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Abstract: The objective of this paper is to obtain sufficient conditions for the ex-
istence of fixed point of T -Zamfirescu in complete cone metric spaces and we prove
fixed point theorem for an extended Kannan and Chatterjea type T -contraction
mapping in a cone metric space. Our results generalize recent results existing in
the literature of T -Zamfirescu mappings in cone metric space.
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1. Introduction
In [4], Huang and Zhang introduced the concept of cone metric space as a

generalization of metric space, in which they replace the set of real numbers with
a real Banach space. After that, many others [1, 2, 5, 6, 7, 12] proved numerous
fixed point theorems for contractive type mappings on a cone metric space. Morales
and Rojas [10], [9], [11] have extended the concept of T -contraction mappings to
cone metric space by proving fixed point theorems for T -Kannan, T -Zamfirescu,
T -weakly contraction mappings. The purpose of this paper is to prove fixed point
theorem for an extended Kannan and Chatterjea T -Zamfirescu type mapping in a
cone metric space. Our results pull out and generalized fixed point theorems of [8].
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2. Preliminaries and Definition
Definition 2.1. Let (E, ‖·‖) be a real Banach space and R be set of real number.
A subset P ⊆ E is said to be a cone if and only if
(i) P is closed, nonempty and P 6= {0}
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P
(iii) P ∩ (−P ) = {0}

For a given cone P subset of E, we define a partial ordering ≤ with respect to
P by x ≤ y if and only if y − x ∈ P . We shall write x < y to indicate that x ≤ y
but x 6= y while x� y will stand for y − x ∈ int P where int P denotes interior of
P and is assumed to be nonempty.

Definition 2.2. [4] Let X be a nonempty set. Suppose that the mapping d :
X ×X → E satisfies
(i) 0 ≤ d(x, y) for every x, y ∈ X, d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x) for every x, y ∈ X.
(iii) d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z ∈ X.
Then d is a cone metric on X and (X, d) is a cone metric space.

Example 2.3. [3] Let E = Rn, P =
{

(x, y) ∈ E : x, y ≥ 0
}
⊂ R2, X = R and

d : X ×X → E such that d(x, y) =
(
|x− y|, α|x− y|

)
, where α ≥ 0 is a constant.

Then (X, d) is a cone metric space.

Definition 2.4. Let E be a Banach space and P ⊂ E a cone. The cone P is called
normal if there is a number K > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y Implies ‖x‖ ≤ K ‖y‖ .

The least positive number satisfying the above inequality is called the normal con-
stant of P .

Then ‖·‖ is called a norm on X, and (X, ‖·‖) is called a cone normed space.
Clearly each cone normed space is a cone metric space with metric defined by
d(x, y) = ‖x− y‖.
Definition 2.5. [3] Let (X, d) be a cone metric space, x ∈ X and {xn} a sequence
in X. Then
(i) {xn} converges to x if for every c ∈ E with 0 � c there is a natural number
N such that d(xn, x) ≤ c for all n ≥ N
We shall denote it by limn→∞ xn = x or xn → x.
(ii) {xn} is a Cauchy sequence, if for every c ∈ E with 0 � c there is a natural
number N such that

d(xn, x) ≤ c for all n,m ≥ N.
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(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent
in X.

Definition 2.6. Let (X, ‖·‖) be a cone normed space, x ∈ X and {xn} a sequence
in X. Then
(i) {xn} converges to x if for every c ∈ E with 0 � c there is a natural number
N such that ‖xn − x‖ ≤ c for all n ≥ N

We shall denote it by limn→∞ xn = x or xn → x.
(ii) {xn} is a Cauchy sequence, if for every c ∈ E with 0 � c there is a natural
number N such that

‖xn − xm‖ ≤ c for all n,m ≥ N.

(iii) (X, ‖·‖) is a complete cone normed space if every Cauchy sequence is conver-
gent. A complete cone normed space is called a Cone Banach space.

Lemma 2.7. [3] Let (X, d) be a cone normed space. P be a normal cone with
constant K. Let {xn}, {yn} be a sequence in X and x, y ∈ X. Then
(i) {xn} converges to x if and only if limn→∞ d(xn, x) = 0.
(ii) If {xn} converges to x and {xn} converges to y then x = y.
(iii) If {xn} is a Cauchy sequence if and only limn,m→∞ d(xn, xm) = 0.
(iv) If the sequence {xn} converges to x and {yn} converges to y then

d(xn, yn)→ d(x, y).

Definition 2.8. Let (X, d) be a cone metric space, P be a normal cone with normal
constant K Let T : X → X. Then
(i) T is said to be continuous,

if lim
n→∞

xn = x implies that lim
n→∞

Txn = Tx for every {xn} in X.

(ii) T is said to be sequentially convergent if we have, for every sequence {yn}, if
T (yn) is convergent, then {yn} also is convergent.
Now, following the ideas of T . Zamfirescu, we introduce the notion of T -Zamfirescu
mappings.

Definition 2.9. [14] Let (X, d) be a cone metric space and T, S : X → X two
mappings. S is called a T -Zamfirescu mapping, (TZ-mapping), if and only if, there
are real numbers, 0 ≤ a < 1, 0 ≤ b, c < 1/2 such that for all x, y ∈ X, at least
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one of the next conditions are true:

(TZ1) : d(TSx, TSy) ≤ ad(Tx, Ty).

(TZ2) : d(TSx, TSy) ≤ b
[
d(Tx, TSx) + d(Ty, TSy)

]
.

(TZ1) : d(TSx, TSy) ≤ c
[
d(Tx, TSy) + d(Ty, TSx)

]
.

Corollary 2.10. [13] Let a, b, c, u ∈ E the real Banach space
(i) If a ≤ b and b� c then a� c.
(ii) If a� b and b� c then a� c.
(iii) If 0 ≤ u� c for each c ∈ int P , then u = 0.

3. Main Results

Lemma 3.1. Let (X, d) be a cone metric space and T, S : X → X two mappings
with

d(TSx, TSy) ≤ α
[
d(Tx, TSx) + d(Ty, TSy)

]
+ βd(Tx, Ty) (3.1)

for all x, y ∈ X where 0 ≤ α and 0 ≤ β ≤ 1. Then S is a T -Zamfirescu mapping.
Proof. Let (X, d) be a cone metric space and T, S : X → X two mappings with

d(TSx, TSy) ≤ α
[
d(Tx, TSx) + d(Ty, TSy)

]
+ βd(Tx, Ty)

for all x, y ∈ X. Where 0 ≤ α and 0 ≤ β ≤ 1

d(TSx, TSy) ≤ α
[
d(Tx, TSx) + d(Ty, TSy)

]
+ βd(Tx, Ty)

d(TSx, TSy) ≤ α
[
d(Tx, TSx) + d(Ty, TSy)

]
+ β

{
d(Tx, TSx)

+ d(TSx, TSy) + d(TSy, Ty)
}

(1− β)d(TSx, TSy) ≤ (α + β)
[
d(Tx, TSx) + d(Ty, TSy)

]
d(TSx, TSy) ≤ (α + β)

(1− β)

[
d(Tx, TSx) + d(Ty, TSy)

]
d(TSx, TSy) ≤ b

[
d(Tx, TSx) + d(Ty, TSy)

]
where b =

(α + β)

(1− β)
≥ 0.

Hence by definition of T -Zamfirescu, S is T -Zamfirescu mapping.
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Theorem 3.2. Let (X, d) be a complete cone metric space, P be normal cone with
normal cone with normal constant K. Moreover, let T : X → X be a continuous
and injective mapping and S : X → X a continuous mapping. If the mappings T
and S satisfy

d(TSx, TSy) ≤ α
[
d(Tx, TSx) + d(Ty, TSy)

]
+ βd(Tx, Ty) (3.2)

for all x, y ∈ X, where 0 ≤ α and 0 ≤ β ≤ 1. Then S has a unique fixed point in
X.
Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} inX such that xn+1 = Sxn
for each = 0, 1, 2, ...,∞.
We have

d(TSxn, TSxn−1) ≤ α
[
d(Txn, TSxn) + d(Txn−1, TSxn−1)

]
+ βd(Txn, Txn−1)

d(Txn+1, Txn) ≤ α
[
d(Txn, Txn+1) + d(Txn−1, Txn)

]
+ βd(Txn−1, Txn)

(1− α)d(Txn+1, Txn) ≤ (α + β)d(Txn−1, Txn).

d(Txn+1, Txn) ≤ (α + β)

(1− α)
d(Txn−1, Txn).

Proceeding as above

d(Txn+1, Txn) ≤ (α + β)n

(1− α)
d(Tx0, Tx1).

Next, to claim that {Txn} is a Cauchy sequence. Consider m,n ∈ N such that
m > n

d(Txn, Txm) ≤ d(Txn, Txn+1) + d(Txn+1, Txn+2) + · · ·+ d(Txm−1, Txm)

d(Txn, Txm) ≤

[
(α + β)n

(1− α)
+

(α + β)n+1

(1− α)
+ · · ·+ (α + β)m−1

(1− α)

]
d(Tx0, Tx1) (3.3)

We take α+β
1−α = k, the inequality (3.3) implies that for all m,n ∈ N, n > m

d(Txn, Txm) ≤ kn

1− k
d(Tx0, Tx1).
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Since, P be normal cone, therefore

‖d(Txn, Txm)‖ ≤ kn

1− k
‖d(Tx0, Tx1)‖ .

Further, since k ∈ (0, 1), kn → 0 as n→∞.

Therefore ‖d(Txn, Txm)‖ → 0 as m,n→∞.

Thus, {Txn} is a Cauchy sequence in X. As X is a complete cone metric space,
there exists z ∈ X such that

lim
n→∞

Txn = z.

Since T is sub-sequentially convergent, {xn} has a convergent subsequence {xm}
such that

lim
m→∞

Txm = u

Since, T is continuous implies that

lim
m→∞

Txm = Tu (3.4)

By the uniqueness of the limit, z = Tu.
Since S is continuous,

lim
m→∞

Sxm = Su

Again as T is continuous,

lim
m→∞

TSxm = TSu

Therefore

lim
m→∞

TSxm+1 = TSu (3.5)
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Now consider,

d(TSu, Tu) ≤ d(TSu, Txm) + d(Txm, Tu)

d(TSu, Tu) ≤ α
[
d(Tu, TSu) + d(Txm−1, Txm)

]
+ βd(Tu, Txm−1)

+ d(Txm, Tu)

(1− α)d(TSu, Tu) ≤ αd(Txm−1, Txm) + βd(Tu, Txm−1) + d(Txm, Tu)

d(TSu, Tu) ≤ α

1− α
d(Txm−1, Txm) +

β

1− α
d(Tu, Txm−1)

+
1

1− α
d(Txm, Tu)

d(TSu, Tu) ≤ α

1− α
d(Txm−1, Txm) +

β

1− α

{
d(Tu, Txm)

+ d(Txm, Txm−1)
}

+
1

1− α
d(Txm, Tu)

d(TSu, Tu) ≤ α + β

1− α
d(Txm−1, Txm) +

β + 1

1− α
d(Tu, Txm) (3.6)

Let 0� c be arbitrary, By (3.4), we have

d(Tu, Txm)� c(1− α)

2(1 + β)

And by (3.5) we have

d(Txm−1, Txm)� c(1− α)

2(α + β)

Then (3.6) becomes,

d(TSu, Tu)� c for each c ∈ int P

Now, Using Corollary (2.10-iii), it follows that d(TSu, Tu) = 0 which implies that
Tu = TSu
Since T is one-to-one, Thus u is the fixed point of S.
We claim that, u is the fixed point of.
If w is another fixed point of S, then w = Sw

d(Tu, Tw) = d(TSu, TSw)

≤ α
(
d(Tu, TSu) + d(Tw, TSw)

)
+ βd(Tu, Tw)

≤ βd(Tu, Tw)
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This is a contradiction. Hence d(Tu, Tw) = 0 ⇒ Tu = Tw. As T is injective,
u = w. Therefore the fixed point of S is unique.

Theorem 3.3. Let (X, d) be a complete cone metric space, P be normal cone with
normal cone with normal constant K. Moreover, let T : X → X be a continuous
and injective mapping and S : X → X a continuous mapping. If the mappings T
and S satisfy

d(TSx, TSy) ≤ α
[
d(Ty, TSx) + d(Tx, TSy)

]
+ βd(Tx, Ty) (3.7)

for all x, y ∈ X, where α > 0, β ≥ 0, 2α + β < 1 then S has an unique fixed point
in X.
Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} inX such that xn+1 = Sxn
for each = 0, 1, 2, ...,∞.
We have

d(TSxn, TSxn−1) ≤ α
[
d(Txn−1, TSxn) + d(Txn, TSxn−1)

]
+ βd(Txn−1, Txn)

d(Txn+1, Txn) ≤ α
[
d(Txn−1, Txn+1) + d(Txn, Txn)

]
+ βd(Txn−1, Txn)

d(Txn+1, Txn) ≤ αd(Txn−1, Txn+1) + βd(Txn−1, Txn)

d(Txn+1, Txn) ≤ α
{
d(Txn−1, Txn+1) + d(Txn, Txn+1)

}
+ βd(Txn−1, Txn)

(1− α)d(Txn+1, Txn) ≤ (α + β)d(Txn−1, Txn)

d(Txn+1, Txn) ≤ (α + β)

(1− α)
d(Txn−1, Txn)

Proceeding as above

d(Txn+1, Txn) ≤ (α + β)n

(1− α)
d(Tx0, Tx1)

Next, to claim that {Txn} is a Cauchy sequence. Consider m,n ∈ N such that
m > n

d(Txn, Txm) ≤ d(Txn, Txn+1) + d(Txn+1, Txn+2) + · · ·+ d(Txm−1, Txm)

d(Txn, Txm) ≤

[
(α + β)n

(1− α)
+

(α + β)n+1

(1− α)
+ · · ·+ (α + β)m−1

(1− α)

]
d(Tx0, Tx1) (3.8)



Extension of Fixed Point Theorems type T -Zamfirescu Mapping ... 93

We take α+β
1−α = k,

d(Txn, Txm) ≤
[
kn + kn+1 + · · ·+ km−1

]
d(Tx0, Tx1)

d(Txn, Txm) ≤ kn

1− k
d(Tx0, Tx1)

Since, P be normal cone, therefore

‖d(Txn, Txm)‖ ≤ kn

1− k
‖d(Tx0, Tx1)‖

Further, since k ∈ (0, 1), kn → 0 as n → ∞. Therefore ‖d(Txn, Txm)‖ → 0 as
m,n→∞
Thus, {Txn} is a Cauchy sequence in X. As X is a complete cone metric space,
there exists z ∈ X such that

lim
n→∞

Txn = z

Since T is sub-sequentially convergent, {xn} has a convergent subsequence {xm}
such that

lim
m→∞

Txm = u

Since, T is continuous implies that

lim
m→∞

Txm = Tu (3.9)

By the uniqueness of the limit, z = Tu.
Since S is continuous,

lim
m→∞

Sxm = Su

Again as T is continuous,

lim
m→∞

TSxm = TSu

Therefore

lim
m→∞

TSxm+1 = TSu (3.10)
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Now consider,

d(TSu, Tu) ≤ d(TSu, Txm) + d(Txm, Tu)

d(TSu, Tu) ≤ α
[
d(Txm−1, TSu) + d(Tu, Txm)

]
+ βd(Tu, Txm−1)

+ d(Txm, Tu)

d(TSu, Tu) ≤ α
[
d(Txm−1, Tu) + d(Tu, Txm) + d(Tu, Txm)

]
+ βd(Tu, Txm−1) + d(Txm, Tu)

d(TSu, Tu) ≤ α + β

1− α
{
d(Txm−1, Tu) + d(Tu, Txm)

}
+
α + 1

1− α
d(Txm, Tu)

d(TSu, Tu) ≤ α + β

1− α
{
d(Txm−1, Tu)

}
+

2α + β + 1

1− α
d(Txm, Tu) (3.11)

Let 0� c be arbitrary, By (3.9), we have

d(Tu, Txm)� c(1− α)

2(2α + β + 1)

And by (3.10) we have

d(Txm−1, Txm)� c(1− α)

2(α + β)

Then (3.11) becomes,

d(TSu, Tu)� c for each c ∈ int P

Now, Using Corollary (2.10-iii), it follows that d(TSu, Tu) = 0 which implies that
Tu = TSu
Since T is one-to-one, Thus u is the fixed point of S.
We claim that, u is the fixed point of.
If w is another fixed point of S, then w = Sw

d(Tu, Tw) = d(TSu, TSw)

≤ α
(
d(Tw, TSu) + d(Tu, TSw)

)
+ βd(Tu, Tw)

≤ (2α + β)d(Tu, Tw)

This is a contradiction. Hence d(Tu, Tw) = 0 ⇒ Tu = Tw. As T is injective,
u = w. Therefore the fixed point of S is unique.
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