valid
with “α2(exp(Tg(β

−1
2 (exp(β2(r)))

λ(α2,β2)[g]))) ”, “λ(α2,β2)[g]” and “τ(α2,β2)[g]” instead

of “α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))”, “λ(α1,β1)[f ]” and “σ(α2,β2)[g] ” respec-
tively.

Now we state the following theorem without its proof as it can easily be carried
out in the line in the line of Theorem 1.

Theorem 3. Let f be meromorphic and g be an entire function such that 0 <
λ(α1,β1)[f ] < ∞ or 0 < ρ(α1,β1)[f ] < ∞ and σ(α2,β2)[g] < ∞ where β1(r) ≤
exp(α2(r)). Then

lim inf
r→+∞

α1(exp(Tf(g)(r)))

α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))
≤ σ(α2,β2)[g].

Remark 7. In Theorem 3, if we replace the condition “σ(α2,β2)[g] < ∞” by
“τ (α2,β2)[g] < ∞ ” and other conditions remain same, then Theorem 3 remains
valid with
“α1(exp(Tf (β

−1
1 (exp(β2(r)))

λ(α2,β2)[g])))” and “τ (α2,β2)[g] ” instead of

“α1(exp(Tf (β
−1
1 (exp(β2(r)))

ρ(α2,β2)[g])))” and “σ(α2,β2)[g]” respectively.

Remark 8. In Theorem 3, if we replace the conditions “0 < λ(α1,β1)[f ] < ∞ or
0 < ρ(α1,β1)[f ] < ∞ and σ(α2,β2)[g] < ∞” by “λ(α1,β1)[f ] < ∞, λ(α2,β2)[g] > 0 and
σ(α2,β2)[g] <∞ where α2 ∈ L2” and other condition remains same, then

lim inf
r→+∞

α1(exp(Tf(g)(r)))

α2(exp(Tg(β
−1
2 (exp(β2(r)))

ρ(α2,β2)[g])))
≤
σ(α2,β2)[g] · λ(α1,β1)[f ]

λ(α2,β2)[g]
.

Remark 9. In Theorem 3, if we replace the conditions “0 < λ(α1,β1)[f ] < ∞ or
0 < ρ(α1,β1)[f ] < ∞ and σ(α2,β2)[g] < ∞” by “ρ(α1,β1)[f ] < ∞, ρ(α2,β2)[g] > 0 and
σ(α2,β2)[g] <∞ where α2 ∈ L2 ” and other condition remains same, then

lim inf
r→+∞

α1(exp(Tf(g)(r)))

α2(exp(Tg(β
−1
2 (exp(β2(r)))

ρ(α2,β2)[g])))
≤
σ(α2,β2)[g] · ρ(α1,β1)[f ]

ρ(α2,β2)[g]
.

Remark 10. In Theorem 3, if we replace the conditions “0 < λ(α1,β1)[f ] < ∞ or
0 < ρ(α1,β1)[f ] < ∞ and σ(α2,β2)[g] < ∞” by “λ(α1,β1)[f ] < ∞, λ(α2,β2)[g] > 0 and
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τ (α2,β2)[g] <∞ where α2 ∈ L2” and other condition remains same, then

lim inf
r→+∞

α1(exp(Tf(g)(r)))

α2(exp(Tg(β
−1
2 (exp(β2(r)))

λ(α2,β2)[g])))
≤
τ (α2,β2)[g] · λ(α1,β1)[f ]

λ(α2,β2)[g]
.

Remark 11. In Remark 10, if we replace the conditions “λ(α1,β1)[f ] <∞, λ(α2,β2)

[g] > 0” by “ρ(α1,β1)[f ] < ∞, ρ(α2,β2)[g] > 0 ” and other conditions remain same,
then

lim inf
r→+∞

α1(exp(Tf(g)(r)))

α2(exp(Tg(β
−1
2 (exp(β2(r)))

λ(α2,β2)[g])))
≤
τ (α2,β2)[g] · ρ(α1,β1)[f ]

ρ(α2,β2)[g]
.

Theorem 4. Let f be meromorphic and g be an entire function such that (i)
0 < ρ(α1,β1)[f ] < ∞, (ii) ρ(α1,β1)[f ] = ρ(α2,β2)[g], (iii) σ(α2,β2)[g] < ∞ and (iv)
0 < σ(α1,β1)[f ] <∞ where β1(r) ≤ exp(α2(r)) . Then

lim inf
r→+∞

α1(exp(Tf(g)(r)))

exp(α1(exp(Tf (β
−1
1 (β2(r))))))

≤
ρ(α1,β1)[f ] · σ(α2,β2)[g]

σ(α1,β1)[f ]
.

Proof. In view of condition (ii),we obtain from (2.1) for all sufficiently large values
of r that

α1(exp(Tf(g)(r))) 6 (1 + o(1))(ρ(α1,β1)[f ] + ε)(σ(α2,β2)[g] + ε)(exp(β2(r)))
ρ(α1,β1)[f ].

(2.3)
Again in view of Definition 3 we get for a sequence of values of r tending to

infinity that

exp(α1(exp(Tf (β
−1
1 (β2(r)))))) ≥ (σ(α1,β1)[f ]− ε)(exp(β2(r)))

ρ(α1,β1)[f ]. (2.4)

Now from (2.3) and (2.4), it follows for a sequence of values of r tending to
infinity that

α1(exp(Tf(g)(r)))

exp(α1(exp(Tf (β
−1
1 (β2(r))))))

≤
(1 + o(1))(ρ(α1,β1)[f ] + ε)(σ(α2,β2)[g] + ε)(exp(β2(r)))

ρ(α1,β1)[f ]

(σ(α1,β1)[f ]− ε)(exp(β2(r)))
ρ(α1,β1)[f ]

.

Since ε(> 0) is arbitrary, it follows from above that

lim inf
r→+∞

α1(exp(Tf(g)(r)))

exp(α1(exp(Tf (β
−1
1 (β2(r))))))

≤
ρ(α1,β1)[f ] · σ(α2,β2)[g]

σ(α1,β1)[f ]
.
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Remark 12. In Theorem 4, if we replace the conditions “σ(α2,β2)[g] < ∞” and
“0 < σ(α1,β1)[f ] < ∞” by “σ(α2,β2)[g] < ∞” and “0 < σ(α1,β1)[f ] < ∞” respectively
and other conditions remain same, then Theorem 4 remains valid with “σ(α2,β2)[g]”
and “σ(α1,β1)[f ]” instead of “σ(α2,β2)[g]” and “σ(α1,β1)[f ] ” respectively.

Remark 13. In Theorem 4, if we replace the conditions “0 < ρ(α1,β1)[f ] < ∞”
and “0 < σ(α1,β1)[f ] < ∞ ” by “0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ] < ∞ ” and “0 <
σ(α1,β1)[f ] < ∞” respectively and other conditions remain same, then Theorem
4 remains valid with “λ(α1,β1)[f ] ” and “σ(α1,β1)[f ]” instead of “ρ(α1,β1)[f ]” and
“σ(α1,β1)[f ]” respectively.

Remark 14. In Theorem 4, if we replace the condition “0 < σ(α1,β1)[f ] < ∞”
by “0 < σ(α1,β1)[f ] < ∞” and other conditions remain same, then Theorem 4
remains valid with “limit superior” and “σ(α1,β1)[f ]” instead of “limit inferior” and
“σ(α1,β1)[f ]” respectively.

Now using the concept of generalized upper weak type (α, β), we may state
the following theorem without its proof since it can be carried out in the line of
Theorem 4.

Theorem 5. Let f be meromorphic and g be an entire function such that (i)
0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ] < ∞, (ii) λ(α1,β1)[f ] = λ(α2,β2)[g], (iii) τ (α2,β2)[g] < ∞
and (iv) 0 < τ (α1,β1)[f ] <∞ where β1(r) ≤ exp(α2(r)). Then

lim inf
r→+∞

α1(exp(Tf(g)(r)))

exp(α1(exp(Tf (β
−1
1 (β2(r))))))

≤
ρ(α1,β1)[f ] · τ (α2,β2)[g]

τ (α1,β1)[f ]
.

Remark 15. In Theorem 5, if we replace the conditions “τ (α2,β2)[g] < ∞” and
“0 < τ (α1,β1)[f ] < ∞” by “τ(α2,β2)[g] < ∞” and “0 < τ(α1,β1)[f ] < ∞” respectively
and other conditions remain same, then Theorem 5 remains valid with “τ(α2,β2)[g]
” and “τ(α1,β1)[f ]” instead of “τ (α2,β2)[g]” and “τ (α1,β1)[f ]” respectively.

Remark 16. In Theorem 5, if we replace the conditions “0 < λ(α1,β1)[f ] ≤
ρ(α1,β1)[f ] < ∞” and “0 < τ (α1,β1)[f ] < ∞” by “0 < λ(α1,β1)[f ] < ∞ ” and
“0 < τ(α1,β1)[f ] < ∞” respectively and other conditions remain same, then The-
orem 5 remains valid with “λ(α1,β1)[f ]” and “τ(α1,β1)[f ]” instead of “ρ(α1,β1)[f ] ”
and “τ (α1,β1)[f ]” respectively.

Remark 17. In Theorem 5, if we replace the condition “0 < τ (α1,β1)[f ] < ∞”
by “0 < τ(α1,β1)[f ] < ∞ ” and other conditions remain same, then Theorem 5 re-
mains valid with “limit superior” and “τ(α1,β1)[f ]” instead of “limit inferior” and
“τ (α1,β1)[f ]” respectively.

Remark 18. In Theorem 5, if we replace the conditions “λ(α1,β1)[f ] = λ(α2,β2)[g]”
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and “τ (α2,β2)[g] <∞” by “λ(α1,β1)[f ] = ρ(α2,β2)[g]” and “σ(α2,β2)[g] <∞” respectively
and other conditions remain same, then Theorem 5 remains valid with “σ(α2,β2)[g]”
instead of “τ (α2,β2)[g]”.

Remark 19. In Theorem 5, if we replace the conditions “0 < λ(α1,β1)[f ] ≤
ρ(α1,β1)[f ] < ∞”,“λ(α1,β1)[f ] = λ(α2,β2)[g] ” and “0 < τ (α1,β1)[f ] < ∞ ” by “0 <
ρ(α1,β1)[f ] < ∞”, “ρ(α1,β1)[f ] = λ(α2,β2)[g]” and “0 < σ(α1,β1)[f ] < ∞” respectively
and other conditions remain same, then Theorem 5 remains valid with “σ(α1,β1)[f ]”
instead of “τ (α1,β1)[f ]”.

Remark 20. In Theorem 5, if we replace the conditions “λ(α1,β1)[f ] = λ(α2,β2)[g]”,
“τ (α2,β2)[g] <∞” and “0 < τ (α1,β1)[f ] <∞ ” by “λ(α1,β1)[f ] = ρ(α2,β2)[g]”, “σ(α2,β2)[g]
< ∞” and “0 < τ(α1,β1)[f ] < ∞ ” respectively and other conditions remain same,
then Theorem 5 remains valid with “σ(α2,β2)[g]” and “τ(α1,β1)[f ]” instead of “τ (α2,β2)[g]
” and “τ (α1,β1)[f ]”.

Remark 21. In Theorem 5, if we replace the conditions “0 < λ(α1,β1)[f ] ≤
ρ(α1,β1)[f ] <∞”, “λ(α1,β1)[f ] = λ(α2,β2)[g] ”, “τ (α2,β2)[g] <∞” and “0 < τ (α1,β1)[f ] <
∞ ” by “0 < ρ(α1,β1)[f ] < ∞ ”, “ρ(α1,β1)[f ] = λ(α2,β2)[g]”, “τ(α2,β2)[g] < ∞ ” and
“0 < σ(α1,β1)[f ] < ∞” respectively and other condition remains same, then Theo-
rem 5 remains valid with “τ(α2,β2)[g]” and “σ(α1,β1)[f ] ” instead of “τ (α2,β2)[g]” and
“τ (α1,β1)[f ]”.

Remark 22. In Theorem 5, if we replace the conditions “λ(α1,β1)[f ] = λ(α2,β2)[g]”,
“τ (α2,β2)[g] <∞” and “0 < τ (α1,β1)[f ] <∞ ” by “λ(α1,β1)[f ] = ρ(α2,β2)[g]”, “σ(α2,β2)[g]
< ∞ ” and “0 < τ(α1,β1)[f ] < ∞” respectively and other conditions remain same,
then

lim inf
r→+∞

α1(exp(Tf(g)(r)))

exp(α1(exp(Tf (β
−1
1 (β2(r))))))

≤
λ(α1,β1)[f ] · σ(α2,β2)[g]

τ(α1,β1)[f ]
.

Remark 23. Remark 22 remains also valid with “limit superior” instead of “limit
inferior”.

Remark 24. In Remark 22, if we replace the conditions “0 < λ(α1,β1)[f ] ≤
ρ(α1,β1)[f ] <∞”, “λ(α1,β1)[f ] = ρ(α2,β2)[g]”, “σ(α2,β2)[g] <∞ ” and “0 < τ(α1,β1)[f ] <
∞” by “0 < λ(α1,β1)[f ] < ∞”, “ρ(α1,β1)[f ] = λ(α2,β2)[g]”, “τ (α2,β2)[g] < ∞” and
“0 < σ(α1,β1)[f ] < ∞” respectively and other condition remains same, then con-
clusion of Remark 22 remains valid with “τ (α2,β2)[g]” and “σ(α1,β1)[f ]” instead of
“σ(α2,β2)[g]” and “τ(α1,β1)[f ]”.

Remark 25. In Remark 22, if we replace the conditions “0 < λ(α1,β1)[f ] ≤
ρ(α1,β1)[f ] <∞”, “λ(α1,β1)[f ] = ρ(α2,β2)[g]”, “σ(α2,β2)[g] <∞ ” and “0 < τ(α1,β1)[f ] <
∞” by “0 < ρ(α1,β1)[f ] < ∞”, “ρ(α1,β1)[f ] = λ(α2,β2)[g] ”, “τ (α2,β2)[g] < ∞” and
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“0 < σ(α1,β1)[f ] <∞” respectively and other condition remains same, then

lim sup
r→+∞

α1(exp(Tf(g)(r)))

exp(α1(exp(Tf (β
−1
1 (β2(r))))))

≤
ρ(α1,β1)[f ] · τ (α2,β2)[g]

σ(α1,β1)[f ]
.
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