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1. Introduction and Definitions

Let f(z) be a single valued function of the complex variable z. Then f (z) is
said to belong to () class Tif f (z) is entire transcendental, (i7) class II if it is regular
in the complex plane punctured at a,b(a # b) and has an essential singularity at b
and a singularity at a and if f (z) does not assume the values a and b anywhere in
the complex plane except possible at the point a.

For simplicity we take a = 0 and b = +o0c.

The functions f, (z) of f(z) are defined by

fo(z) =zand foi1(2) = f(fn(2)) forn=0,1,2,....
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Definition 1.1. A point « is called a fix point of f (z) of order n if « is a solution
of fn(2) = z and called a fix point of exact order n if « is a solution of f, (z) = z
but not a solution of fy (2) = z,k=1,2,...,n — 1.

Regarding the existence of a fix point, Baker [1] proved the following theorem.

Theorem 1.2. [1] If f (2) belongs to class I, then f (z) has fix points of exact order
n, except for at most one value of n.

Then Bhattacharyya [2] extended the above theorem for the functions of class
I1.

Theorem 1.3. [2] If f(z) belongs to class II, then f(z) has infinitely many fix
points of exact order n, for every positive integer n.

After this in [5], Lahiri and Banerjee introduced the concept of relative iteration
defined as follows.

Let f and g be functions of the complex variable z.

Let fi = f
f2 = fog=foamn
fs = fogof=Ffog

fn = fogofogo..of orgaccording
as n is odd or even

= f O gn—1-

Similarly

g =g
g2 = gof=gofi
g3 = gofog=gofs

Gn = 90O fn1.

Here all f,, and g, are functions in class II, if f and g are so.

Definition 1.4. A point 5 is called a fix point of f(z) of order n with respect to
9(2), if fn (B) = B and a fiz point of exact order n if fn (8) = B but fi (B) # B,k =

1,2,3,...,n — 1. These points 8 are also called relative fix points.

Theorem 1.5. [5] If f (z) and g (z) belong to class II, then f (z) has infinitely many
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relative fix points of exact order n for every positive integer n, provided % S
bounded, where T (r, f,) and T (r,g,) are Nevanlinna’s characteristic function for
fn and g, respectively.

Now we consider k non-constant functions fi, fo, ..., fr of the complex variable

z and 0 < a < 1. We form the generalised iterations as follows.
Fl = (1-a)z+af
Fy = (1—a)Ff +a(fioF7)
Fy = (1-a)F;+a(fioF)

F, = (1-a)F +a(fioF; )

Similarly
Ff = (1-a)z+afs
Fy = (1-a)F +a(fzorlf)
F} = (1—a)F23+04(f20F23)
F2 = 1-a)F}  +a (f2 o Fg_l)
and
FF = (1—-a)z+afs
Ff = (1-a)F +a(fioF)
Ff = 1-a)F)  +a(fioF) )
Here all F!, F2, ..., F* are functions of class II if f;; i = 1,2, ..., k are so.

Now we introduce the following definition.

Definition 1.6. A point 8 is called a generalised fix point of fi(z) of order n
with respect to fo(2), f3(2), ..., fr (2) if EX(B) = B and a generalised fix point of

f1(2) of exact order n with respect to fy(2), f3(2),.... fr(2) if EX(B) = 8 but
F!(B) # B; s =1,2,...,n—1. These points are called generalised relative fix points.

Example 1.7. Let f1(2) =2z+1, fo(2) =22+2, f3(2) =22+3, fa(z) =22+ 4.

Also choose o = %
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Then
Fl(z) = (1—a)z+afi(z)

1 1
= 52—1-5(22—1-4)

1

F3(z) = (1—a)Fi(2) +afs (F (2))

1 /32+4 1 3z+4
9(2+2)

4 )
Fi(2) = (1—a)F(2)+af: (F ()

1.9(z+2) 1(2.9(z+2)+2)

2 4 2 4
27z 4 62

8 )

and

Fi(2) = (1—a)F(z)+afi (FF(2))
1.272—#62 +1 (2'27z+62 N 1>
2 8 2 8
81z + 194

16 .

Now

Fl(z) = 2

L 81z + 194
impliess —— = =z

16
o 194
implies 2z = — o

Again
F¥(z) = (1—a)z+afs(z)

1
.z+§(22+3)

1
2
3
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Now

Similarly

Now

Fy (2)

= (1—-a) F{(2) +afs (F (2))

D) 2
9z + 13
4 M

LA LD )

= (1—-a)Fj(2) +afi (F5 (2))
1 92+13 1( 9z + 13 )
= - +> (2 +1

2 4 2
27z + 43
3 )

4

Fi(z) = =
27z + 43

implies —_— =z

Fy (2)

8

implies 2z = ——.

= (1—a)F2 (z) + fl(Fz())
132—|—2 1 32—|—2
(2557

9z+8
YR

le(z) = z
92+ 8

implies 1 = z

implies 2z = —-—.

21
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And
Fi(z) = (I1-a)z+afi(z)
= Lol
AR
1
= —(3 1).
(3 41)
Finally
Fl(z) = 2
o 3z+1
implies 5 = z
implies 2z = -—1.
Therefore z = —&2 is a fix point of f (z) of exact order 4.

Let f (z) be meromorphic in ry < |z] < 400, 19 > 0. Here we use the following
notations.

n(t,a, f) = the number of roots of f(z) =a in ry < |z| < ¢, counted according

to multiplicity,

N (rya, f) = /T Mdt,

n(t,00, f) = n(t, f) =number of poles of f(z) in ry < |z| < t, counted
with due to multiplicity
N(T7m7f) = N(T7f)7

2
m(r,f) = %/0 10g+|f(rew)‘d0,

1 [ 1
= — logt | ————
m(r,a, f) 27?/0 og Fre®) —a df and
T(r,f) = m(r,f)+N(rf).
From first fundamental theorem we have
m(r,a, f) + N (r,a, f) =T (r, f) + O (logr), (1.1)

where 79 < |z] < 400, 19 > 0.
We now suppose that f(z) is non-constant. Let aj as. . a,; g > 2 be distinct
finite complex numbers, § > 0 and suppose that |a, —a,| > 0 for 1 < p <v <gq.
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Then
(e )+ S m (rag, f) < 2T (1, f) = Ny (1) + S (1) (1.2)
where .
N1<7~>—N( f,)+2zv<rf> Nrf).
and

S (r) :m<r,f7/> +im<r,ff,av> +0 (logr).

v=1

Adding N (r, f)+>2¢_| N (r,a,, f) to both sides of (1.2) and using (1.1), we obtain

(=0T (r, f) < }: (r,ay, f) + Sy (1), (1.3)

where Sy (1) = O (logT (r, f)) and N corresponds to distinct roots.

Again if f,, has an essential singularity at co, we have Tl(ogfr y 0 as r — +oo.

2. Lemmas

To prove the main result we need the following lemmas.
Lemma 2.1. If f and g are functions in class II, then for any rq > 0 and M,
a positive constant T(’Ef;*;’) > M for all large r, except a set of r intervals of total
finite length.

This follows from a lemma of [5] simply by taking n =1 and p = 1.

Lemma 2.2. Ifn is any positive integer and f1, fa, ..., fr are functions in class 11,
then for any ro > 0 and a suitable positive constant My, we have

T (r,Fnyp) T (r, FY,) T (r Fy,)
W>M1 0rw>M1 or ..... 0rw>M1

according as p = km or km —1 or...or km — (k — 1), m € N for all large r, except
a set of r intervals of total finite length.
Proof. For j =1,2,....,n and for all large r, by using Lemma 2.1, we get

T (r,Fy,) <T(r,(1—a)F})+T (r,afioF})+0(1)
ST (r,F?)+T(r,f10F)+0(1)
T(r ) (1)
T (r,fioF2) T (r, fioF?)
=(14+0MW)T (r,fioF;) . (2.1)

=T (r froF}) |1+



24 South FEast Asian J. of Mathematics and Mathematical Sciences

Again fy o F? = 1F}, | — =2F2and so for large r

T(r fro 7)) <T(r Fiy) + T (r Ff) + 0 (1)

Therefore
T(r,Fly) 2T (r fro F2) =T (r,F2) + 0.1
T (r,F}) o)
=T o F? — J
S B T R R YY)
=(14+0W)T (r, fioF}) . (2.2)

From (2.1) and (2.2) for all large r, we have
T (r,Fy)=Q+0Q)T (r, froF})
Similarly for large r, we have

T(r,F2y)=0+0W)T (r, fa0 F})

and so in general
T (r,Ff)=0+01)T (r fuo F}) . (2.3)

First suppose p = km,m € N.
Then for all large r except a set of r intervals of total finite length, we have
from (2.3) and by using Lemma 2.1

T(r,Fl.,) T (r, froF2,, )
T (r,F}) T (r,F})
T(r,froF2, )T (r,F2, )
T(r,F2,,,) T(rFE})
T(r,fioF2, ) A+ 0T (r, 0 F3, )
T(?”, F7%+p_1) T(?”, Fr%)
T (7“, fio F7%+p_1) T (Ta fao F’r?—i—p—Q) T (T’ F7§+p—2)

T (r,F2,,,) T (r,F2,, ) T (r,E})

= (1+0(1)

= (1+0(1)

= (1+0())

= (1+0())

T (T’ fio Fg—i—p—l) T (T’ fao Fs+p—2) T (T’ fso Fs+p—3>

= (14+0(1
U0 =0, TR, T(nFL,)
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T (7“, fk © Fr%)
T (r,Fl)
> (1+0(1)) M?P
= M, say, where M; = (1 + O (1)) MP, a positive constant

ie,
T (r,F}
( n+p) > ]\4’1
T(r, Fy)

for all large r except a set of r intervals of total finite length.

Next suppose p = km — 1, m € N.

Then for all large r except a set of r intervals of total finite length, we have
from (2.3) and by using Lemma 2.1

T (T’ F”%"‘p) T (Tv f2 o F3+p_1)
T(rF) (1+0) T (r,F))
oy T R T )
T (T’ Fnerfl) T(ﬁ Fn)
= (1+0(1) T (r’ fao Fg—kp—l) (1+0(1)T (7“, fzo Fﬁ_,_p_z)
T (r, Fipn) T(r, F})
= (1+0(1)) a (T’ f20 FS’L’?_I) r (r, fso F§+p—2) T (73 F§+p—2)
T (7“, F;?er_l) T (7’, Fﬁl+p—2) T (r, F1)
= (1+0(1)) T (r, f20 Fyps) T (1 f30 Frppa) T (1 f1 0 By s)
r (T’ F’§+p_1) T (T’ F;ll+p—2) T (73 F3+p—3)
T (Ta fk’ o Fé)
- T (r,El
> (10 M
= M, say, where M; = (14 O (1)) M?, a positive constant
ie,

T (T’ F2+p)
_ N nvp/ > M
TF) ~
for all large r except a set of r intervals of total finite length.
Finally suppose p = km — (k — 1) ,m € N.
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Then for all large except a set of r interval of total finite length, we have from
(2.3) and by using Lemma 2.1

T(r,Fr,) T (r, fro FL,, )
Ty WO TR
T (7”, fk © F1+ —1) T (T, F1+ _1>
= 1 1 nrp n+p
o T (73 Fﬁ+p—1) T(r,F})
— 1ro() T (r,froFr ) A+O0MW)T (r, fro F2,,_5)
T(r Fypa) T(r,F})
= (1 + 10) (1)) T (7’7 fk o) Fé+p*1) T (T, f1 9) Fngpr) T (1”, F3+p72)
T <T’ Fﬁﬂofl) T (73 Fr%+p—2) T (r,F})
— 1ro) T(r, feoEl, )T (r fioF2, 5) T (r fa0F2,, 5)
T (T‘, F71+p71) T (T7 Fngpfg) T (T, F;{?er,g)
T (7’, fk o Fi)
T (r, F})
> (14+0(1))MP
= M, say, where M; = (1 4+ O (1)) MP, a positive constant
l.e,

T (7"7 F:er)
TrE) 0

for all large r except a set of r intervals of total finite length.

Lemma 2.3. If n is any positive integer and fi, fo, ..., fr are functions in class 11,
then for any ro > 0 and a suitable positive constant My, we have

T(rF},) T (r. F},) T (r Fyy)
W>MI 0rw>M1 or ..... Orw>M1

according as p = km or km —1 or...or km — (k —1),m € N for all large r, except
a set of r intervals of total finite length.

Lemma 2.4. If n is any positive integer and f1, fo, ..., fr are functions in class II,
then for any ro > 0 and a suitable positive constant M, we have

T (r, Fusp) T(r, Fusp) T (r Fivy)
W>M1 0rw>M1 or ..... 0rw>M1
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according as p = km or km —1 or...or km — (k—1),m € N for all large r, except
a set of r intervals of total finite length.

3. Main Result
Our main result is the following theorem.

Theorem 3.1. If fi, fo,..., fr belong to class II, then fi(z) has an infinity of
generalised relative fix points of exact order n (> k) for every positive integer n,

provided %, 1=2,3,...,k are bounded.
Proof. Here we consider the function
Fl(z
g(z)= n (2) , 1o < |z] < 00 .

Then
T (r.g) =T (r,F))+ O (logr). (3.1)

Now we assume that f; (2) has only a finite number of generalised relative fix points
of exact order n. We take ¢ =2, a; =0, ay = 1, then from (1.3) we obtain

T(r,g) < N(r,00,9) + N (r,0,9) + N (r,1,9) + 81 (r. g) , (32)
where S (r,g) = O (logT (1, g)) outside a set of r intervals of finite length .

We know that "0
Nno.g) = [ TR0y
T0
where 7 (¢, 0, g) is the number of roots of g (z) = 0 in 1y < |z| < ¢, each multiple
root taken once at a time. The distinct roots of g(z) = 0 in ry < |2| < t are
the roots of F! (z) = 0 in ry < |z| < t. Now F! (z) has a singularity at z = 0,
an essential singularity at z = oo and F) (2) # 0,00. So 7 (t,0,9) = 0 and so
N (r,0,g) = 0. Similarly N (r, 00, g) = 0. Thus (3.2) reduces to

T(Tvg) SN(T’,l,g)‘i‘Sl (Tvg) (33)
Again F! (2) = 2z when g (z2) = 1.
Then

N(rl,9) = N(T,O,Fé —z)

n—2
< Z [N(T,O,Fjl —z) —i—N(r,O,FjQ—z) —i—...—I—N(T,O,Ff—Z)}

j=1
n—2

IN

[T (r,F} —2)+O0)+T (r,F} —2) + O (1) + ...

+T (r, FF — z) + O (1)]

<.
I
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ni[T (Tv Fjl) +T (7”7 sz) +..+T (r, ng)] + 0 (logr)

j=1

_ [{T(TF.I)—i—T(?“FI )+...+T<TF1 )}+{T(TF~1)

YT ? 7 Jk+1 ? 7 Jkpy—(k—1) 702

IA

—|—T(TF.1 >+...+T<T,F1 )}+-"+{T<TF'1 >+

7T Jk+2 Jkpy—(k—2) ’ T Jk—1

P(rEl ) et T () B T (1 FL)

J2k—1 77 Jkpp_q—1

o4 T (r FL W+ T (n F2) + T (r P2 )+

TN 77 Jk+1

2 2 2 2
+T (7"7 ijpl—(k—l)>} + {T (T’ FJ2) +T (T’ ij+2> S (T’ F}ka—(k—2)>}

+...+{T(7~F2 >+T<7~F? )+...+T<7”F-2 >}+{T(wa’}i)

77 Jk—1 ? 7 J2k—1 ? 7 Jkpp_1—1

T (r F2 ) 4+ T (7", F]ipk)}] bt [T FE) 4+ T (T, I )

Jk+1

oA T (1B VAT (nFE) + T (r FE )+ o+ T (1, B )}

» 5 Jkpy —(k—1) Jk+2 ? 7 Jkpy—(k—2)

+...+{T(TF?“ >+T(rF?“ >+...+T<rF?“ 1,1>}+{T(7”Fk)+

77 Jk—1 ’ 7 J2k—1 ? 7 Jkpy ’ 7 Ik

T(rFh) + o+ T (rFE )Y

7T )2k

WHETe J1, Jit1 s -5 Jhpr—(k—1)5 J25 Jht2s o Jhpa—(k—2)5 -3 Th—1s J2k—1 5 =5 Jhpp_1—15 Jh> J2k>
<sy Jikp, are strictly less than n and are of the form kp; — (k — 1), kpo — (k — 2), ...,

kpkfl - 17 kpka (p17p27 <y Pk—1, Pk € N)

T(rr,) T(rnF,)

J2k

1
r(rF},) o (LD

= T(rF,
(n E) T(rE) ' T(E) T TE) (r, F)
2 2 3
+T (r7 Fjj]g+1> + + T<r7 Fj]kpl(kl)>}+{T(r7 E73Q) + T<r7 Fjjk+2)
T(rF) T(r Fy) (k) T(rFy)
T(rnE, ) r(rEs) T(nE )
+.” + kpo—(k—2) } + . —|— { Jk—1 + J2k—1
T (r, F}) T(r F;) T(r, Fy)
k
+T (7", F}ka_l) .

T (r,F})

T (T’ Fjlk71> T (T’ F1J'12k71)

+T (r, F2) { e P TeE T T )
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106 i) () TRy T(RL)

T Ik ’ 7 )2k
HTeE T e Tt e T e T Te R
k k
N T (7’, Fﬁcpl—(k—l)> } 4 + {T (T’ ijfz) 1 T <7”, FJ% 2)
R Y ) TRy T )
T ( 7F}ipk7272>
+ T 0 F2) A e
1 1
+T (r,FF) = (.75 + . <r’ Fj’““> +ot ! <T7 ij“*(k*l) }
ST EY) T EF) T T (r, FY)
+{T (7”, F]22) + T (T’ Fj2k+2> 4 . T <T, E7'2kp2*(k72)) } 4 {T <7’, F?jgk—l)
T(r.Fy) T Fy) T (r, FY) T (r, FY)
+T (r, Ff;k,1> . T (r, ﬁ}?‘;pk?l,l> - {T (r, FF) N T (r,FF )
T(rFy) T (r, FY) - T Ey)  T(r, FF)
T (7", F* k)
e —7 o1
+..+ T R H+ O (logr)
n—1 n—1 n—1
< T(rEY)+——T(rF)+.. +——T(r,F")+0(
2kn (r F) + 2kn (r F) 4ot 2kn (r, F) + O (log7).
using Lemma 2.2, Lemma 2.3 and Lemma 2.4.
T 2 T 3 T k
So from (3.3) and since ?Erigg , ?Er;g)) N 7:;(@?3)) are bounded, we have

n— n— n—1

1 1
T T (r, F! T (r, F2) + ... T (r, F*
(rg) < 2kn (T’ ")+ 2kn (T’ ”)+ + 2kn (T’ ")
+0 (logr) + 51 (7, 9)
n—1 n—1 n—1
= T (r, F! T (r, F?) + ... T (r, F*
2kn (r, ")+ 2kn (T’ ”)+ + 2kn (T’ ")
+0 (logr) + O (logT (r,g))
~1 n—1T(r,F?) n—1T (r, FF)
< T(r.FY 2 ) n
< TR g Y S 7oy Tt ok T B
O (log (T (r, E}) 4+ O (logr))) =~ O (logr) _
n 1
! T, F) T(r, > e (31
—1 n—1 n—1
< n 2
- T(T’Fn) | 2kn + 2kn Tt 2kn
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+O <log (T (r, Fy) <1 + ?%yﬁ))) N O (logr)

T(r, ) T F)
o - Fl O(log:)
1y 2B | ot

1
= §T (r, Fé) , for all large r.

Therefore , T'(r,g) < 5T (r, F}}) for all large r. This contradicts (3.1).
Hence f; (z) has infinitely many generalised relative fix points of exact order n.
This proves the theorem.
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