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Abstract
Let a, b and c be natural numbers and d = a2b2c2 + 2ab. In this paper, by

using continued fraction expansion of
√
d. We find fundamental solution of the

equations x2 − (a2b2c2 + 2ab)y2 = ±1 and we get all positive integer solutions of
the equations x2 − (a2b2c2 + 2ab)y2 = ±1 in terms of generalized Fibonacci and
Lucas sequences. Moreover, we find all positive integer solutions of the equations
x2− (a2b2c2 + 2ab)y2 = ±4 in terms of generalized Fibonacci and Lucas sequences.
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1 Introduction

Let d 6= 1 be a positive square free integer and N be any fixed positive integer.
Then the equation x2−dy2 = ± N is known as Pell equation and is named after John
Pell(1611-1685), a mathematician who searched for integer solutions to equations of
this type in the seventeenth century. For N = 1, the Pell equation x2 − dy2 = ±1
is known as classical Pell equation and was studied by Brahmagupta(598-670)
and Bhaskara(1114-1185). The Pell equation x2 − dy2 = ±1 has infinitely many
solutions (xn, yn) for n ≥ 1. There are several methods for finding the fundamental
solutions of Pell’s equation x2 − dy2 = 1 for a positive non square integer ”d”,
e.g. the cyclic method[4] known in India in the 12th century, or the slightly less less
efficient but more regular English method (17th century) which produce all solution
is based on the simple finite continued fraction expansion of

√
d.

Let pi
qi

be the sequence of convergence to the continued fraction for
√
d. Then the

pair (x1, y1) solving Pell’s equation and minimizing x satisfies x1 = pi and y1 = qi
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for some i. This pair is called the fundamental solution. Thus the fundamental
solution may be found by performing the continued fraction expansion and testing
each successive convergent until a solution to Pell’s equation is found. Continued
fraction plays an important role in solutions of the Pell equations x2 − dy2 = ±1.
Whether or not there exist a positive integer solution to the equation x2−dy2 = −1
depends on the period length of the continued fraction expansion of

√
d. It can be

seen that the equation x2 − dy2 = −1 has no positive integer solutions. To find all
positive integer solutions of the equations x2 − dy2 = ±1. One first determines a
fundamental solution.

In this paper, after the Pell’s equations are described briefly, the fundamental
solution to the Pell equations, x2− (a2b2c2 + 2ab)y2 = ±1 are calculated, by means
of the generalized Fibonacci and Lucas sequences. Especially, all positive integer
solutions of the equations x2 − (k2 − 2k)y2 = ±1 and x2 − (k2 − 2k)y2 = ±4 are
discovered. Now, we briefly mention the generalized Fibonacci and Lucas sequences
(Un(k, s))and(Vn(k, s)). Let k and s be two nonzero integers with k2 + 4s > 0.

Generalized Fibonacci sequence is defined by U0(k, s) = 0, U1(k, s) = 1 and
U(n+1) = kUn(k, s) + sU(n−1)(k, s) for n ≥ 1 and generalized Lucas sequence is
defined by V0(k, s) = 2, V1(k, s) = k and V(n+1) = kVn(k, s)+sV(n−1)(k, s) for n ≥ 1,
respectively. It is well known that Un(k, s) = αn−βn/α−β and Vn(k, s) = αn +βn

where, α = (k +
√
k2 + 4s)/2 and β = (k −

√
k2 + 4s)/2. The above identities are

known as Binet’s formula. Clearly, α + β = k, α − β
√
k2 + 4s and αβ = −s. For

more information about generalized Fibonacci and Lucas sequences one can refer
[1]-[6], [11]-[18].

2 Preliminary notes

Let d be a positive integer which is not a perfect square and N be any
nonzero fixed integer in the Pell equation x2 − dy2 = N. If a2 − db2 = N, we say
that (a, b) is a solution to the Pell equation x2 − dy2 = N. We use the notations
(a, b) and a+b

√
d interchangeably to denote solutions of the equation x2−dy2 = N.

Also if a and b are both positive, we say that a+ b
√
d is a positive solution to the

equation x2 − dy2 = N. There is a continued fraction expansion of
√
d such that√

d = [a0; a1, a2, ..., al−2, 2a0], where l is period length and the aj’s are given by the
recursion formula:

α0 =
√
d, ak = [αk]and α(k + 1) = 1/αk − βk, k = 0, 1, 2, 3, ....

Recall that al = 2a0 and a(i + k) = ak for k ≥ 1. The nth convergent of
√
d for
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n ≥ 0.
pn
qn

= [a0, a1, ..., an] = ao +
1

a1 + 1
a2+... 1

an−1+
1
an

.

Let x1 + y1
√
d be a positive solution to the equation x2 − dy2 = N. We say that

x1 + y1
√
d is the fundamental solution of the equation x2 − dy2 = N, if x2 + y2

√
d

is different solution to the equation x2 − dy2 = N, then x1 + y1
√
d < x2 + y2

√
d.

Recall that if a + b
√
d < r + s

√
d if and only if a < r and b < s. The following

lemma and theorems can be found many elementary text books [1], [3], [4], [9],
[10], [13], [16], [17].
Lemma 2.1. If x1 + y1

√
d is the fundamental solution to the equation x2 − dy2 =

−1, then (x1 + y1
√
d)

2
is the fundamental solution to the equation x2 − dy2 = −1.

Lemma 2.2. Let l be the period length of continued fraction expansion of
√
d. If l

is even, then the fundamental solution to the equation x2 − dy2 = 1 is given by,

x1 + y1
√
d = pl−1 + ql−1

√
d

and the equation x2 − dy2 = −1 has no integer solutions. If l is odd, then the
fundamental solution to the equation x2 − dy2 = 1 is given by x1 + y1

√
d = p2l−1 +

q2l−1
√
d and the fundamental solution to the equation x2 − dy2 = −1 is given by,

x1 + y1
√
d = pl−1 + ql−1

√
d.

Theorem 2.1. Let x1+y1
√
d be the fundamental solution to the equation x2−dy2 =

1. Then all positive integer solutions of the equation x2 − dy2 = 1 are given by,

xn + yn
√
d = (xn + yn

√
d)

n
, with n ≥ 1.

Theorem 2.2. Let x1+y1
√
d be the fundamental solution to the equation x2−dy2 =

−1. Then all positive integer solutions of the equation x2− dy2 = −1 are given by,

xn + yn
√
d = (xn + yn

√
d)

2n−1
, with n ≥ 1.

Theorem 2.3. Let x1+y1
√
d be the fundamental solution to the equation x2−dy2 =

4. Then all positive integer solutions of the equation x2 − dy2 = 4 are given by,

xn + yn
√
d =

(x1 + y1
√
d)

n

2n−1 , with n ≥ 1.

Theorem 2.4. Let x1+y1
√
d be the fundamental solution to the equation x2−dy2 =

−4. Then all positive integer solutions of the equation x2 − dy2 = −4 are given
by,

xn + yn
√
d =

(x1 + y1
√
d)

2n−1

4n−1 , with n ≥ 1.
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Now, we will assume that k, a and b are positive integers. We give continued
fraction expansion of

√
d for d = a2b2c2 + 2ab and d = a2b2c2 + ab

Theorem 2.5. Let d = a2b2c2 + 2ab. Then
√
d = [abc; c, 2abc].

Proof

√
d =
√
a2b2c2 + 2ab

= abc+
√
a2b2c2 + 2ab− abc

= abc+
1
1√

a2b2c2+2ab−abc

= abc+
1

√
a2b2c2+2ab+abc

a2b2c2+2ab−a2b2c2

= abc+
1

√
a2b2c2+2ab+2abc−abc

2ab

= abc+
1

2abc
2ab

+
√
a2b2c2+2ab−abc

2ab

= abc+
1

c+ 1
2ab√

a2b2c2+2ab−abc

= abc+
1

c+ 1
2ab(
√

a2b2c2+2ab+abc)

a2b2c2+2ab−a2b2c2

= abc+
1

c+ 1√
a2b2c2+2ab+abc

= abc+
1

c+ 1
2abc+ 1

1√
a2b2c2+2ab+abc

= abc+
1

c+ 1
2abc+ 1

c+ 2ab√
a2b2c2+2ab−abc

Therefore,
√
d = [abc; c, 2abc].

Example 2.1. Let d = a2b2c2 + 2ab,
√
d = [abc; c, 2abc] and a = 2, b = 2 and c = 1

then the equation becomes x2− 24y2 = 1. The continued fraction expansion of
√

24
is [4; 1, 8].
Theorem 2.6. Let d = a2b2c2 + ab. Then

√
d = [abc; 2c, 2abc].

Proof Proof of this theorem same as the theorem 2.5.
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Hence the continued fraction expansion of
√
d = [abc; 2c, 2abc].

Example 2.2. Let d = a2b2c2 + ab,
√
d = [abc; 2c, 2abc] and a = 3, b = 2 and c = 1

then the equation becomes x2− 42y2 = 1. The continued fraction expansion of
√

42
is [6; 2, 12].
Corollary 2.1. Let d = a2b2c2 + 2ab. Then the fundamental solution to the
equation x2−dy2 = 1 is x1+y1

√
d = abc2+1+c

√
d and the equation x2−dy2 = −1

has no integer solutions.
Proof The continued fraction expansion of

√
d is [abc; c, 2abc]. Let a0 = abc, a1 = c

and a2 = 2abc .
p1
q1

=
1 + a0a1

a1
=

1 + abc2

c
(1)

Therefore the fundamental solution of the equation x2 − dy2 = 1 is x1 + y1
√
d =

abc2 + 1 + c
√
d. The continued fraction expansion of

√
d is even by Lemma 2.2 and

the equation x2 − dy2 = −1 has no integer solution.
Example 2.3. Let a = 3, b = 2 and c = 1 then d = a2b2c2 + 2ab = 48 then the
continued fraction of

√
48 is [6; 1, 12]. The fundamental solution of the equation

x2 − 48y2 = 1 is x1 + y1
√
d = 7 +

√
48. The period length of

√
48 is always even.

Therefore the equation x2 − 48y2 = −1 has no positive integer solution.
Corollary 2.2. Let d = a2b2c2+ab. Then the fundamental solution to the equation
x2 − dy2 = 1 is x1 + y1

√
d = abc2 + 1 + 2c

√
d and the equation x2 − dy2 = −1 has

no integer solutions.
Example 2.4. Let x2−dy2 = 1, where d = a2b2c2 +ab, a = 3, b = 2 and c = 1 then
the equation becomes x2 − 42y2 = 1. The continued fraction expansion of

√
42 =

[6; 2, 12] and the fundamental solution of x2 − 42y2 = 1 is x1 + y1
√
d = 7 + 2

√
42.

3 Main Results

Theorem 3.1. Let d = a2b2c2 + 2ab. Then all positive integer solutions of the
equation x2 − dy2 = 1 are given by,

(x, y) = (
Vn(2abc2 + 2,−1)

2
, cUn(2abc2 + 2,−1))

with n ≥ 1.
Proof The fundamental solution of the equation x2 − dy2 = 1 is,

x1 + y1
√
d = abc2 + 1 + c

√
d

. Let

α = abc2 + 1 + c
√
d, β = 2abc2 + 1− c

√
d
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,

α + β = 2abc2 + 2, α− β = 2c
√
d, αβ = 1.

Therefore,

xn + ynd
√
d = (x1 + y1

√
d)

n
, xn + ynd

√
d = αn, xn − ynd

√
d = βn,

xn =
1

2
(Vn(2abc2 + 2,−1)), yn = cUn(2abc2 + 2,−1).

Therefore, all positive integer solutions of the equation x2 − dy2 = 1 is,

(x, y) = (
Vn(2abc2 + 2,−1)

2
, cUn(2abc2 + 2,−1))

with n ≥ 1.
Example 3.1. Let x2 − dy2 = 1, where d = a2b2c2 + 2ab, a = 3, b = 2 and c = 1
then the equation becomes x2 − 46y2 = 1. Then the fundamental solution of the
equation is

x1 + y1
√

46 = 5 +
√

46

. Let

α = 7 +
√

46, β = 13−
√

46

,

α + β = 18, α− β = −8 + 2
√

46, αβ = 1

and

xn + yn
√

46 = (x1 + y1
√

46)n

then

(xn, yn) = (Vn(14,−1), Vn(14,−1))

.
Theorem 3.2. Let d ≡ 2(mod4) or d ≡ 3(mod4). Then the equation x2−dy2 = −4
has positive integer solution if and only if the equation x2 − dy2 = −1 has positive
integer solutions.
Theorem 3.3. Let d ≡ 0(mod4).If fundamental solution to the equation x2 −
(d/4)y2 = 1 is x1 + y1

√
d/4, then the fundamental solution to the equation x2 −

dy2 = 4 is (2x1, y1).
Theorem 3.4. Let d ≡ 1(mod4) or d ≡ 2(mod4) or d ≡ 3(mod4). If fundamental
solution to the equation x2 − dy2 = 1 is x1 + y1

√
d, then fundamental solution to

the equation x2 − dy2 = 4 is (2x1, 2y1).



Solutions of the Pell Equation x2 − (a2b2c2 + 2ab)y2 = N ... 85

Theorem 3.5. Let d = a2b2c2 + 2ab. Then the fundamental solution of the
equation

x1 + y1
√
d = 2abc2 + 2 + 2c

√
d.

Proof

(i) Assume that b is even, and if a is even, or if a is odd, then d ≡ 0(mod4). Let
b = 2k, for some k ∈ Z. Then

d

4
=
a24k2c2 + 4ak

4
= a2k2c2 + ak

Then √
a2k2c2 + ak = [akc; 2c, 2akc].

Therefore, the fundamental solution to the equation x2 − dy2 = 4 is

p1
q1

=
1 + 2akc2

2c

,
x1 + y1

√
d = 2akc2 + 1 + 2c

√
d

. Since b = 2k, k = b/2 then

x1 + y1
√
d = abc2 + 1 + 2c

√
d

. By Theorem 3.3, x2 − (d/4)y2 = 1 is x1 + y1
√
d/4, then the solution of

x2 − dy2 = 4 is (2x1, y1). The fundamental solution of

x2 − (a2b2c2 + 2ab)y2 = 4

is 2(abc2 + 1) + 2c
√
d.

(ii) Assume that b is odd, and if a is odd, and if c is odd (or)
If b is odd and if a is odd and if c is even (or)
If b is odd and if a is odd, then Theorem3.4, d ≡ 1(mod4) or d ≡ 2(mod4) or
d ≡ 3(mod4). If fundamental solution of x2 − dy2 = 4 is x1 + y1

√
d, then the

fundamental solution of x2−dy2 = 4 is (2x1, y1). Therefore, the fundamental
solution of x2 − dy2 = 4 is (2(abc2 + 1), 2c). Therefore,

x1 + y1
√
d = 2(abc2 + 1) + 2c

√
d.
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Example 3.2. Let x2 − dy2 = 4, where d = a2b2c2 + 2ab, a = 3,b = 2 and c = 1
then the equation becomes x2− 48y2 = 4 then by theorem 3.3, x2− 12y2 = 1. Then
the fundamental solution is x2 − 12y2 = 1 is x1 + y1

√
12 = 10 + 2

√
12, Therefore

the fundamental solution of x2 − 48y2 = 4 is x1 + y1
√

48 = 10 + 2
√

48.
Theorem 3.6. Let d = a2b2c2 + 2ab. Then the equation x2 − dy2 = −4 has no
positive integer solutions.
Proof Assume that, a is odd, and if b is odd and c is odd, then d ≡ 3(mod4).
If a is odd and b is odd and c is even then d ≡ 2(mod4).
If a is odd and b is even and c is odd then d ≡ 0(mod4).
By Theorem 3.2, and Corollary 2.2, x2−dy2 = −4 has no positive integer solutions.
Assume that a is even and m2 − dn2 = −4, for some positive integer m, n.
Then d is even and therefore m is even.
Let a = 2k then,

m2 − (4k2b2c2 + 4kb)n2 = −4

(m2/4)− (k2b2c2 + kb)n2 = −1

. This is impossible. Therefore, x2 − dy2 = −4 has no positive integer solutions.
Example 3.3. Let x2− dy2 = −4, where d = a2b2c2 + 2ab, a = 3, b = 2 and c = 1
then the equation becomes x2 − 48y2 = −4 has no positive integer solutions.
Theorem 3.7. Let d = a2b2c2 + 2ab. Then all positive integer solutions of the
equation x2 − dy2 = 1 are given by,

(x, y) = (Vn(2abc2 + 2,−1)/2, cUn(2abc2 + 2,−1)),

with n ≥ 1.
Proof The fundamental solution of the equation x2−dy2 = 1 is, x1 +y1

√
d=abc2 +

2 + 2c
√
d. Let

α = abc2 + 2 + c
√
d, β = abc2 + 2− c

√
d

α + β = 2abc2 + 4, α− β = 2c
√
d, αβ = 1

Therefore,
xn + yn

√
d = (x1 + y1

√
d)

n

xn + yn
√
d = αn, xn − yn

√
d = βnβ

xn =
1

2
(Vn(2abc2 + 2,−1))andyn = cUn(2abc2 + 2,−1)

. Therefore, all positive integer solutions of the equation x2 − dy2 = 1 is,

(x, y) = (Vn(2abc2 + 2,−1)/2, cUn(2abc2 + 2,−1)),
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with n ≥ 1.
Corollary 3.1. Let d = k2+2k, then the continued fraction of

√
k2 + 2k is [k; 1, 2k]

for k ≥ 3.
Corollary 3.2. Let d = k2 +2k. Then all positive integer solutions of the equation
x2 − dy2 = 1 are given by,

(x, y) = (Vn(2k + 2,−1)/2, cUn(2k + 2,−1)),

with n ≥ 1 and the equation x2− (k2 +2k)y2 = −1 has no positive integer solution.
Corollary 3.3. All positive integer solutions of the equation x2 − (k2 + 2k)y2 = 4
are given by,

(x, y) = (Vn(k + 1,−1), cUn(k + 1,−1)),

with n ≥ 1 and the equation x2− (k2 +2k)y2 = −4 has no positive integer solution.

4 Conclusion

In this paper, by using continued fraction expansion of
√
d, we find fundamental

solution of the x2 − dy2 = ±1, where a, b, and c are natural numbers and d =
a2b2c2 + 2ab. Moreover, we investigate Pell equations of the form x2 − dy2 = ±N
when N = ±1,±4 and we are looking for positive integer solutions in x and y. We
get all positive integer solutions of the Pell equations x2 − dy2 = N in terms of
generalized Fibonacci and Lucas sequences when N = ±1,±4 and d = a2b2c2+2ab.
Finally, all positive integer solutions of the equations x2−dy2 = ±1 and x2−dy2 =
±4 are given in terms of Fibonacci and Lucas sequences.
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