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Abstract: The steady MHD boundary layer flow over a moving vertical plate
with magnetic field and convective surface in presence of heat and mass transfer
has been premeditated. Using He’s Homotopy Perturbation Method (HPM), the
system of non-linear ordinary differential equations governing the MHD boundary
layer equations is solved. The influence of various significant physical parameters on
the boundary layer flow is illustrated graphically with the physical interpretation.
The obtained results point to the efficiency and convenience of the HPM. Utility
of this model has been perceived in diverse industrial and chemical processes.
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1. Introduction
Investigation of MHD boundary layer flow with heat and mass transfer has

momentous applications in the fields of aeronautical plasma flows, nuclear reactor,
magnetosphere, chemical engineering and electronics. Most of chemical engineering
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progression like polymer extrusion processes and metallurgical involves cooling of
a molten liquid. To improve the quality of the eventual creation, Aziz[1], Chamkha
[2], Cortell [3], Magyari [6], Makinde [7], Postelnicu [8], Tesfaye et. al ([10], [11]),
White [12], Jhankal [5], He [4], Sinha et. al [9] etc. have astounding contribution
in solving various flow problems of assorted geometries. In [7], this problem was
considered by a competent numerical technique. In order to prove those results of
[7], the HPM is incorporated. In the meantime, the non-linear terms are expanded
to Taylor’s series of the Homotopy Parameter p.

2. Mathematical Formulation
The present study contemplates an MHD boundary layer flow over a moving

vertical plate with heat and mass transfer of viscous in presence of magnetic field.
The flow is supposed to be in x-axis which is along the direction of plate and y-axis
is taken normal to it. Let u and v be the x and y components of fluid velocity
respectively. The flow formation which describes the physical insight of the problem
is given by Figure 1:

Figure 1

Using boundary layer and Boussinesq’s approximations, the governing equations
for this problem can be formulated as:
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The boundary conditions for the problem may be written as

u(x, 0) = U0, v(x, 0) = 0,−k∂T
∂y

(x, 0) = hf (Tf − T (x, 0)), Cw(x, 0) = Axλ + C∞

u(x,∞) = 0, T (x,∞) = T∞, C(x,∞) = C∞
(5)

The Cauchy-Riemann equations satisfy the continuity equation (1) with:

u =
∂ψ

∂y
and v = −∂ψ

∂x
(6)

η = y

√
U0

νx
, ψ =

√
νxU0f (η) (7)

Where the plate velocity is denoted by U0, the symbols ν, C∞, α,D, βT , βC , ρ, g,
σ, ψ, η have their appropriate elucidations.

The temperature and concentration in non-dimensional form are given as

θ(ρ) =
T − T∞
Tf − T∞

, φ(ρ) =
C − C∞
Cf − C∞

(8)

The non-dimensional ordinary governing differential equations are:

f
′′′

+
1

2
ff

′′ −Mf
′
+Grθ +Gmφ = 0 (9)

θ
′′

+
1

2
Prfθ′ = 0 (10)

φ
′′

+
1

2
Scfφ′ = 0 (11)

Applicable boundary conditions are

f(0) = 0, f
′
(0) = 1, θ

′
(0) = Bi[θ(0)− 1], φ(0) = 1f(∞) = 0, θ(∞) = φ(∞) = 0

(12)

3. Method of Solution
According to the HPM, the Homotopy form of equations from (9)-(11) can be

written as

(1− p)(f ′′′ −Mf
′
+Grθ +Gmφ) +

p

(
f

′′′
+

1

2
ff

′′ −Mf
′
+Grθ +Gmφ

)
= 0 (13)
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(1− p)(θ′′
) + p

(
θ
′′

+
1

2
Prfθ′

)
= 0 (14)

(1− p)(φ′′
) + p

(
φ

′′
+

1

2
Scfφ′

)
= 0 (15)

Let us consider f, θ, φ as

f = f0 + pf1 + p2f2 + ........ (16)

θ = θ0 + pθ1 + p2θ2 + ..... (17)

φ = φ0 + pφ1 + p2φ2 + ...... (18)

Substituting (16)-(18) into the equations (13)-(15) and rearranging the various
powers of p , we get

Terms independent of p:

f
′′′

0 −Mf
′

0 +Grθ0 +Gmφ0 = 0 (19)

θ
′′

0 = 0 (20)

φ
′′

0 = 0 (21)

The boundary conditions are

f0(0) = 1, f
′

0(0) = 1, θ0(0) = Bi[θ0(0)− 1], φ0(0) = 1

f
′

0(∞) = 0, θ0(∞) = φ0(∞) = 0
(22)

Terms containing p only:

f
′′′

1 −Mf
′
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1

2
f0f

′′

0 = 0 (23)

θ
′′
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1
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φ
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2
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′
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The boundary conditions are

f1(0) = 0, f
′

1(0) = 0, θ
′

1(0) = Bi[θ1(0)], θ1(0) = 0

f
′

1(∞) = 0, θ1(∞) = 0, φ1(∞) = 0
(26)



Homotopy Perturbation Method for MHD Boundary Layer Flow ... 273

Solving equations (19)-(21) under the boundary conditions (22) and (23)-(25) under
the boundary conditions (26), we have

θ0 = C1η + C2 (27)

φ0 = C3η + C4 (28)
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−
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√
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Neglecting higher order perturbed terms we finally obtain:

f = f0 + pf1, θ = θ0 + pθ1, φ = φ0 + pφ1

4. Results and Discussion
In this study, the numerical results are obtained for different values of parame-

ters Gr, Gm, Bix, Sc, M , Pr with fixed value of Homotopy Perturbation Parameter
(p = 0.1) implanted in the flow system.

Figures 2-5 describe the fluid velocity against η. The effects of various values
of magnetic parameter (M), Schimdt number (Sc), Prandtl number (Pr) and heat
exchange parameter (Bix) on velocity profile are revealed. Figure 2 demonstrates
that with the enhancement of magnetic field parameter, the fluid velocity moves
down monotonically to the free stream value zero far away from the plate satisfying
the boundary condition. This happens because the presence of magnetic field in
an electrically conducting fluid generates a force called the Lorentz force which
acts against the flow if the magnetic field is applied in the normal direction. This
result clearly interprets the physical behaviour of the magnetic field parameter.
Figure 3 depicts that the velocity transport of the fluid medium is enriched for
low mass diffusivity of the species. From figure 4, it is observed that Prandtl
number controls the fluid flow indicating the fact that thermal diffusivity leads to
a crumbling thermal boundary layer thickness. The retardation behaviour of fluid
velocity under the action of heat exchange parameter is described in figure 5.
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Figures 6-9 depict the temperature profile against η. It is seen from figure 6 that
the temperature profile rises due to the acceleration of magnetic intensity. This
happens because the variation of magnetic field induces a localized electric current
which generates heat in the fluid medium. An enhancement of convective heat
exchange parameter (Bix), produces greater temperature near the plate and the
falling down behaviour of the temperature field far away from the plate is observed
in figure 7. It is obvious because as the fluid is heated up near the plate, the plate
becomes lighter and the flow faster. In the same way, the flow moves slower as we
move far away from the plate as the effect of the heated plate is negligible. Figure 8
exhibits that with the higher values of thermal diffusivity, the fluid temperature is
reduced satisfying the boundary condition. It is mainly because of the distortion of
the network. i.e higher the temperature the more hindered the fluid particles are.
This causes the thermal conductivity of the flow pattern to minimize itself. From
figure 9, it is found that thermal buoyancy force reduces the fluid temperature. It
is obvious as higher the thermal buoyancy force, grater is the density of the fluid
particles, resulting in a reduction of the temperature of flow pattern.

The concentration profile rises due to the strength of the applied magnetic field
which is experienced in Figure 10. The effects of the Schmdit number (Sc), Thermal
Grashof number (Gr) and Solutal Grashof number (Gm) on species concentration
have been incorporated in figures 11-13. It is inferred from these figures that the
concentration level of the fluid drops for low mass diffusivity, thermal and solutal
buoyancy force.

Figure 2: Velocity versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1,
Sc = 0.62, P r = 0.72, P = 0.1

Figure 3: Velocity versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1, M =
0.1, P r = 0.72, P = 0.1
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Figure 4: Velocity versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1,
Sc = 0.62, M = 0.1, P = 0.1

Figure 5: Velocity versus η under
Gr = 0.1, Gm = 0.1, P r = 0.72, Sc =
0.62, M = 0.1, P = 0.1

Figure 6: Temperature versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1,
Sc = 0.62, P r = 0.72, P = 0.1

Figure 7: Temperature versus η under
Gr = 0.1, Gm = 0.1, M = 0.1, Sc =
0.62, P r = 0.72, P = 0.1
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Figure 8: Temperature versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1,
Sc = 0.62, M = 0.1, P = 0.1

Figure 9: Temperature versus η under
M = 0.1, Gm = 0.1, Bix = 0.1, Sc =
0.62, P r = 0.72, P = 0.1

Figure 10: Concentration versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1,
Sc = 0.62, P r = 0.72M = 0.1, P = 0.1

Figure 11: Concentration versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1, M =
0.1, P r = 0.72, P = 0.1
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Figure 12: Concentration versus η under
M = 0.1, Gm = 0.1, Bix = 0.1,
Sc = 0.62, P r = 0.72, P = 0.1

Figure 13: Concentration versus η under
Gr = 0.1, M = 0.1, Bix = 0.1, Sc =
0.62, P r = 0.72, P = 0.1

Comparison of graphs with O. D. Makinde [7]:

Figure 14: [Figure 2 in [7]]
Velocity profile for
Pr = 0.72, Sc = 0.62, Grx = Gcx = Bix
= 0.1; −Hax = 0.1; ◦ ◦ ◦ ◦ Hax = 0.5;
+ + +Hax = 1.0; · · · · · · Hax = 1.5

Figure 15: Velocity versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1, Sc =
0.62,
P r = 0.72, P = 0.1
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Figure 16: [Figure 7 in [7]]
Temperature profiles for
Pr = 0.72, Sc = 0.62, Grx = Gcx = Bix
= 0.1; −Hax = 0.1; ◦ ◦ ◦ ◦ Hax = 0.5;
+ + +Hax = 1.0; · · · · · · Hax = 1.5

Figure 17: Temperature versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1, Sc =
0.62,
P r = 0.72, P = 0.1

Figure 18: [Figure 13 in [7]]
Concentration profiles for
Pr = 0.72, Sc = 0.62, Grx = Gcx = Bix
= 0.1; −Hax = 0.1; ◦ ◦ ◦ ◦ Hax = 0.5;
+ + +Hax = 1.0; · · · · · · Hax = 1.5

Figure 19: Concentration versus η under
Gr = 0.1, Gm = 0.1, Bix = 0.1, Sc =
0.62,
P r = 0.72, P = 0.1
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5. Comparison of Results
The work of O. D. Makinde [7] is considered for comparing the results of the

present paper.
Comparing figures 15, 17 and 19 with the figures 2 (here, figure 14), 7 (here,

figure 16) and 13 (here, figure 18) of the work done by O. D. Makinde [7], we
observe the same kind of behaviour due to the implementation of Magnetic intensity
in velocity, temperature and concentration profiles for fixed values of Gr = 0.1,
Gm = 0.1, Bix = 0.1, Sc = 0.62, Pr = 0.72,P = 0.1 i.e. there is a significant
effect of Hartmann number on these profiles. Thus, there is an excellent agreement
between the results obtained by O. D. Makinde [7] and those arrived at by the
present authors.

6. Concluding Remarks
In this paper, the problem of MHD boundary layer flow over a moving vertical

plate in presence of heat and mass transfer is considered by HPM. The obtained
results are revealed graphically and are compared with the accurate solutions.
The result shows that the estimated solution obtained in this paper has excellent
agreement with the work done in [7].
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Appendix
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