\mathcal{S}-INDEX OF CERTAIN LINE GRAPH OF SUBDIVISION GRAPHS

Balachandra P., Padmaja V., Shanmukha B.* and Manjunath N.**
Department of Mathematics,
S. J. B. I. T. BGS Health and Education City, Bengaluru - 560060, INDIA
E-mail : balachandrapsjbit@gmail.com
*Department of Mathematics, P. E. S. College, Mandya, Karnataka - 571401, INDIA.
**Department of Sciences and Humanities, School of Engineering and Technology, CHRIST, Kanminike, Kumbalgodu, Bengaluru - 560074, INDIA
E-mail : manjunath.nanjappa@christuniversity.in

(Received: May 30, 2020 Accepted: Sep. 15, 2020 Published: Dec. 30, 2020)
Abstract: There are numerous applications of graph theory in the field of structural chemistry. In this paper, we compute the Sanskruti index $\mathcal{S}(G)$ of the Line graph of Subdivision Graph of cyclic hexagonal-square chain and nanocones $C N C_{k}[n]$ respectively.
Keywords and Phrases: Topological indices, Sanskruti index, Derived graph, Line graph.
2010 Mathematics Subject Classification: 05C76, 05C99.

1. Introduction and Preliminaries

A graph $G=(V, E)$ be a finite, undirected graph, without loops or multiple edges having $p=|V|$ and $q=|E|$ specifies the total number of vertices and edges of a graph G, respectively. Any undefined term in this paper may be found in Harary [11]. Further, Let G be a simple graph, with vertex set $V(G)$ and edge set $E(G)$. For $u \in V(G), N_{u}$ denotes the set of its neighbors in G, the degree of vertex u is $d_{u}=\left|N_{u}\right|$ and $S_{u}=\sum_{v \in N_{u}} d_{v}$. The subdivision graph $S(G)$ is the graph obtained
from G by replacing each of its edge by a path of length 2 . The line graph $L(G)$ of graph G is the graph whose vertices are the edges of G, two vertices e and f are incident if and only if they have a common end vertex in G.

A molecular graph is a set of points representing the atoms in the molecule and collection of lines representing the covalent bonds. For example, consider the Hydrocarbon $C_{2} H_{6}$, its molecular structure and molecular graph is shown in Fig. 1 (a) and (b) and Line graph of Subdivision Graphs of molecular graph of Hydrocarbon $C_{2} H_{6}$, is shown in Fig. 1 (c).

Figure 1

Topological indices are numerical parameters of a graph which are invariant under graph isomorphisms. Nowadays, there are many such indices that have found applications in Mathematical Chemistry especially in the quantitative structureproperty relationship (QSPR) and quantitative structure-activity relationship (Q S A R) [4, 19]. A large number of such indices depend only on vertex degree of the molecular graph. One of them is the atom-bond connectivity (ABC) index, proposed by Estrada et al. [6] and is defined as:

$$
\begin{equation*}
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{G}(u)+d_{G}(v)-2}{d_{G}(u) d_{G}(v)}} \tag{1}
\end{equation*}
$$

This index provides a good model for the stability of linear and branched alkanes as well as the strain energy of cycloalkanes [6, 7]. Details about this index can be found in $[2,3,10,23]$. For a collection of recent results on topological indices, we refer the interested reader to the articles $[1,5,8,12,15,16,18,20,21,22,13,14]$.

Inspired by work on the ABC index, Furtula et al. [9] proposed the following
modified version of the ABC index and called it as augmented Zagreb index (AZI):

$$
\begin{equation*}
A Z I(G)=\sum_{u v \in E(G)}\left(\frac{d_{G}(u) d_{G}(v)}{d_{G}(u)+d_{G}(v)-2}\right)^{3} \tag{2}
\end{equation*}
$$

The prediction power is better than the ABC index in the study of heat of formation for heptanes and octanes ([9]).

Motivated by the previous research on topological descriptors and their applications, Hosamani [17] put forwarded Sanskruti index $\mathcal{S}(G)$ of a molecular graph G as follows:

$$
\begin{equation*}
\mathcal{S}(G)=\sum_{u v \in E(G)}\left(\frac{s_{G}(u) s_{G}(v)}{s_{G}(u)+s_{G}(v)-2}\right)^{3}, \tag{3}
\end{equation*}
$$

in which $s_{G}(u)=\sum_{v \in N_{G}(u)} d_{G}(v)$ and $N_{G}(u)=\{v \in V(G) \backslash u v \in E(G)\}$. The \mathcal{S}-index was correlated with each of these properties and surprisingly, we can see that the \mathcal{S}-index has a good correlation with the entropy of octane isomers.

1.1. \mathcal{S}-Index of the Line graph of Subdivision Graph of cyclic hexagonalsquare chain.

The molecular graph of a cyclic hexagonal-square chain consisting of n mutually isomorphic hexagonal chains $H_{1}, H_{2}, \ldots, H_{n}$, cyclically concatenated by cycle of length 4, in which the each H_{i} is a chain containing m hexagons as shown in Fig. 2 , it is denoted by $C_{m, n}$. There are $4 m n+2 n$ vertices and $5 m n+3 n$ edges in $C_{m, n}$.

Figure 2: Cyclic hexagonal-square chain $C_{m, n}$

Figure 3: The graph $C_{3,3}$

Figure 4: Line graph of subdivision of $C_{3,3}$.

Theorem 1.1. Let G^{*} be the Line graph of Subdivision Graph of $C_{m, n}$.

$$
\mathcal{S}\left(G^{*}\right)=(1127.217) m n+(1163.6158) n .
$$

Proof. The edge partition of G^{*} based on the sum of neighborhood degrees can be divided into seven edge partitions $E_{i}\left(G^{*}\right), i=4,5, \ldots, 9$, i.e. $E\left(G^{*}\right)=\cup_{i=4}^{9} E_{i}\left(G^{*}\right)$. The edge partition $E_{4}\left(G^{*}\right)$ contains $m n$ edges $u v$, where $S_{u}=S_{v}=4$, the edge partition $E_{5}\left(G^{*}\right)$ contains $2 m n$ edges $u v$, where $S_{u}=4$ and $S_{v}=5$, the edge
partition $E_{6}\left(G^{*}\right)$ contains $2 m n$ edges $u v$, where $S_{u}=5$ and $S_{v}=8$, the edge partition $E_{7}\left(G^{*}\right)$ contains $m n-n$ edges $u v$, where $S_{u}=S_{v}=8$, the edge partition $E_{8}\left(G^{*}\right)$ contains $2 m n+2 n$ edges $u v$, where $S_{u}=8$ and $S_{v}=9$, and the edge partition $E_{9}\left(G^{*}\right)$ contains $5 m n+8 n$ edges $u v$, where $S_{u}=S_{v}=9$. Thus

$$
\begin{aligned}
\mathcal{S}(G) & =\sum_{u v \in E(G)}\left(\frac{s_{G}(u) s_{G}(v)}{s_{G}(u)+s_{G}(v)-2}\right)^{3} \\
& =m n\left(\frac{4 \times 4}{4+4-2}\right)^{3}+2 m n\left(\frac{4 \times 5}{4+5-2}\right)^{3}+2 m n\left(\frac{5 \times 8}{5+8-2}\right)^{3} \\
& +(m n-n)\left(\frac{8 \times 8}{8+8-2}\right)^{3}+(2 m n+2 n)\left(\frac{8 \times 9}{8+9-2}\right)^{3} \\
& +(5 m n+8 n)\left(\frac{9 \times 9}{9+9-2}\right)^{3} \\
& =(1127.217) m n+(1163.6158) n
\end{aligned}
$$

1.2. \mathcal{S}-Index of the Line graph of Subdivision Graph of nanocones

 $C N C_{k}[n]$The graphical structure of $C N C_{k}[n]$ nanocones have a cycle of k-lenght at its central part and n levels of hexagons positioned at the conical exterior around its central part. The graph of $C N C_{k}[n]$ and its Line graph of Subdivision Graph are shown in Fig. 5 and Fig. 6 respectively.

Figure 5: A graph $C N C_{k}[n]$.

Figure 6: Line graph of subdivision of $C N C_{k}[n]$.

Theorem 1.2. Let G^{*} be the Line graph of Subdivision Graph of $C N C_{k}[n]$. $\mathcal{S}\left(G^{*}\right)=(30.0783) k+(30.5175) n+(316.7163) k n+(129.7463)\left(k \times \frac{9}{2} n^{2}+\frac{1}{2} n\right)$
Proof. The edge partition of G^{*} based on the sum of neighborhood degrees can be divided into seven edge partitions $E_{i}\left(G^{*}\right), i=4,5, \ldots, 10$, i.e. $E\left(G^{*}\right)=$ $\cup_{i=4}^{9} E_{i}\left(G^{*}\right)$. The edge partition $E_{4}\left(G^{*}\right)$ contains k edges $u v$, where $S_{u}=S_{v}=4$, the edge partition $E_{5}\left(G^{*}\right)$ contains $2 k$ edges $u v$, where $S_{u}=4$ and $S_{v}=5$, the edge partition $E_{6}\left(G^{*}\right)$ contains $k(n-1)$ edges $u v$, where $S_{u}=5$ and $S_{v}=5$, the edge partition $E_{7}\left(G^{*}\right)$ contains $2 k n$ edges $u v$, where $S_{u}=5$ and $S_{v}=8$, the edge partition $E_{8}\left(G^{*}\right)$ contains $k n$ edges $u v$, where $S_{u}=8$ and $S_{v}=8$, the edge partition $E_{9}\left(G^{*}\right)$ contains $2 k n$ edges $u v$, where $S_{u}=8$ and $S_{v}=9$ and the edge partition $E_{10}\left(G^{*}\right)$ contains $\left(k \times \frac{9}{2} n^{2}+\frac{1}{2} n\right)$ edges $u v$, where $S_{u}=9$ and $S_{v}=9$ Thus

$$
\begin{aligned}
\mathcal{S}(G) & =\sum_{u v \in E(G)}\left(\frac{s_{G}(u) s_{G}(v)}{s_{G}(u)+s_{G}(v)-2}\right)^{3} \\
& =k\left(\frac{4 \times 4}{4+4-2}\right)^{3}+2 k\left(\frac{4 \times 5}{4+5-2}\right)^{3}+k(n-1)\left(\frac{5 \times 5}{5+5-2}\right)^{3} \\
& +2 k n\left(\frac{5 \times 8}{5+8-2}\right)^{3}+k n\left(\frac{8 \times 8}{8+8-2}\right)^{3} \\
& +2 k n\left(\frac{8 \times 9}{8+9-2}\right)^{3}+\left(k \times \frac{9}{2} n^{2}+\frac{1}{2} n\right)\left(\frac{9 \times 9}{9+9-2}\right)^{3}
\end{aligned}
$$

$$
=(30.0783) k+(30.5175) n+(316.7163) k n+(129.7463)\left(k \times \frac{9}{2} n^{2}+\frac{1}{2} n\right) .
$$

2. Conclusion

The application part of Sanskruti index in chemical nanostructures has been well explained and the detailed description may be found in [17].

3. Acknowledgement

I take this opportunity to thank all the referees for their valuable inputs and sharing their pearls of wisdom. I would like to express my gratitude to my research guide Dr. B. Chaluvaraju for his blessings in disguise.

References

[1] Caporossi G., Hansen P., Vukičević D., Comparing Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput. Chem. 63 (2010), 441-451.
[2] Chen J., Liu J., Guo X., Some upper bounds for the atom-bond connectivity index of graphs, Applied Mathematics Letters, 25 (2012), 1077-1081.
[3] Das K. C., Gutman I., Furtula B., On atom-bond connectivity index, Filomat, 26 (2012), 733-738.
[4] Devillers J., Balaban A. T., Topological Indices and Related Descriptors in QSAR and QSPR (1999), Gordon and Breach, Amsterdam.
[5] Dobrynin A. A., Kochetova A. A., Degree distance of a graph: A degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci., 34 (1994), 1082-1086.
[6] Estrada E., Torres L., Rodrguez L., Gutman I., An atom-bond connectivity index: modelling the enthalpy of formation of alkanes, Indian Journal of Chemistry-Section, A 37 (1998), 849-855.
[7] Estrada E., Atom-bond connectivity and the energetic of branched alkanes, Chemical Physics Letters, 463 (2008), 422-425.
[8] Fath-Tabar G. H., Old and new Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011), 79-84.
[9] Furtula B., Graovac A., Vukičević D., Augmented Zagreb index, Journal of Mathematical Chemistry, 48 (2010), 370-380.
[10] Furtula B., Gutman I., Ivanović M., Vukičević D., Computer search for trees with minimal ABC index, Applied Mathematics and Computation, 219 (2012), 767-772.
[11] Harary F., Graph Theory, Addison Wesley, Reading Mass, (1969).
[12] Gutman I., Das K. C., The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004), 83-92.
[13] Behzad M. and Chartrand G., An Introduction to Total graphs, Coloring, Line graphs., Proc. Symp. Rome., (1966), 31-33.
[14] Fasal Nadeem M., Zafar Sohail and Zahid Zohaib, On certain Topological indices of the line graph of subdivision graphs, Applied Mathematics and Computation, 271 (2015), 790-794.
[15] Hosamani S. M. and Gutman I., Zagreb indices of transformation graphs and total transformation graphs, Appl. Math. Comput., 247 (2014), 1156-1160.
[16] Hosamani S. M., Basavanagoud B., New upper bounds for the first Zagreb index, MATCH Commun. Math. Comput. Chem., 74(1) (2015), 97-101.
[17] Hosamani S. M., Computing Sanskruti index of certain nanostructures, Journal of Applied Mathematics and Computing, 1-9 (2016).
[18] Hosamani S. M., and Krzywkowski M., On the difference of Zagreb coindices of graph operation, Gulf Journal of Mathematics, 4(3) (2016), 36-41.
[19] Hosamani S. M., Perigidad D., Gavade S., QSPR Analysis of Certain Degree Based Topological Indices, J. Stat. Appl. Pro. 6, No. 2 (2017), 1-11.
[20] Hosamani S. M., On topological properties of the line graphs of subdivision graphs of certain nanostructures-II, GJSCR, 17(4), 2017.
[21] Hosamani S. M., Malghan S. H., Patil P. V., First Zagreb Coindex of Hamiltonian Graphs, Journal of Information and Optimization Sciences, 38:3-4, 417-422.
[22] Hosamani S. M., Suresh E., Mansour T., Rastomi M. A., More on inverse degree and topological indices of graphs, Filomat, 32(1) (2018), 165-178.
[23] Lin W., Gao T., Chen Q., Lin X., On the minimal ABC index of connected graphs with given degree sequence, MATCH Communications in Mathematical and in Computer Chemistry, 69 (2013), 571-578.

