Solutions of the Pell Equation $x^{2}-\left(a^{2} b^{2} c^{2}+2 a b\right) y^{2}=N$ when $N \in \pm 1, \pm 4$.

V.Sadhasivam, T.Kalaimani and S.Ambika, PG and Research Department of Mathematics, Thiruvalluvar Government Arts College,
Rasipuram, Namakkal, Tamil Nadu - 637 401, India.
E.Mail Address: ovsadha@gmail.com, kalaimaths4@gmail.com

Abstract

Let a, b and c be natural numbers and $d=a^{2} b^{2} c^{2}+2 a b$. In this paper, by using continued fraction expansion of \sqrt{d}. We find fundamental solution of the equations $x^{2}-\left(a^{2} b^{2} c^{2}+2 a b\right) y^{2}= \pm 1$ and we get all positive integer solutions of the equations $x^{2}-\left(a^{2} b^{2} c^{2}+2 a b\right) y^{2}= \pm 1$ in terms of generalized Fibonacci and Lucas sequences. Moreover, we find all positive integer solutions of the equations $x^{2}-\left(a^{2} b^{2} c^{2}+2 a b\right) y^{2}= \pm 4$ in terms of generalized Fibonacci and Lucas sequences.

2010 AMS Subject Classification: 11B37, 11B39, 11B50, 11B99, 11A55 Keywords: Diophantine Equations, Pell Equations, Continued Fractions, Generalized Fibonacci and Lucas numbers.

1 Introduction

Let $d \neq 1$ be a positive square free integer and N be any fixed positive integer. Then the equation $x^{2}-d y^{2}= \pm \mathrm{N}$ is known as Pell equation and is named after John Pell(1611-1685), a mathematician who searched for integer solutions to equations of this type in the seventeenth century. For $N=1$, the Pell equation $x^{2}-d y^{2}= \pm 1$ is known as classical Pell equation and was studied by Brahmagupta(598-670) and Bhaskara(1114-1185). The Pell equation $x^{2}-d y^{2}= \pm 1$ has infinitely many solutions $\left(x_{n}, y_{n}\right)$ for $n \geq 1$. There are several methods for finding the fundamental solutions of Pell's equation $x^{2}-d y^{2}=1$ for a positive non square integer " d ", e.g. the cyclic method[4] known in India in the $12^{\text {th }}$ century, or the slightly less less efficient but more regular English method ($17^{\text {th }}$ century) which produce all solution is based on the simple finite continued fraction expansion of \sqrt{d}.

Let $\frac{p_{i}}{q_{i}}$ be the sequence of convergence to the continued fraction for \sqrt{d}. Then the pair $\left(x_{1}, y_{1}\right)$ solving Pell's equation and minimizing x satisfies $x_{1}=p_{i}$ and $y_{1}=q_{i}$
for some i. This pair is called the fundamental solution. Thus the fundamental solution may be found by performing the continued fraction expansion and testing each successive convergent until a solution to Pell's equation is found. Continued fraction plays an important role in solutions of the Pell equations $x^{2}-d y^{2}= \pm 1$. Whether or not there exist a positive integer solution to the equation $x^{2}-d y^{2}=-1$ depends on the period length of the continued fraction expansion of \sqrt{d}. It can be seen that the equation $x^{2}-d y^{2}=-1$ has no positive integer solutions. To find all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 1$. One first determines a fundamental solution.

In this paper, after the Pell's equations are described briefly, the fundamental solution to the Pell equations, $x^{2}-\left(a^{2} b^{2} c^{2}+2 a b\right) y^{2}= \pm 1$ are calculated, by means of the generalized Fibonacci and Lucas sequences. Especially, all positive integer solutions of the equations $x^{2}-\left(k^{2}-2 k\right) y^{2}= \pm 1$ and $x^{2}-\left(k^{2}-2 k\right) y^{2}= \pm 4$ are discovered. Now, we briefly mention the generalized Fibonacci and Lucas sequences $\left(U_{n}(k, s)\right) \operatorname{and}\left(V_{n}(k, s)\right)$. Let k and s be two nonzero integers with $k^{2}+4 s>0$.

Generalized Fibonacci sequence is defined by $U_{0}(k, s)=0, U_{1}(k, s)=1$ and $U_{(n+1)}=k U_{n}(k, s)+s U_{(n-1)}(k, s)$ for $n \geq 1$ and generalized Lucas sequence is defined by $V_{0}(k, s)=2, V_{1}(k, s)=k$ and $V_{(n+1)}=k V_{n}(k, s)+s V_{(n-1)}(k, s)$ for $n \geq 1$, respectively. It is well known that $U_{n}(k, s)=\alpha^{n}-\beta^{n} / \alpha-\beta$ and $V_{n}(k, s)=\alpha^{n}+\beta^{n}$ where, $\alpha=\left(k+\sqrt{k^{2}+4 s}\right) / 2$ and $\beta=\left(k-\sqrt{k^{2}+4 s}\right) / 2$. The above identities are known as Binet's formula. Clearly, $\alpha+\beta=k, \alpha-\beta \sqrt{k^{2}+4 s}$ and $\alpha \beta=-s$. For more information about generalized Fibonacci and Lucas sequences one can refer [1]-[6], [11]-[18].

2 Preliminary notes

Let d be a positive integer which is not a perfect square and N be any nonzero fixed integer in the Pell equation $x^{2}-d y^{2}=N$. If $a^{2}-d b^{2}=N$, we say that (a, b) is a solution to the Pell equation $x^{2}-d y^{2}=N$. We use the notations (a, b) and $a+b \sqrt{d}$ interchangeably to denote solutions of the equation $x^{2}-d y^{2}=N$. Also if a and b are both positive, we say that $a+b \sqrt{d}$ is a positive solution to the equation $x^{2}-d y^{2}=N$. There is a continued fraction expansion of \sqrt{d} such that $\sqrt{d}=\left[a_{0} ; \overline{a_{1}, a_{2}, \ldots, a_{l-2}, 2 a_{0}}\right]$, where l is period length and the a_{j} 's are given by the recursion formula:

$$
\left.\alpha_{0}=\sqrt{d}, \quad a_{k}=\left[\alpha_{k}\right] \text { and } \quad \alpha_{(} k+1\right)=1 / \alpha_{k}-\beta_{k}, \quad k=0,1,2,3, \ldots
$$

Recall that $a_{l}=2 a_{0}$ and $\left.a_{(} i+k\right)=a_{k}$ for $k \geq 1$. The $n^{t} h$ convergent of \sqrt{d} for

Solutions of the Pell Equation $x^{2}-\left(a^{2} b^{2} c^{2}+2 a b\right) y^{2}=N \ldots$
$n \geq 0$.

$$
\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]=a_{o}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots \frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}
$$

Let $x_{1}+y_{1} \sqrt{d}$ be a positive solution to the equation $x^{2}-d y^{2}=N$. We say that $x_{1}+y_{1} \sqrt{d}$ is the fundamental solution of the equation $x^{2}-d y^{2}=N$, if $x_{2}+y_{2} \sqrt{d}$ is different solution to the equation $x^{2}-d y^{2}=N$, then $x_{1}+y_{1} \sqrt{d}<x_{2}+y_{2} \sqrt{d}$. Recall that if $a+b \sqrt{d}<r+s \sqrt{d}$ if and only if $a<r$ and $b<s$. The following lemma and theorems can be found many elementary text books [1], [3], [4], [9], [10], [13], [16], [17].
Lemma 2.1. If $x_{1}+y_{1} \sqrt{d}$ is the fundamental solution to the equation $x^{2}-d y^{2}=$ -1 , then $\left(x_{1}+y_{1} \sqrt{d}\right)^{2}$ is the fundamental solution to the equation $x^{2}-d y^{2}=-1$. Lemma 2.2. Let l be the period length of continued fraction expansion of \sqrt{d}. If l is even, then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is given by,

$$
x_{1}+y_{1} \sqrt{d}=p_{l-1}+q_{l-1} \sqrt{d}
$$

and the equation $x^{2}-d y^{2}=-1$ has no integer solutions. If l is odd, then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is given by $x_{1}+y_{1} \sqrt{d}=p_{2 l-1}+$ $q_{2 l-1} \sqrt{d}$ and the fundamental solution to the equation $x^{2}-d y^{2}=-1$ is given by,

$$
x_{1}+y_{1} \sqrt{d}=p_{l-1}+q_{l-1} \sqrt{d}
$$

Theorem 2.1. Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=$ 1. Then all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by,

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{n}+y_{n} \sqrt{d}\right)^{n}, \text { with } n \geq 1
$$

Theorem 2.2. Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=$ -1 . Then all positive integer solutions of the equation $x^{2}-d y^{2}=-1$ are given by,

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{n}+y_{n} \sqrt{d}\right)^{2 n-1}, \text { with } n \geq 1
$$

Theorem 2.3. Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=$ 4. Then all positive integer solutions of the equation $x^{2}-d y^{2}=4$ are given by,

$$
x_{n}+y_{n} \sqrt{d}=\frac{\left(x_{1}+y_{1} \sqrt{d}\right)^{n}}{2^{n-1}}, \text { with } n \geq 1
$$

Theorem 2.4. Let $x_{1}+y_{1} \sqrt{d}$ be the fundamental solution to the equation $x^{2}-d y^{2}=$ -4 . Then all positive integer solutions of the equation $x^{2}-d y^{2}=-4$ are given by,

$$
x_{n}+y_{n} \sqrt{d}=\frac{\left(x_{1}+y_{1} \sqrt{d}\right)^{2 n-1}}{4^{n-1}}, \text { with } n \geq 1
$$

Now, we will assume that k, a and b are positive integers. We give continued fraction expansion of \sqrt{d} for $d=a^{2} b^{2} c^{2}+2 a b$ and $d=a^{2} b^{2} c^{2}+a b$
Theorem 2.5. Let $d=a^{2} b^{2} c^{2}+2 a b$. Then $\sqrt{d}=[a b c ; \overline{c, 2 a b c}]$.
Proof

$$
\begin{aligned}
\sqrt{d} & =\sqrt{a^{2} b^{2} c^{2}+2 a b} \\
& =a b c+\sqrt{a^{2} b^{2} c^{2}+2 a b}-a b c \\
& =a b c+\frac{1}{\frac{1}{\sqrt{a^{2} b^{2} c^{2}+2 a b}-a b c}} \\
& =a b c+\frac{1}{\frac{\sqrt{a^{2} b^{2} c^{2}+2 a b}+a b c}{a^{2} b^{2} c^{2}+2 a b-a^{2} b^{2} c^{2}}} \\
& =a b c+\frac{1}{\frac{\sqrt{a^{2} b^{2} c^{2}+2 a b}+2 a b c-a b c}{2 a b}} \\
& =a b c+\frac{1}{\frac{2 a b c}{2 a b}+\frac{\sqrt{a^{2} b^{2} c^{2}+2 a b-a b c}}{2 a b}} \\
& =a b c+\frac{1}{c+\frac{1}{\frac{2 a b}{\sqrt{a^{2} b^{2} c^{2}+2 a b-a b c}}}} \\
& =a b c+\frac{1}{c+\frac{1}{\frac{2 a b\left(\sqrt{a^{2} b^{2} c^{2}+2 a b}+a b c\right)}{a^{2} b^{2} c^{2}+2 a b-a^{2} b^{2} c^{2}}}} \\
& =a b c+\frac{1}{c+\frac{1}{\sqrt{a^{2} b^{2} c^{2}+2 a b}+a b c}} \\
& =a b c+\frac{1}{c+\frac{1}{2 a b c+\frac{1}{\sqrt{a^{2} b^{2} c^{2}+2 a b}+a b c}}} \\
& =\frac{1}{2 a b c+\frac{1}{c+\frac{1}{\sqrt{a^{2} b^{2} c^{2}+2 a b}-a b c}}}
\end{aligned}
$$

Therefore, $\sqrt{d}=[a b c ; \overline{c, 2 a b c}]$.
Example 2.1. Let $d=a^{2} b^{2} c^{2}+2 a b, \sqrt{d}=[a b c ; \overline{c, 2 a b c}]$ and $a=2, b=2$ and $c=1$ then the equation becomes $x^{2}-24 y^{2}=1$. The continued fraction expansion of $\sqrt{24}$ is $[4 ; \overline{1,8}]$.
Theorem 2.6. Let $d=a^{2} b^{2} c^{2}+a b$. Then $\sqrt{d}=[a b c ; \overline{2 c, 2 a b c}]$. Proof Proof of this theorem same as the theorem 2.5.

Hence the continued fraction expansion of $\sqrt{d}=[a b c ; \overline{2 c, 2 a b c}]$.
Example 2.2. Let $d=a^{2} b^{2} c^{2}+a b, \sqrt{d}=[a b c ; \overline{2 c, 2 a b c}]$ and $a=3, b=2$ and $c=1$ then the equation becomes $x^{2}-42 y^{2}=1$. The continued fraction expansion of $\sqrt{42}$ is $[6 ; \overline{2,12}]$.
Corollary 2.1. Let $d=a^{2} b^{2} c^{2}+2 a b$. Then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is $x_{1}+y_{1} \sqrt{d}=a b c^{2}+1+c \sqrt{d}$ and the equation $x^{2}-d y^{2}=-1$ has no integer solutions.
Proof The continued fraction expansion of \sqrt{d} is $[a b c ; \overline{c, 2 a b c}]$. Let $a_{0}=a b c, a_{1}=c$ and $a_{2}=2 a b c$.

$$
\begin{equation*}
\frac{p_{1}}{q_{1}}=\frac{1+a_{0} a_{1}}{a_{1}}=\frac{1+a b c^{2}}{c} \tag{1}
\end{equation*}
$$

Therefore the fundamental solution of the equation $x^{2}-d y^{2}=1$ is $x_{1}+y_{1} \sqrt{d}=$ $a b c^{2}+1+c \sqrt{d}$. The continued fraction expansion of \sqrt{d} is even by Lemma 2.2 and the equation $x^{2}-d y^{2}=-1$ has no integer solution.
Example 2.3. Let $a=3, b=2$ and $c=1$ then $d=a^{2} b^{2} c^{2}+2 a b=48$ then the continued fraction of $\sqrt{48}$ is $[6 ; \overline{1,12}]$. The fundamental solution of the equation $x^{2}-48 y^{2}=1$ is $x_{1}+y_{1} \sqrt{d}=7+\sqrt{48}$. The period length of $\sqrt{48}$ is always even. Therefore the equation $x^{2}-48 y^{2}=-1$ has no positive integer solution.
Corollary 2.2. Let $d=a^{2} b^{2} c^{2}+a b$. Then the fundamental solution to the equation $x^{2}-d y^{2}=1$ is $x_{1}+y_{1} \sqrt{d}=a b c^{2}+1+2 c \sqrt{d}$ and the equation $x^{2}-d y^{2}=-1$ has no integer solutions.
Example 2.4. Let $x^{2}-d y^{2}=1$, where $d=a^{2} b^{2} c^{2}+a b, a=3, b=2$ and $c=1$ then the equation becomes $x^{2}-42 y^{2}=1$. The continued fraction expansion of $\sqrt{42}=$ $[6 ; \overline{2,12}]$ and the fundamental solution of $x^{2}-42 y^{2}=1$ is $x_{1}+y_{1} \sqrt{d}=7+2 \sqrt{42}$.

3 Main Results

Theorem 3.1. Let $d=a^{2} b^{2} c^{2}+2 a b$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by,

$$
(x, y)=\left(\frac{V_{n}\left(2 a b c^{2}+2,-1\right)}{2}, c U_{n}\left(2 a b c^{2}+2,-1\right)\right)
$$

with $n \geq 1$.
Proof The fundamental solution of the equation $x^{2}-d y^{2}=1$ is,

$$
x_{1}+y_{1} \sqrt{d}=a b c^{2}+1+c \sqrt{d}
$$

. Let

$$
\alpha=a b c^{2}+1+c \sqrt{d}, \beta=2 a b c^{2}+1-c \sqrt{d}
$$

$$
\alpha+\beta=2 a b c^{2}+2, \alpha-\beta=2 c \sqrt{d}, \alpha \beta=1
$$

Therefore,

$$
\begin{gathered}
x_{n}+y_{n} d \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}, \quad x_{n}+y_{n} d \sqrt{d}=\alpha^{n}, \quad x_{n}-y_{n} d \sqrt{d}=\beta^{n} \\
x_{n}=\frac{1}{2}\left(V_{n}\left(2 a b c^{2}+2,-1\right)\right), \quad y_{n}=c U_{n}\left(2 a b c^{2}+2,-1\right)
\end{gathered}
$$

Therefore, all positive integer solutions of the equation $x^{2}-d y^{2}=1$ is,

$$
(x, y)=\left(\frac{V_{n}\left(2 a b c^{2}+2,-1\right)}{2}, c U_{n}\left(2 a b c^{2}+2,-1\right)\right)
$$

with $n \geq 1$.
Example 3.1. Let $x^{2}-d y^{2}=1$, where $d=a^{2} b^{2} c^{2}+2 a b, a=3, b=2$ and $c=1$ then the equation becomes $x^{2}-46 y^{2}=1$. Then the fundamental solution of the equation is

$$
x_{1}+y_{1} \sqrt{46}=5+\sqrt{46}
$$

. Let

$$
\begin{gathered}
\alpha=7+\sqrt{46}, \beta=13-\sqrt{46} \\
\alpha+\beta=18, \alpha-\beta=-8+2 \sqrt{46}, \alpha \beta=1
\end{gathered}
$$

and

$$
x_{n}+y_{n} \sqrt{46}=\left(x_{1}+y_{1} \sqrt{46}\right)^{n}
$$

then

$$
\left(x_{n}, y_{n}\right)=\left(V_{n}(14,-1), V_{n}(14,-1)\right)
$$

Theorem 3.2. Let $d \equiv 2(\bmod 4)$ or $d \equiv 3(\bmod 4)$. Then the equation $x^{2}-d y^{2}=-4$ has positive integer solution if and only if the equation $x^{2}-d y^{2}=-1$ has positive integer solutions.
Theorem 3.3. Let $d \equiv 0(\bmod 4)$. If fundamental solution to the equation $x^{2}-$ $(d / 4) y^{2}=1$ is $x_{1}+y_{1} \sqrt{d / 4}$, then the fundamental solution to the equation $x^{2}-$ $d y^{2}=4$ is $\left(2 x_{1}, y_{1}\right)$.
Theorem 3.4. Let $d \equiv 1(\bmod 4)$ or $d \equiv 2(\bmod 4)$ or $d \equiv 3(\bmod 4)$. If fundamental solution to the equation $x^{2}-d y^{2}=1$ is $x_{1}+y_{1} \sqrt{d}$, then fundamental solution to the equation $x^{2}-d y^{2}=4$ is $\left(2 x_{1}, 2 y_{1}\right)$.

Theorem 3.5. Let $d=a^{2} b^{2} c^{2}+2 a b$. Then the fundamental solution of the equation

$$
x_{1}+y_{1} \sqrt{d}=2 a b c^{2}+2+2 c \sqrt{d}
$$

Proof

(i) Assume that b is even, and if a is even, or if a is odd, then $d \equiv 0(\bmod 4)$. Let $b=2 k$, for some $k \in Z$. Then

$$
\frac{d}{4}=\frac{a^{2} 4 k^{2} c^{2}+4 a k}{4}=a^{2} k^{2} c^{2}+a k
$$

Then

$$
\sqrt{a^{2} k^{2} c^{2}+a k}=[a k c ; \overline{2 c, 2 a k c}] .
$$

Therefore, the fundamental solution to the equation $x^{2}-d y^{2}=4$ is

$$
\begin{gathered}
\frac{p_{1}}{q_{1}}=\frac{1+2 a k c^{2}}{2 c} \\
x_{1}+y_{1} \sqrt{d}=2 a k c^{2}+1+2 c \sqrt{d}
\end{gathered}
$$

. Since $b=2 k, k=b / 2$ then

$$
x_{1}+y_{1} \sqrt{d}=a b c^{2}+1+2 c \sqrt{d}
$$

. By Theorem 3.3, $x^{2}-(d / 4) y^{2}=1$ is $x_{1}+y_{1} \sqrt{d / 4}$, then the solution of $x^{2}-d y^{2}=4$ is $\left(2 x_{1}, y_{1}\right)$. The fundamental solution of

$$
x^{2}-\left(a^{2} b^{2} c^{2}+2 a b\right) y^{2}=4
$$

is $2\left(a b c^{2}+1\right)+2 c \sqrt{d}$.
(ii) Assume that b is odd, and if a is odd, and if c is odd (or)

If b is odd and if a is odd and if c is even (or)
If b is odd and if a is odd, then Theorem3.4, $d \equiv 1(\bmod 4)$ or $d \equiv 2(\bmod 4)$ or $d \equiv 3(\bmod 4)$. If fundamental solution of $x^{2}-d y^{2}=4$ is $x_{1}+y_{1} \sqrt{d}$, then the fundamental solution of $x^{2}-d y^{2}=4$ is $\left(2 x_{1}, y_{1}\right)$. Therefore, the fundamental solution of $x^{2}-d y^{2}=4$ is $\left(2\left(a b c^{2}+1\right), 2 c\right)$. Therefore,

$$
x_{1}+y_{1} \sqrt{d}=2\left(a b c^{2}+1\right)+2 c \sqrt{d} .
$$

Example 3.2. Let $x^{2}-d y^{2}=4$, where $d=a^{2} b^{2} c^{2}+2 a b, a=3, b=2$ and $c=1$ then the equation becomes $x^{2}-48 y^{2}=4$ then by theorem 3.3, $x^{2}-12 y^{2}=1$. Then the fundamental solution is $x^{2}-12 y^{2}=1$ is $x_{1}+y_{1} \sqrt{12}=10+2 \sqrt{12}$, Therefore the fundamental solution of $x^{2}-48 y^{2}=4$ is $x_{1}+y_{1} \sqrt{48}=10+2 \sqrt{48}$.
Theorem 3.6. Let $d=a^{2} b^{2} c^{2}+2 a b$. Then the equation $x^{2}-d y^{2}=-4$ has no positive integer solutions.
Proof Assume that, a is odd, and if b is odd and c is odd, then $d \equiv 3(\bmod 4)$.
If a is odd and b is odd and c is even then $d \equiv 2(\bmod 4)$.
If a is odd and b is even and c is odd then $d \equiv 0(\bmod 4)$.
By Theorem 3.2, and Corollary 2.2, $x^{2}-d y^{2}=-4$ has no positive integer solutions. Assume that a is even and $m^{2}-d n^{2}=-4$, for some positive integer m, n.
Then d is even and therefore m is even.
Let $a=2 k$ then,

$$
\begin{gathered}
m^{2}-\left(4 k^{2} b^{2} c^{2}+4 k b\right) n^{2}=-4 \\
\left(m^{2} / 4\right)-\left(k^{2} b^{2} c^{2}+k b\right) n^{2}=-1
\end{gathered}
$$

. This is impossible. Therefore, $x^{2}-d y^{2}=-4$ has no positive integer solutions.
Example 3.3. Let $x^{2}-d y^{2}=-4$, where $d=a^{2} b^{2} c^{2}+2 a b, a=3, b=2$ and $c=1$ then the equation becomes $x^{2}-48 y^{2}=-4$ has no positive integer solutions.
Theorem 3.7. Let $d=a^{2} b^{2} c^{2}+2 a b$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by,

$$
(x, y)=\left(V_{n}\left(2 a b c^{2}+2,-1\right) / 2, c U_{n}\left(2 a b c^{2}+2,-1\right)\right)
$$

with $n \geq 1$.
Proof The fundamental solution of the equation $x^{2}-d y^{2}=1$ is, $x_{1}+y_{1} \sqrt{d}=a b c^{2}+$ $2+2 c \sqrt{d}$. Let

$$
\begin{aligned}
& \alpha=a b c^{2}+2+c \sqrt{d}, \beta=a b c^{2}+2-c \sqrt{d} \\
& \alpha+\beta=2 a b c^{2}+4, \alpha-\beta=2 c \sqrt{d}, \alpha \beta=1
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n} \\
x_{n}+y_{n} \sqrt{d}=\alpha^{n}, x_{n}-y_{n} \sqrt{d}=\beta^{n} \beta \\
x_{n}=\frac{1}{2}\left(V_{n}\left(2 a b c^{2}+2,-1\right)\right) a n d y_{n}=c U_{n}\left(2 a b c^{2}+2,-1\right)
\end{gathered}
$$

. Therefore, all positive integer solutions of the equation $x^{2}-d y^{2}=1$ is,

$$
(x, y)=\left(V_{n}\left(2 a b c^{2}+2,-1\right) / 2, c U_{n}\left(2 a b c^{2}+2,-1\right)\right)
$$

with $n \geq 1$.
Corollary 3.1. Let $d=k^{2}+2 k$, then the continued fraction of $\sqrt{k^{2}+2 k}$ is $[k ; \overline{1,2 k}]$ for $k \geq 3$.
Corollary 3.2. Let $d=k^{2}+2 k$. Then all positive integer solutions of the equation $x^{2}-d y^{2}=1$ are given by,

$$
(x, y)=\left(V_{n}(2 k+2,-1) / 2, c U_{n}(2 k+2,-1)\right),
$$

with $n \geq 1$ and the equation $x^{2}-\left(k^{2}+2 k\right) y^{2}=-1$ has no positive integer solution.
Corollary 3.3. All positive integer solutions of the equation $x^{2}-\left(k^{2}+2 k\right) y^{2}=4$ are given by,

$$
(x, y)=\left(V_{n}(k+1,-1), c U_{n}(k+1,-1)\right),
$$

with $n \geq 1$ and the equation $x^{2}-\left(k^{2}+2 k\right) y^{2}=-4$ has no positive integer solution.

4 Conclusion

In this paper, by using continued fraction expansion of \sqrt{d}, we find fundamental solution of the $x^{2}-d y^{2}= \pm 1$, where a, b, and c are natural numbers and $d=$ $a^{2} b^{2} c^{2}+2 a b$. Moreover, we investigate Pell equations of the form $x^{2}-d y^{2}= \pm N$ when $N= \pm 1, \pm 4$ and we are looking for positive integer solutions in x and y. We get all positive integer solutions of the Pell equations $x^{2}-d y^{2}=N$ in terms of generalized Fibonacci and Lucas sequences when $N= \pm 1, \pm 4$ and $d=a^{2} b^{2} c^{2}+2 a b$. Finally, all positive integer solutions of the equations $x^{2}-d y^{2}= \pm 1$ and $x^{2}-d y^{2}=$ ± 4 are given in terms of Fibonacci and Lucas sequences.

References

[1] A. Adler and J.E. Coury, The Theory of Numbers, A Text and Source Book of Problems,Jones and Bartlett Publishers, Boston, MA, 1995.
[2] M.E.H. Ismail, One Parameter Generalizations of the Fibonacci and Lucas Numbers, The Fibonacci Quarterly, 46-47 (2009), 167-180.
[3] M.J. Jacobson and H.C. Williams, Solving the Pell Equations, Springer, 2006.
[4] J.P. Jones, Representation of Solutions of Pell Equations Using Lucas Sequences, Acta Academia Paed. Agr., Section Mathematica, 30 (2003), 75-86.
[5] Jean Marie De koninck and Armel Mercier, 1001 Problems in Classical Number Theory, American Mathematical Society, 2007.
[6] D. Kalman and R. Mena, The Fibonacci Numbers exposed, Mathematics Magazine,76(2003), 167-181.
[7] R. Keskin, Solutions of Some Quadratic Diophantine equations, Computers and Mathematics with Applications, 60 (2010), 2225-2230.
[8] R. Keskin and M. Guiney, Positive Integer Solutions of the Pell Equation $x^{2}-d y^{2}=N, d \in k^{2} \pm 4, k^{2} \pm 1$ and $N \in \pm 1, \pm 4$.
[9] J. Koninck and A. Mercier, 1001 Problems in Classical Number Theory, American Mathematical Society, 2007.
[10] J.W. Leveque, Topics in Number Theory, Volume 1 and 2, Dover Publications, 2002.
[11] W.L. McDaniel, Diophantine Representation of Lucas Sequences, The Fibonacci Quarterly, 33 (1995), 58-63.
[12] R. Melham, Conics which Characterize Certain Lucas Sequences, The Fibonacci Quarterly, 35 (1997), 248-251.
[13] T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York,1981.
[14] Pell Equations, Wikipedia.
[15] Pell Equations, Wolfram Matheworld.
[16] D. Redmond, Number Theory: An Introduction, Markel Dekker, Inc, 1996.
[17] P. Ribenboim, My Numbers, My Friends, Springer Verlag, New York, Inc., 2000.
[18] S. Robinowitz, Algorithmic Manipulation of Fibonacci Identities, In: Application of Fibonacci Numbers, Kluwer Academic Pub., Dordrect, The Netherlands, 6 (1996), 389-408.
[19] J.P. Robertson, Solving the Generalized Pell Equation $x^{2}-D y^{2}=N$, http:// hometown, aol.com/ jpr 2718/ Pell. Pdf, May 2003. (Description of LMM Algorithm for solving Pells equation).
[20] J.P. Robertson, On D so that $x^{2}-D y^{2}$ represents m and m and not -1 , Acta Mathematica Academia Paeogogocae Nyiregyhaziensis, 25 (2009), 155-164.

