South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 1 (2021), pp. 17-30

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

GENERALISED RELATIVE FIX POINTS OF k-ITERATED FUNCTIONS OF CLASS II

Dibyendu Banerjee and Sumanta Ghosh*

Department of Mathematics, Visva - Bharati, Santiniketan - 731235, West Bengal, INDIA

E-mail: dibyendu192@rediffmail.com

*Ranaghat P. C. High School, Ranaghat - 741201, Nadia, West Bengal, INDIA

E-mail: sumantarpc@gmail.com

(Received: Apr. 30, 2020 Accepted: Jan. 29, 2021 Published: Apr. 30, 2021)

Abstract: Introducing the idea of generalised relative iterations of k functions of class II, we extend a theorem on fix point involving exact order.

Keywords and Phrases: Generalised iteration, relative fix point, class II functions.

2020 Mathematics Subject Classification: 30D05.

1. Introduction and Definitions

Let f(z) be a single valued function of the complex variable z. Then f(z) is said to belong to (i) class I if f(z) is entire transcendental, (ii) class II if it is regular in the complex plane punctured at a, b ($a \neq b$) and has an essential singularity at b and a singularity at a and if f(z) does not assume the values a and b anywhere in the complex plane except possible at the point a.

For simplicity we take a = 0 and $b = +\infty$.

The functions $f_n(z)$ of f(z) are defined by

$$f_0(z) = z$$
 and $f_{n+1}(z) = f(f_n(z))$ for $n = 0, 1, 2, ...$

Definition 1.1. A point α is called a fix point of f(z) of order n if α is a solution of $f_n(z) = z$ and called a fix point of exact order n if α is a solution of $f_n(z) = z$ but not a solution of $f_k(z) = z, k = 1, 2, ..., n - 1$.

Regarding the existence of a fix point, Baker [1] proved the following theorem.

Theorem 1.2. [1] If f(z) belongs to class I, then f(z) has fix points of exact order n, except for at most one value of n.

Then Bhattacharyya [2] extended the above theorem for the functions of class II.

Theorem 1.3. [2] If f(z) belongs to class II, then f(z) has infinitely many fix points of exact order n, for every positive integer n.

After this in [5], Lahiri and Banerjee introduced the concept of relative iteration defined as follows.

Let f and g be functions of the complex variable z.

Let
$$f_1 = f$$

 $f_2 = f \circ g = f \circ g_1$
 $f_3 = f \circ g \circ f = f \circ g_2$
 \vdots
 $f_n = f \circ g \circ f \circ g \circ ... \circ f \text{ or } g \text{ according}$
as n is odd or even
 $= f \circ g_{n-1}$.

Similarly

$$g_1 = g$$

$$g_2 = g \circ f = g \circ f_1$$

$$g_3 = g \circ f \circ g = g \circ f_2$$

$$\vdots$$

$$g_n = g \circ f_{n-1}.$$

Here all f_n and g_n are functions in class II, if f and g are so.

Definition 1.4. A point β is called a fix point of f(z) of order n with respect to g(z), if $f_n(\beta) = \beta$ and a fix point of exact order n if $f_n(\beta) = \beta$ but $f_k(\beta) \neq \beta$, k = 1, 2, 3, ..., n - 1. These points β are also called relative fix points.

Theorem 1.5. [5] If f(z) and g(z) belong to class II, then f(z) has infinitely many

relative fix points of exact order n for every positive integer n, provided $\frac{T(r,g_n)}{T(r,f_n)}$ is bounded, where $T(r,f_n)$ and $T(r,g_n)$ are Nevanlinna's characteristic function for f_n and g_n respectively.

Now we consider k non-constant functions $f_1, f_2, ..., f_k$ of the complex variable z and $0 < \alpha \le 1$. We form the generalised iterations as follows.

$$F_{1}^{1} = (1 - \alpha) z + \alpha f_{1}$$

$$F_{2}^{1} = (1 - \alpha) F_{1}^{2} + \alpha (f_{1} \circ F_{1}^{2})$$

$$F_{3}^{1} = (1 - \alpha) F_{2}^{2} + \alpha (f_{1} \circ F_{2}^{2})$$

$$\vdots$$

$$F_{n}^{1} = (1 - \alpha) F_{n-1}^{2} + \alpha (f_{1} \circ F_{n-1}^{2}) .$$

Similarly

$$\begin{split} F_1^2 &= (1-\alpha) \, z + \alpha f_2 \\ F_2^2 &= (1-\alpha) \, F_1^3 + \alpha \left(f_2 \circ F_1^3 \right) \\ F_3^2 &= (1-\alpha) \, F_2^3 + \alpha \left(f_2 \circ F_2^3 \right) \\ & \vdots \\ F_n^2 &= (1-\alpha) \, F_{n-1}^3 + \alpha \left(f_2 \circ F_{n-1}^3 \right) \end{split}$$

and

$$F_{1}^{k} = (1 - \alpha) z + \alpha f_{k}$$

$$F_{2}^{k} = (1 - \alpha) F_{1}^{1} + \alpha (f_{k} \circ F_{1}^{1})$$

$$F_{3}^{k} = (1 - \alpha) F_{2}^{1} + \alpha (f_{k} \circ F_{2}^{1})$$

$$\vdots$$

$$F_{n}^{k} = (1 - \alpha) F_{n-1}^{1} + \alpha (f_{k} \circ F_{n-1}^{1})$$

Here all $F_n^1, F_n^2, ..., F_n^k$ are functions of class II if f_i ; i = 1, 2, ..., k are so. Now we introduce the following definition.

Definition 1.6. A point β is called a generalised fix point of $f_1(z)$ of order n with respect to $f_2(z)$, $f_3(z)$,..., $f_k(z)$ if $F_n^1(\beta) = \beta$ and a generalised fix point of $f_1(z)$ of exact order n with respect to $f_2(z)$, $f_3(z)$,..., $f_k(z)$ if $F_n^1(\beta) = \beta$ but $F_s^1(\beta) \neq \beta$; s = 1, 2, ..., n-1. These points are called generalised relative fix points.

Example 1.7. Let $f_1(z) = 2z + 1$, $f_2(z) = 2z + 2$, $f_3(z) = 2z + 3$, $f_4(z) = 2z + 4$. Also choose $\alpha = \frac{1}{2}$.

Then

$$F_1^4(z) = (1 - \alpha) z + \alpha f_4(z)$$

$$= \frac{1}{2} z + \frac{1}{2} (2z + 4)$$

$$= \frac{1}{2} (3z + 4),$$

$$F_2^3(z) = (1 - \alpha) F_1^4(z) + \alpha f_3 \left(F_1^4(z) \right)$$

$$= \frac{1}{2} \left(\frac{3z + 4}{2} \right) + \frac{1}{2} \left(2 \cdot \frac{3z + 4}{2} + 3 \right)$$

$$= \frac{9(z + 2)}{4},$$

$$F_3^2(z) = (1 - \alpha) F_2^3(z) + \alpha f_2(F_2^3(z))$$

$$= \frac{1}{2} \cdot \frac{9(z+2)}{4} + \frac{1}{2} \left(2 \cdot \frac{9(z+2)}{4} + 2 \right)$$

$$= \frac{27z + 62}{8},$$

and

$$F_4^1(z) = (1 - \alpha) F_3^2(z) + \alpha f_1(F_3^2(z))$$

$$= \frac{1}{2} \cdot \frac{27z + 62}{8} + \frac{1}{2} \left(2 \cdot \frac{27z + 62}{8} + 1 \right)$$

$$= \frac{81z + 194}{16}.$$

Now

$$F_4^1(z) = z$$
implies
$$\frac{81z + 194}{16} = z$$
implies
$$z = -\frac{194}{65}.$$

Again

$$F_1^3(z) = (1 - \alpha)z + \alpha f_3(z)$$

= $\frac{1}{2} \cdot z + \frac{1}{2} (2z + 3)$
= $\frac{3}{2} (z + 1)$,

$$F_{2}^{2}(z) = (1 - \alpha) F_{1}^{3}(z) + \alpha f_{2} \left(F_{1}^{3}(z)\right)$$

$$= \frac{1}{2} \cdot \frac{3(z+1)}{2} + \frac{1}{2} \left\{2 \cdot \frac{3(z+1)}{2} + 2\right\}$$

$$= \frac{9z+13}{4},$$

$$F_3^1(z) = (1 - \alpha) F_2^2(z) + \alpha f_1 \left(F_2^2(z) \right)$$

$$= \frac{1}{2} \cdot \frac{9z + 13}{4} + \frac{1}{2} \left(2 \cdot \frac{9z + 13}{4} + 1 \right)$$

$$= \frac{27z + 43}{8}.$$

Now

$$F_3^1(z) = z$$
implies
$$\frac{27z + 43}{8} = z$$
implies
$$z = -\frac{43}{19}.$$

Similarly

$$F_1^2(z) = (1 - \alpha)z + \alpha f_2(z)$$

$$= \frac{1}{2} \cdot z + \frac{1}{2} (2z + 2)$$

$$= \frac{1}{2} (3z + 2),$$

$$F_{2}^{1}(z) = (1 - \alpha) F_{1}^{2}(z) + \alpha f_{1}(F_{1}^{2}(z))$$

$$= \frac{1}{2} \cdot \frac{3z + 2}{2} + \frac{1}{2} \left(2 \cdot \frac{3z + 2}{2} + 1 \right)$$

$$= \frac{9z + 8}{4}.$$

Now

$$F_2^1(z) = z$$
implies
$$\frac{9z+8}{4} = z$$
implies
$$z = -\frac{8}{5}.$$

22

And

$$F_1^1(z) = (1 - \alpha)z + \alpha f_1(z)$$

$$= \frac{1}{2} \cdot z + \frac{1}{2} (2z + 1)$$

$$= \frac{1}{2} (3z + 1).$$

Finally

$$F_1^1(z) = z$$
implies
$$\frac{3z+1}{2} = z$$
implies
$$z = -1.$$

Therefore $z = -\frac{194}{65}$ is a fix point of $f_1(z)$ of exact order 4.

Let f(z) be meromorphic in $r_0 \le |z| < +\infty$, $r_0 > 0$. Here we use the following notations.

 $n\left(t,a,f\right)=$ the number of roots of $f\left(z\right)=a$ in $r_{0}<\left|z\right|\leq t,$ counted according to multiplicity,

$$N(r, a, f) = \int_{r_0}^r \frac{n(t, a, f)}{t} dt,$$

 $n(t, \infty, f) = n(t, f) = \text{number of poles of } f(z) \text{ in } r_0 < |z| \le t, \text{ counted}$ with due to multiplicity

$$\begin{split} N\left(r,\infty,f\right) &= N\left(r,f\right), \\ m\left(r,f\right) &= \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+}\left|f\left(re^{i\theta}\right)\right| d\theta \;, \\ m\left(r,a,f\right) &= \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+}\left|\frac{1}{f\left(re^{i\theta}\right)-a}\right| d\theta \; \text{and} \\ T\left(r,f\right) &= m\left(r,f\right) + N\left(r,f\right). \end{split}$$

From first fundamental theorem we have

$$m(r, a, f) + N(r, a, f) = T(r, f) + O(\log r),$$
 (1.1)

where $r_0 \le |z| < +\infty, r_0 > 0$.

We now suppose that f(z) is non-constant. Let $a_1, a_2, ..., a_q; q \ge 2$ be distinct finite complex numbers, $\delta > 0$ and suppose that $|a_{\mu} - a_{\nu}| \ge \delta$ for $1 \le \mu < \nu \le q$.

Then

$$m(r, f) + \sum_{v=1}^{q} m(r, a_v, f) \le 2T(r, f) - N_1(r) + S(r),$$
 (1.2)

where

$$N_{1}\left(r\right) = N\left(r, \frac{1}{f'}\right) + 2N\left(r, f\right) - N\left(r, f'\right),\,$$

and

$$S(r) = m\left(r, \frac{f'}{f}\right) + \sum_{v=1}^{q} m\left(r, \frac{f'}{f - a_v}\right) + O(\log r).$$

Adding $N(r, f) + \sum_{v=1}^{q} N(r, a_v, f)$ to both sides of (1.2) and using (1.1), we obtain

$$(q-1)T(r,f) \le \overline{N}(r,f) + \sum_{v=1}^{q} \overline{N}(r,a_{v},f) + S_{1}(r),$$
 (1.3)

where $S_1(r) = O(\log T(r, f))$ and \overline{N} corresponds to distinct roots.

Again if f_n has an essential singularity at ∞ , we have $\frac{\log r}{T(r,f_n)} \to 0$ as $r \to +\infty$.

2. Lemmas

To prove the main result we need the following lemmas.

Lemma 2.1. If f and g are functions in class II, then for any $r_0 > 0$ and M, a positive constant $\frac{T(r,f \circ g)}{T(r,g)} > M$ for all large r, except a set of r intervals of total finite length.

This follows from a lemma of [5] simply by taking n = 1 and p = 1.

Lemma 2.2. If n is any positive integer and $f_1, f_2, ..., f_k$ are functions in class II, then for any $r_0 > 0$ and a suitable positive constant M_1 , we have

$$\frac{T\left(r,F_{n+p}^{1}\right)}{T\left(r,F_{n}^{1}\right)} > M_{1} \quad or \quad \frac{T\left(r,F_{n+p}^{2}\right)}{T\left(r,F_{n}^{1}\right)} > M_{1} \quad or \quad \quad or \quad \frac{T\left(r,F_{n+p}^{k}\right)}{T\left(r,F_{n}^{1}\right)} > M_{1}$$

according as p = km or km - 1 or...or km - (k - 1), $m \in \mathbb{N}$ for all large r, except a set of r intervals of total finite length.

Proof. For j = 1, 2, ..., n and for all large r, by using Lemma 2.1, we get

$$T(r, F_{j+1}^{1}) \leq T(r, (1-\alpha)F_{j}^{2}) + T(r, \alpha f_{1} \circ F_{j}^{2}) + O(1)$$

$$\leq T(r, F_{j}^{2}) + T(r, f_{1} \circ F_{j}^{2}) + O(1)$$

$$= T(r, f_{1} \circ F_{j}^{2}) \left[1 + \frac{T(r, F_{j}^{2})}{T(r, f_{1} \circ F_{j}^{2})} + \frac{O(1)}{T(r, f_{1} \circ F_{j}^{2})}\right]$$

$$= (1 + O(1)) T(r, f_{1} \circ F_{j}^{2}) . \tag{2.1}$$

Again
$$f_1 \circ F_j^2 = \frac{1}{\alpha} F_{j+1}^1 - \frac{1-\alpha}{\alpha} F_j^2$$
 and so for large r

$$T\left(r, f_1 \circ F_i^2\right) \leq T\left(r, F_{i+1}^1\right) + T\left(r, F_i^2\right) + O\left(1\right)$$

Therefore

$$T(r, F_{j+1}^{1}) \ge T(r, f_{1} \circ F_{j}^{2}) - T(r, F_{j}^{2}) + O(1)$$

$$= T(r, f_{1} \circ F_{j}^{2}) \left[1 - \frac{T(r, F_{j}^{2})}{T(r, f_{1} \circ F_{j}^{2})} + \frac{O(1)}{T(r, f_{1} \circ F_{j}^{2})}\right]$$

$$= (1 + O(1)) T(r, f_{1} \circ F_{j}^{2}) . \tag{2.2}$$

From (2.1) and (2.2) for all large r, we have

$$T(r, F_{j+1}^1) = (1 + O(1)) T(r, f_1 \circ F_j^2)$$

Similarly for large r, we have

$$T(r, F_{j+1}^2) = (1 + O(1)) T(r, f_2 \circ F_j^3)$$

and so in general

$$T(r, F_{i+1}^k) = (1 + O(1)) T(r, f_k \circ F_i^1)$$
 (2.3)

First suppose $p = km, m \in \mathbb{N}$.

Then for all large r except a set of r intervals of total finite length, we have from (2.3) and by using Lemma 2.1

$$\begin{split} \frac{T\left(r,F_{n+p}^{1}\right)}{T\left(r,F_{n}^{1}\right)} &= (1+O\left(1\right)) \, \frac{T\left(r,f_{1}\circ F_{n+p-1}^{2}\right)}{T\left(r,F_{n}^{1}\right)} \\ &= (1+O\left(1\right)) \, \frac{T\left(r,f_{1}\circ F_{n+p-1}^{2}\right)}{T\left(r,F_{n+p-1}^{2}\right)} \, \frac{T\left(r,F_{n+p-1}^{2}\right)}{T\left(r,F_{n}^{1}\right)} \\ &= (1+O\left(1\right)) \, \frac{T\left(r,f_{1}\circ F_{n+p-1}^{2}\right)}{T\left(r,F_{n+p-1}^{2}\right)} \, \frac{(1+O\left(1\right))T\left(r,f_{2}\circ F_{n+p-2}^{3}\right)}{T\left(r,F_{n}^{1}\right)} \\ &= (1+O\left(1\right)) \, \frac{T\left(r,f_{1}\circ F_{n+p-1}^{2}\right)}{T\left(r,F_{n+p-1}^{2}\right)} \, \frac{T\left(r,f_{2}\circ F_{n+p-2}^{3}\right)}{T\left(r,F_{n+p-2}^{3}\right)} \, \frac{T\left(r,F_{n+p-2}^{3}\right)}{T\left(r,F_{n}^{1}\right)} \\ &\vdots \\ &= (1+O\left(1\right)) \, \frac{T\left(r,f_{1}\circ F_{n+p-1}^{2}\right)}{T\left(r,F_{n+p-1}^{2}\right)} \, \frac{T\left(r,f_{2}\circ F_{n+p-2}^{3}\right)}{T\left(r,F_{n+p-3}^{3}\right)} \, \frac{T\left(r,f_{3}\circ F_{n+p-3}^{4}\right)}{T\left(r,F_{n+p-3}^{4}\right)} \end{split}$$

$$\dots \frac{T\left(r, f_{k} \circ F_{n}^{1}\right)}{T\left(r, F_{n}^{1}\right)}$$

$$> (1 + O(1)) M^{p}$$

$$= M_{1} \text{ say, where } M_{1} = (1 + O(1)) M^{p}, \text{ a positive constant}$$

i.e,

$$\frac{T\left(r, F_{n+p}^1\right)}{T\left(r, F_n^1\right)} > M_1$$

for all large r except a set of r intervals of total finite length.

Next suppose $p = km - 1, m \in \mathbb{N}$.

Then for all large r except a set of r intervals of total finite length, we have from (2.3) and by using Lemma 2.1

$$\begin{split} \frac{T\left(r,F_{n+p}^{2}\right)}{T\left(r,F_{n}^{1}\right)} &= (1+O\left(1\right)) \, \frac{T\left(r,f_{2}\circ F_{n+p-1}^{3}\right)}{T\left(r,F_{n}^{1}\right)} \\ &= (1+O\left(1\right)) \, \frac{T\left(r,f_{2}\circ F_{n+p-1}^{3}\right)}{T\left(r,F_{n+p-1}^{3}\right)} \, \frac{T\left(r,F_{n+p-1}^{3}\right)}{T\left(r,F_{n}^{1}\right)} \\ &= (1+O\left(1\right)) \, \frac{T\left(r,f_{2}\circ F_{n+p-1}^{3}\right)}{T\left(r,F_{n+p-1}^{3}\right)} \, \frac{(1+O\left(1\right))T\left(r,f_{3}\circ F_{n+p-2}^{4}\right)}{T\left(r,F_{n}^{1}\right)} \\ &= (1+O\left(1\right)) \, \frac{T\left(r,f_{2}\circ F_{n+p-1}^{3}\right)}{T\left(r,F_{n+p-1}^{3}\right)} \, \frac{T\left(r,f_{3}\circ F_{n+p-2}^{4}\right)}{T\left(r,F_{n+p-2}^{4}\right)} \, \frac{T\left(r,F_{n+p-2}^{4}\right)}{T\left(r,F_{n}^{1}\right)} \\ &\vdots \\ &= (1+O\left(1\right)) \, \frac{T\left(r,f_{2}\circ F_{n+p-1}^{3}\right)}{T\left(r,F_{n+p-1}^{3}\right)} \, \frac{T\left(r,f_{3}\circ F_{n+p-2}^{4}\right)}{T\left(r,F_{n+p-3}^{4}\right)} \, \frac{T\left(r,f_{4}\circ F_{n+p-3}^{5}\right)}{T\left(r,F_{n+p-3}^{5}\right)} \\ & \cdots \, \frac{T\left(r,f_{k}\circ F_{n}^{1}\right)}{T\left(r,F_{n}^{1}\right)} \\ &> (1+O\left(1\right)) \, M^{p} \\ &= M_{1} \text{ say, where } M_{1} = (1+O\left(1\right)) \, M^{p}, \text{ a positive constant} \end{split}$$

i.e,

$$\frac{T\left(r, F_{n+p}^2\right)}{T\left(r, F_n^1\right)} > M_1$$

for all large r except a set of r intervals of total finite length.

Finally suppose $p = km - (k-1), m \in \mathbb{N}$.

Then for all large except a set of r interval of total finite length, we have from (2.3) and by using Lemma 2.1

$$\frac{T\left(r,F_{n+p}^{k}\right)}{T\left(r,F_{n}^{1}\right)} = (1+O(1))\frac{T\left(r,f_{k}\circ F_{n+p-1}^{1}\right)}{T\left(r,F_{n}^{1}\right)}$$

$$= (1+O(1))\frac{T\left(r,f_{k}\circ F_{n+p-1}^{1}\right)}{T\left(r,F_{n+p-1}^{1}\right)}\frac{T\left(r,F_{n+p-1}^{1}\right)}{T\left(r,F_{n}^{1}\right)}$$

$$= (1+O(1))\frac{T\left(r,f_{k}\circ F_{n+p-1}^{1}\right)}{T\left(r,F_{n+p-1}^{1}\right)}\frac{(1+O(1))T\left(r,f_{1}\circ F_{n+p-2}^{2}\right)}{T\left(r,F_{n}^{1}\right)}$$

$$= (1+O(1))\frac{T\left(r,f_{k}\circ F_{n+p-1}^{1}\right)}{T\left(r,F_{n+p-1}^{1}\right)}\frac{T\left(r,f_{1}\circ F_{n+p-2}^{2}\right)}{T\left(r,F_{n+p-2}^{2}\right)}\frac{T\left(r,F_{n+p-2}^{2}\right)}{T\left(r,F_{n}^{1}\right)}$$

$$\vdots$$

$$= (1+O(1))\frac{T\left(r,f_{k}\circ F_{n+p-1}^{1}\right)}{T\left(r,F_{n+p-1}^{1}\right)}\frac{T\left(r,f_{1}\circ F_{n+p-2}^{2}\right)}{T\left(r,F_{n+p-2}^{2}\right)}\frac{T\left(r,f_{2}\circ F_{n+p-3}^{3}\right)}{T\left(r,F_{n+p-3}^{3}\right)}$$

$$\frac{T\left(r,f_{k}\circ F_{n}^{1}\right)}{T\left(r,F_{n}^{1}\right)}$$

$$> (1+O(1))M^{p}$$

$$= M_{1} \text{ say, where } M_{1} = (1+O(1))M^{p}, \text{ a positive constant}$$

i.e,

$$\frac{T\left(r, F_{n+p}^{k}\right)}{T\left(r, F_{n}^{1}\right)} > M_{1}$$

for all large r except a set of r intervals of total finite length.

Lemma 2.3. If n is any positive integer and $f_1, f_2, ..., f_k$ are functions in class II, then for any $r_0 > 0$ and a suitable positive constant M_1 , we have

$$\frac{T\left(r, F_{n+p}^{2}\right)}{T\left(r, F_{n}^{2}\right)} > M_{1} \quad or \quad \frac{T\left(r, F_{n+p}^{3}\right)}{T\left(r, F_{n}^{2}\right)} > M_{1} \quad or \quad \quad or \quad \frac{T\left(r, F_{n+p}^{1}\right)}{T\left(r, F_{n}^{2}\right)} > M_{1}$$

according as p = km or km - 1 or...or km - (k - 1), $m \in \mathbb{N}$ for all large r, except a set of r intervals of total finite length.

Lemma 2.4. If n is any positive integer and $f_1, f_2, ..., f_k$ are functions in class II, then for any $r_0 > 0$ and a suitable positive constant M_1 , we have

$$\frac{T\left(r, F_{n+p}^{k}\right)}{T\left(r, F_{n}^{k}\right)} > M_{1} \quad or \quad \frac{T\left(r, F_{n+p}^{1}\right)}{T\left(r, F_{n}^{k}\right)} > M_{1} \quad or \quad \quad or \quad \frac{T\left(r, F_{n+p}^{k-1}\right)}{T\left(r, F_{n}^{k}\right)} > M_{1}$$

according as p = km or km - 1 or...or km - (k - 1), $m \in \mathbb{N}$ for all large r, except a set of r intervals of total finite length.

3. Main Result

Our main result is the following theorem.

Theorem 3.1. If $f_1, f_2, ..., f_k$ belong to class II, then $f_1(z)$ has an infinity of generalised relative fix points of exact order n > k for every positive integer n, provided $\frac{T(r,F_n^i)}{T(r,F_n^i)}$, i=2,3,...,k are bounded. **Proof.** Here we consider the function

$$g(z) = \frac{F_n^1(z)}{z}, r_0 < |z| < +\infty.$$

Then

$$T(r,g) = T(r,F_n^1) + O(\log r).$$
(3.1)

Now we assume that $f_1(z)$ has only a finite number of generalised relative fix points of exact order n. We take q=2, $a_1=0$, $a_2=1$, then from (1.3) we obtain

$$T(r,g) \le \overline{N}(r,\infty,g) + \overline{N}(r,0,g) + \overline{N}(r,1,g) + S_1(r,g), \qquad (3.2)$$

where $S_1(r,q) = O(\log T(r,q))$ outside a set of r intervals of finite length.

We know that

$$\overline{N}\left(r,0,g\right) = \int_{r_0}^{r} \frac{\overline{n}\left(t,0,g\right)}{t} dt$$

where $\overline{n}(t,0,g)$ is the number of roots of g(z)=0 in $r_0<|z|\leq t$, each multiple root taken once at a time. The distinct roots of g(z) = 0 in $r_0 < |z| \le t$ are the roots of $F_n^1(z) = 0$ in $r_0 < |z| \le t$. Now $F_n^1(z)$ has a singularity at z = 0, an essential singularity at $z = \infty$ and $F_n^1(z) \neq 0, \infty$. So $\overline{n}(t, 0, g) = 0$ and so $\overline{N}(r,0,g)=0$. Similarly $\overline{N}(r,\infty,g)=0$. Thus (3.2) reduces to

$$T(r,g) \le \overline{N}(r,1,g) + S_1(r,g) \tag{3.3}$$

Again $F_n^1(z) = z$ when g(z) = 1.

Then

$$\overline{N}(r, 1, g) = \overline{N}(r, 0, F_n^1 - z)
\leq \sum_{j=1}^{n-2} \left[\overline{N}(r, 0, F_j^1 - z) + \overline{N}(r, 0, F_j^2 - z) + \dots + \overline{N}(r, 0, F_j^k - z) \right]
\leq \sum_{j=1}^{n-2} \left[T(r, F_j^1 - z) + O(1) + T(r, F_j^2 - z) + O(1) + \dots \right]
+ T(r, F_j^k - z) + O(1) \right]$$

$$\leq \sum_{j=1}^{n-2} [T\left(r, F_{j}^{1}\right) + T\left(r, F_{j}^{2}\right) + \dots + T\left(r, F_{j}^{k}\right)] + O\left(\log r\right)$$

$$= \left[\left\{T\left(r, F_{j_{1}}^{1}\right) + T\left(r, F_{j_{k+1}}^{1}\right) + \dots + T\left(r, F_{j_{kp_{1}-(k-1)}}^{1}\right)\right\} + \left\{T\left(r, F_{j_{2}}^{1}\right) + \dots + T\left(r, F_{j_{kp_{2}-(k-2)}}^{1}\right)\right\} + \dots + \left\{T\left(r, F_{j_{k-1}}^{1}\right) + \dots + T\left(r, F_{j_{kp_{k-1}-1}}^{1}\right)\right\} + \left\{T\left(r, F_{j_{k}}^{1}\right) + T\left(r, F_{j_{2}}^{1}\right) + \dots + T\left(r, F_{j_{kp_{k}-(k-2)}}^{1}\right)\right\} + \left\{T\left(r, F_{j_{k}}^{2}\right) + T\left(r, F_{j_{k+1}}^{2}\right) + \dots + T\left(r, F_{j_{kp_{2}-(k-2)}}^{2}\right)\right\} + \dots + T\left(r, F_{j_{kp_{1}-(k-1)}}^{2}\right) + \left\{T\left(r, F_{j_{2}}^{2}\right) + T\left(r, F_{j_{k}}^{2}\right) + \dots + T\left(r, F_{j_{k}}^{2}\right)\right\} + \dots + T\left(r, F_{j_{kp_{k}-1}-1}^{2}\right) + \left\{T\left(r, F_{j_{k}}^{2}\right) + \dots + T\left(r, F_{j_{k+1}}^{2}\right) + \dots + T\left(r, F_{j_{k+1}}^{2}\right)$$

where $j_1, j_{k+1}, ..., j_{kp_1-(k-1)}; j_2, j_{k+2}, ..., j_{kp_2-(k-2)}; ...; j_{k-1}, j_{2k-1}, ..., j_{kp_{k-1}-1}; j_k, j_{2k}, ..., j_{kp_k}$ are strictly less than n and are of the form $kp_1 - (k-1), kp_2 - (k-2), ..., kp_{k-1} - 1, kp_k, (p_1, p_2, ..., p_{k-1}, p_k \in \mathbb{N})$

$$= T\left(r, F_{n}^{1}\right) \left[\left\{\frac{T\left(r, F_{j_{k}}^{1}\right)}{T\left(r, F_{n}^{1}\right)} + \frac{T\left(r, F_{j_{2k}}^{1}\right)}{T\left(r, F_{n}^{1}\right)} + \dots + \frac{T\left(r, F_{j_{kp_{k}}}^{1}\right)}{T\left(r, F_{n}^{1}\right)}\right\} + \left\{\frac{T\left(r, F_{j_{1}}^{2}\right)}{T\left(r, F_{n}^{1}\right)}\right\} + \left\{\frac{T\left(r, F_{j_{1}}^{2}\right)}{T\left(r, F_{n}^{1}\right)}\right\} + \left\{\frac{T\left(r, F_{j_{2}}^{2}\right)}{T\left(r, F_{n}^{1}\right)} + \frac{T\left(r, F_{j_{2k-1}}^{3}\right)}{T\left(r, F_{n}^{1}\right)} + \frac{T\left(r, F_{j_{2k-1}}^{3}\right)}{T\left(r, F_{n}^{1}\right)} + \dots + \left\{\frac{T\left(r, F_{j_{k-1}}^{k}\right)}{T\left(r, F_{n}^{1}\right)} + \frac{T\left(r, F_{j_{2k-1}}^{k}\right)}{T\left(r, F_{n}^{1}\right)} + \dots + \frac{T\left(r, F_{j_{kp_{k-1}-1}}^{k}\right)}{T\left(r, F_{n}^{1}\right)}\right\} \right] + \dots + \left\{\frac{T\left(r, F_{j_{2k-1}}^{1}\right)}{T\left(r, F_{n}^{2}\right)} + \dots + \frac{T\left(r, F_{j_{kp_{k-1}-1}}^{1}\right)}{T\left(r, F_{n}^{2}\right)}\right\}$$

$$+ \left\{ \frac{T\left(r,F_{j_k}^2\right)}{T\left(r,F_n^2\right)} + \frac{T\left(r,F_{j_{2k}}^2\right)}{T\left(r,F_n^2\right)} + \ldots + \frac{T\left(r,F_{j_{kp_k}}^2\right)}{T\left(r,F_n^2\right)} \right\} + \left\{ \frac{T\left(r,F_{j_1}^3\right)}{T\left(r,F_n^2\right)} + \frac{T\left(r,F_{j_{k+1}}^3\right)}{T\left(r,F_n^2\right)} \\ + \ldots + \frac{T\left(r,F_{j_{kp_1-(k-1)}}^3\right)}{T\left(r,F_n^2\right)} \right\} + \ldots + \left\{ \frac{T\left(r,F_{j_{k-2}}^k\right)}{T\left(r,F_n^2\right)} + \frac{T\left(r,F_{j_{2k-2}}^k\right)}{T\left(r,F_n^2\right)} + \ldots \right. \\ + \frac{T\left(r,F_{j_{kp_k-2}-2}^k\right)}{T\left(r,F_n^2\right)} \right\} \right] + \ldots \\ \ldots + T\left(r,F_n^k\right) \left[\left\{ \frac{T\left(r,F_{j_1}^1\right)}{T\left(r,F_n^k\right)} + \frac{T\left(r,F_{j_{k+1}}^1\right)}{T\left(r,F_n^k\right)} + \ldots + \frac{T\left(r,F_{j_{kp_1-(k-1)}}^1\right)}{T\left(r,F_n^k\right)} \right\} \\ + \left\{ \frac{T\left(r,F_{j_2}^2\right)}{T\left(r,F_n^k\right)} + \frac{T\left(r,F_{j_{k+2}}^2\right)}{T\left(r,F_n^k\right)} + \ldots + \frac{T\left(r,F_{j_{kp_2-(k-2)}}^2\right)}{T\left(r,F_n^k\right)} \right\} + \left\{ \frac{T\left(r,F_{j_{k-1}}^3\right)}{T\left(r,F_n^k\right)} \\ + \frac{T\left(r,F_{j_{k}}^3\right)}{T\left(r,F_n^k\right)} + \ldots + \frac{T\left(r,F_{j_{kp_{k-1}-1}}^3\right)}{T\left(r,F_n^k\right)} \right\} + \ldots + \left\{ \frac{T\left(r,F_{j_k}^k\right)}{T\left(r,F_n^k\right)} + \frac{T\left(r,F_{j_2k}^k\right)}{T\left(r,F_n^k\right)} \\ + \ldots + \frac{T\left(r,F_{j_{kp_k}}^k\right)}{T\left(r,F_n^k\right)} \right\} \right] + O\left(\log r\right) \\ < \frac{n-1}{2kn}T\left(r,F_n^1\right) + \frac{n-1}{2kn}T\left(r,F_n^2\right) + \ldots + \frac{n-1}{2kn}T\left(r,F_n^k\right) + O\left(\log r\right), \\ \text{using Lemma 2.2, Lemma 2.3 and Lemma 2.4.}$$

So from (3.3) and since $\frac{T(r,F_n^2)}{T(r,F_n^1)}, \frac{T(r,F_n^3)}{T(r,F_n^1)}, ..., \frac{T(r,F_n^k)}{T(r,F_n^1)}$ are bounded, we have

$$T(r,g) < \frac{n-1}{2kn}T(r,F_n^1) + \frac{n-1}{2kn}T(r,F_n^2) + \dots + \frac{n-1}{2kn}T(r,F_n^k) + O(\log r) + S_1(r,g)$$

$$= \frac{n-1}{2kn}T(r,F_n^1) + \frac{n-1}{2kn}T(r,F_n^2) + \dots + \frac{n-1}{2kn}T(r,F_n^k) + O(\log r) + O(\log T(r,g))$$

$$\leq T(r,F_n^1)\left[\frac{n-1}{2kn} + \frac{n-1}{2kn}\frac{T(r,F_n^2)}{T(r,F_n^1)} + \dots + \frac{n-1}{2kn}\frac{T(r,F_n^k)}{T(r,F_n^1)}\right] + \frac{O(\log (T(r,F_n^1) + O(\log r)))}{T(r,F_n^1)} + \frac{O(\log r)}{T(r,F_n^1)}, \text{ using } (3.1)$$

$$\leq T(r,F_n^1)\left[\frac{n-1}{2kn} + \frac{n-1}{2kn} + \dots + \frac{n-1}{2kn}\right]$$

$$\begin{split} & + \frac{O\left(\log\left(T\left(r,F_{n}^{1}\right)\left(1 + \frac{O(\log r)}{T(r,F_{n}^{1})}\right)\right)\right)}{T\left(r,F_{n}^{1}\right)} + \frac{O\left(\log r\right)}{T\left(r,F_{n}^{1}\right)} \\ < & \quad T\left(r,F_{n}^{1}\right)\left[\frac{1}{2} + \frac{O\left(\log\left(T\left(r,F_{n}^{1}\right)\left(1 + \frac{O(\log r)}{T(r,F_{n}^{1})}\right)\right)\right)}{T\left(r,F_{n}^{1}\right)} + \frac{O\left(\log r\right)}{T\left(r,F_{n}^{1}\right)} \right] \\ = & \quad \frac{1}{2}T\left(r,F_{n}^{1}\right), \text{ for all large } r. \end{split}$$

Therefore, $T(r,g) < \frac{1}{2}T(r,F_n^1)$ for all large r. This contradicts (3.1). Hence $f_1(z)$ has infinitely many generalised relative fix points of exact order n. This proves the theorem.

4. Acknowledgement

The authors are thankful to the referees for their valuable suggestions to improve this paper.

References

- [1] Baker I. N., The existence of fix points of entire functions, Math. Zeit., 73 (1960), 280-284.
- [2] Bhattacharyya P., An extension of a theorem of Baker, Publicationes Mathematiae Debrecen, 27 (1980), 273-277.
- [3] Bieberbach L., Theorie der Gewöhnlichen Differentialgleichungen, Berlin, (1953).
- [4] Hayman W. K., Meromorphic functions, The Oxford University Press, (1964).
- [5] Lahiri B. K. and Banerjee, D., On the existence of relative fix points, Istanbul Univ. Fen Fak. Mat. Dergisi, 55-56 (1996-1997), 283-292.
- [6] Paunović Ljiljana R., Teorija Apstraktnih Metri čkih Prostora-Nekinovi rezultati-Leosavić, Serbia (2017).
- [7] Radenović Stojan, Simić Slavko, A note on connection between p-convex and subadditive functions, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 10 (1999), 59-62.
- [8] Simić Slavko, Radenović Stojan, A functional inequality, Journal of Mathematical Analysis and Applications, 197, (1996), 489-494.
- [9] Todorčević Vesna, Harmonic quasiconformal Mappings and Hyperbolic Type Metrices, Springer Nature Switzerland AG (2019).