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1. Introduction
In 1979, Kasahara [2] introduced the notion of an operation γ on topological

spaces. After that the notion of γ-open sets was introduced by Ogata [3] in 1991. As
a generalization of γ-open sets, Hariwan Z. Ibrahim [1] defined and investigated the
notion of b-γ-open sets in general topological spaces. Recently, Sivashanmugaraja
and Vadivel [5] introduced the notion of b-γ-open fuzzy sets in fuzzy topological
spaces. The purpose of this paper is to introduce and investigate a new type of
mappings called b-γ-continuous mappings, b-γ-irresolute, b-γ-open mappings, bs-γ-
open mappings and sb-γ-open mappings. Connected and compactness are powerful
tools in topology but they have many dissimilar properties. The notions of b-γ-
compact, b-γ-connected and b-γ-Lindelöff spaces are also introduced. Further, we
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discussed some basic properties of these mappings.

2. Preliminaries
Throughout this paper, the space (X, τ), and (Y, σ) or (simply X and Y )

represent a topological space.
Definition 2.1. [3] Let X be a space and γ be an operation on τ. A subset A of
X is called γ-open, if for every x ∈ A, there exists an open set U such that x ∈ U
and γ(U) ⊆ A. Then, τγ denotes the set of all γ-open sets in X. Clearly τγ ⊆ τ.
Complements of γ-open sets are called γ-closed.

Definition 2.2. [1] A subset A of a space X is said to be b-γ-open if A ⊆ τγ-
int(cl(A)) ∪ cl(τγ-int(A)).

Remark 2.1. [4] A subset A of X is called b-γ-closed if and only if its complement
is b-γ-open. The collection of all b-γ-open and b-γ-closed sets of (X, τ) are denoted
by b-γO(X) and b-γC(X) respectively.

Definition 2.3. [4] Let (X, τ) be a space and A be a subset of X. Then the
b-γ-closure and b-γ-interior of A are defined as follows:

(i) bclγ(A)) =
⋂
{B : A ⊆ B and B ∈ b-γC(X)};

(ii) bintγ(A) =
⋃
{B : A ⊇ B and B ∈ b-γO(X)}.

Definition 2.4. [4] Let (X, τ) be a space and A be a subset of X. Then A is said
to be b-γ-neighborhood of a point x ∈ X, if there exists a b-γ-open set B such that
x ∈ B ⊆ A.

The class of all b-γ-nbds of x ∈ X is said to be b-γ-neighborhood system of x
and represented by b-γ-Nx.

Definition 2.5. [1] A space (X, τ) is said to be:

(i) b-γ-T1, if for every x, y ∈ X and x 6= y, there exists b-γ-open sets U and V
such that x ∈ U, y /∈ U and x /∈ V, y ∈ V ;

(ii) b-γ-T2, if for every x, y ∈ X and x 6= y, there exists b-γ-open sets U, V and
U ∩ V = φ such that x ∈ U, y ∈ V.

Proposition 2.1. [4] Let A be a subset of a space X. Then, the following statements
are hold:

(i) A is b-γ-closed ⇔ b-γDs(A) ⊂ A;

(ii) A is b-γ-open ⇔ A is b-γ-neighborhood for every point x ∈ A;
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(iii) bclγ(A) = A∪b-γDs(A).

3. b-γ-continuous and b-γ-irresolute mappings
Definition 3.1. A mapping f : (X, τ) → (Y, σ) is said to be b-γ-continuous, if
f−1(A) is b-γ-open in X, for every open set A of Y.

Theorem 3.1. For a mapping f : (X, τ) → (Y, σ), the following statements are
equivalent:

(i) f is b-γ-continuous;

(ii) f−1(B) is b-γ-closed in X, for every closed set B of Y,

(iii) For every subset A of X, f(bclγ(A)) ⊆ cl(f(A));

(iv) For every subset B of Y, bclγ(f
−1(B)) ⊆ f−1(cl(B)).

Proof. (i) ⇔ (ii) Evident.
(iii)⇔ (iv) LetB ⊆ Y andA = f−1(B). Then by hypothesis, we have f(bclγ(f

−1(B)))
⊆ cl(f(f−1(B))) = cl(B). Thus, bclγ(f

−1(B)) ⊆ f−1(cl(B)).
Conversely, letA ⊆ X andB = f(A). By hypothesis, we have, bclγ(f

−1(f(A))) ⊆
f−1(cl(f(A))). Thus, f(bclγ(A)) ⊆ cl(f(A)).
(ii)⇔ (iv) Let B be any subset of Y. Since, f−1(cl(B)) is b-γ-closed and f−1(B) ⊆
f−1(cl(B)), bclγ(f

−1(B) ⊆ f−1(cl(B)).
(iv)⇔ (ii) LetB be any closed subset Y. By hypothesis, bclγ(f

−1(B) ⊆ f−1(cl(B)) =
f−1(B). Thus, f−1(B) is b-γ-closed.

Definition 3.2. A mapping f : (X, τ)→ (Y, σ) is called b-γ-irresolute if f−1(V )
is b-γ-open in X, for every b-γ-open set V of Y.

Theorem 3.2. If f : (X, τ) → (Y, σ) be a mapping, then the following are
equivalent:

(i) f is b-γ-irresolute;

(ii) For each subset A of X, f(bclγ(A)) ⊆ bclγ(f(A));

(iii) f−1(K) is b-γ-closed in (X, τ), for every b-γ-closed set K of (Y, σ).

Proof. (i) ⇔ (ii) Suppose that x1 ∈ f(bclγ(A)) and V be any b-γ-open set con-
taining x1. Then there exists a point x2 ∈ X and a b-γ-open set U such that
f(x2) = x1 and x2 ∈ U and f(U) ⊆ V. Since x2 ∈ bclγ(A), U ∩ A 6= φ and hence
φ 6= f(U ∩ A) ⊆ f(U) ∩ f(A) ⊆ V ∩ f(A). This implies x1 ∈ bclγ(f(A)). Thus,
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f(bclγ(A)) ⊆ bclγ(f(A)).
(ii) ⇔ (iii) Let K be a b-γ-closed set in Y. Therefore, bclγ(K) = K. By hypothesis,
we have f(bclγ(f

−1(K)) ⊆ bclγ(f(f−1(K)) = bclγ(K) = K. Thus, bclγ(f
−1(K) ⊆

f−1(K). Therefore f−1(K) is b-γ-closed.
(iii) ⇔ (i) Evident.

Theorem 3.3. Let f : X → Y be a b-γ-continuous one-one map and Y is T2,-
space then X is b-γ-T2 space.
Proof. Let x and y be two distinct points in X then there exist open sets U and
V in Y and U ∩V 6= φ such that f(x) ∈ U and f(y) ∈ V. Since f is b-γ-continuous,
f−1(U) and f−1(V ) are b-γ-open in X containing x and y respectively. Therefore
f−1(U) ∩ f−1(V ) = φ. Hence, X is b-γ-T2.

Definition 3.3. A space (X, τ) is called:

(i) b-γ-compact if for every b-γ-open cover of X has a finite subcover;

(ii) b-γ-connected if it cannot be expressed as the union of two disjoint non-empty
b-γ-open sets of X;

(iii) b-γ-Lindelöff if every b-γ-open cover of X has a countable subcover.

Definition 3.4. A subset A of a space X is said to be b-γ-compact relative to X
if every cover of A by b-γ-open sets of X has a finite subcover.

Example 3.1. Let X = {a, b, c, d} with topology τ = {X, φ, {a, b}, {c, d}}.
Define an operation γ on τ by γ(A) = A. Then clearly the space X is b-γ-compact.
Since, for every b-γ-open cover of X has a finite subcover.

Example 3.2. Let X = {a, b, c, } with topology τ = {X,φ, {a}, {b}, {a, b},{b, c}}.
Define an operation γ on τ by

γ(A) =

{
A, if A = {b}
X, if A 6= {b}.

Then the space X is b-γ-connected.

4. b-γ-open and b-γ-closed mappings
Definition 4.1. A mapping f : (X, τ)→ (Y, σ) is said to be

(i) b-γ-open, if f(U) is b-γ-open in Y, for every open set U of X;

(ii) b-γ-closed, if f(U) is b-γ-closed in Y, for every closed set U of X.
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Theorem 4.1. For an one-one and onto mapping f : (X, τ) → (Y, σ), the
following statements are equivalent:

(i) f−1 is b-γ-continuous;

(ii) f is b-γ-open;

(iii) f is b-γ-closed.

Proof. Evident.

Definition 4.2. Let (X, τ) be a topological space and A be a subset of X. Then
the b-γ-border(A) = A \ bintγ(A). It is denoted by b-γBr(A).

Theorem 4.2. For a mapping f : (X, τ) → (Y, σ), the following statements are
equivalent:

(i) f is b-γ-open;

(ii) For every x ∈ X and every neighborhood U of x, there exists b-γ-open set V
in Y containing f(x) such that V ⊆ f(U);

(iii) For every subset A of X, f(int(A)) ⊆ bintγ(f(A));

(iv) For every subset B of Y, int(f−1(B)) ⊆ f−1(bintγ(B));

(v) For every subset B of Y, f−1(b-γBr(B)) ⊆ Br(f−1(B));

(vi) For every subset B of Y, f−1(bclγ(B)) ⊆ cl(f−1(B)).

Proof. (i) ⇒ (ii) Let x ∈ X and U be neighborhood of x. Then there exists an
open set K such that x ∈ K ⊆ U and hence f(x) ∈ f(K) ⊆ f(U). Since f is
b-γ-open, then f(K) is b-γ-open in Y. Take f(K) = V, we have f(x) ∈ V ⊆ f(U).
(ii) ⇒ (i) Let x ∈ X and U be an open set containing x. Then U is neighbor-
hood of every x ∈ U. By hypothesis, there exists a b-γ-open set V in Y such that
f(x) ∈ V ⊆ f(U). Hence, f(U) is b-γ-neighborhood of each f(x) ∈ f(U). By
Proposition 2.1, f(U) is b-γ-open in Y. Thus, f is b-γ-open mapping.
(i) ⇒ (iii) Let A ⊆ X. Since int(A) ⊆ A ⊆ X, which is open.By hypothesis,
f(int(A)) is b-γ-open in Y. Thus, f(int(A)) ⊆ bintγ(f(A)), Hence f(int(A)) ⊆
bintγ(f(A)) ⊆ f(A).
(iii)⇒ (iv) LetA = f−1(B). Then by hypothesis, f(int(f−1(B)) ⊆ bintγ(f(f−1(B)).
Therefore int(f−1(B)) ⊆ f−1(bintγ(f(f−1(B)))) ⊆ f−1(bintγ(B)).
(iv) ⇒ (i) Let A be an open set in X. Then f(A) ⊆ Y and by hypothesis,
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int(f−1(f(A))) ⊆ f−1(bintγ(f(A))). This implies that, int(A) ⊆ f−1(bintγ(f(A))).
Thus f(int(A)) ⊆ bintγ(f(A)). Therefore, f is b-γ-open.
(iv) ⇒ (v) Let B ⊆ Y. Then by hypothesis, f−1(B) \ f−1(bintγ(B)) ⊆ f−1(B) \
int(f−1(B)). Therefore, f−1(b-γBr(B)) ⊆ Br(f−1(B)).
(v) ⇒ (iv) Let B ⊆ Y. Then f−1(B \ bintγ(B)) ⊆ f−1(B) \ int(f−1(B)) and
hence f−1(B) \ f−1(bintγ(B)) ⊆ f−1(B) \ int(f−1(B)). Therefore, int(f−1(B)) ⊆
f−1(bintγ(B)).
(i) ⇒ (vi) Let B be any subset of Y and x ∈ f−1(bclγ(B)). Then f(x) ∈ bclγ(B).
Suppose that U is an open set containing x. By hypothesis, f(U) is b-γ-open in
Y. Hence, B ∩ f(U) 6= φ. Thus U ∩ f−1(B) 6= φ. Thus, x ∈ cl(f−1(B)). So,
f−1(bclγ(B)) ⊆ cl(f−1(B)).
(vi)⇒ (i) Let B be any subset of Y. Then (Y \B) ⊆ Y. By hypothesis, f−1(bclγ(Y \
B)) ⊆ cl(f−1(Y \B)) and hence X \ f−1(bintγ(B)) ⊆ X \ int(f−1(B)) that implies
int(f−1(B)) ⊆ f−1(bintγ(B)). Then by (iv), f is b-γ-open.

Theorem 4.3. Let f : (X, τ) → (Y, σ) be a b-γ-closed mapping. Then the
following are hold:

(i) If f is an onto and f−1(B), f−1(C) have disjoint neighborhoods of X, then
B and C are disjoint of Y ;

(ii) For every subset A of X, bintγ(bclγ(f(A))) ⊆ f(cl(A)).

Proof. (i) Let P and Q be two disjoint neighborhoods of f−1(B) and f−1(C). Then
there exists two b-γ-open sets U and V such that f−1(B) ⊆ U ⊆ P, f−1(C) ⊆ V ⊆
Q. But, f is an onto map, then f(f−1(B)) = B ⊆ f(U) ⊆ f(P ), f(f−1(C)) =
C ⊆ f(V ) ⊆ f(Q). Since P and Q are disjoint, f(P ∩Q) = φ and hence B ∩ C ⊆
f(U ∩ V ) ⊆ f(P ∩Q) = φ. Therefore, B and C are disjoint of Y.
(ii) Since A ⊆ cl(A) ⊆ X and f is a b-γ-closed mapping, f(cl(A)) is b-γ-closed in
Y. Thus, f(A) ⊆ bclγ(f(A)) ⊆ f(cl(A)). Hence, bintγ(bclγ(f(A))) ⊆ f(cl(A)).

Theorem 4.4. For a mapping f : (X, τ) → (Y, σ), then the following are
equivalent:

(i) f is b-γ-closed;

(ii) For each subset A of X, bclγ(f(A)) ⊆ f(cl(A));

(iii) If f is an onto, then for every subset B of Y and each open set U in X
containing f−1(B), there exists a b-γ-open set V of Y containing B such that
f−1(V ) ⊆ U.
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Proof. (i)⇒ (ii) Let cl(A) be closed subset of X. Since f is b-γ-closed, f(cl(A)) ∈
b-γC(Y ). Thus, bclγ(f(A)) ⊆ f(cl(A)).
(ii) ⇒ (i) Let A be a closed subset of X. By hypothesis, bclγ(f(A)) ⊆ f(cl(A)) =
f(A). Thus, f(A) ∈ b-γC(Y ). Hence, f is b-γ-closed.
(i) ⇒ (iii) Let V = Y \ (f(X \ U)) and U is an open set of X containing f−1(B).
Since f is b-γ-closed, V is b-γ-open in Y. But, f−1(B) ⊆ U, then B is a subset of
f(U) and f(X \ U) ⊆ Y \B, that is, B is a subset of V. and f−1(V ) ⊆ U.
(iii) ⇒ (i) Let F be a closed subset of X and y ∈ Y \ f(F ). Then f−1(y) ∈ X \ F,
which is open in X. Hence by hypothesis, there exists a b-γ-open set V containing
y such that f−1(V ) ⊆ X \F. But f is an onto, then y ∈ V ⊆ Y \f(F ) and Y \f(F )
is the union of b-γ-open sets and hence, f(F ) is b-γ-closed. Thus, f is b-γ-closed.

Remark 4.1. The restriction of b-γ-open mapping is may not be b-γ-open as
shown in the following example.

Example 4.1. Let X = Y = {a, b, c, d} with topologies τ = {X,φ, {a}, {c}, {a, b},
{a, c}, {c, d}, {a, b, c}, {a, c, d}} and σ = {Y, φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},
{a, b, c}}. Define an operation γ on σ by

γ(A) =

{
int(cl(A)), if A 6= {a}
cl(A), if A = {a}.

Also a mapping f : (X, τ)→ (Y, σ) is defined as f(a) = b, f(b) = d, f(c) = c and
f(d) = a. Then clearly f is b-γ-open. Take A = {b, d} ⊆ X. Then fA : (A, τA) →
(Y, σ) is not b-γ-open. Since {b, d} ∈ τA but f({b, d}) = {a, d} /∈ b-γO(Y ).

Remark 4.2. The composition of two b-γ-open mappings may not be b-γ-open as
shown in the following example.

Example 4.2. Let X = Y = Z = {a, b, c} with topologies τX = {X,φ, {a, c}}, τY
is an indiscrete topology and τZ = {Z, φ, {a}, {b}, {a, b}, {b, c}}. Define an opera-
tion γ on τY and τZ by γ(A) = A and

γ(A) =

{
A, if A = {b}
X, if A 6= {b}.

respectively. Also, f : (X, τX) → (Y, τY ) and g : (Y, τY ) → (Z, τZ) are identity
mappings. Clearly, f and g are b-γ open but (g◦f) is not b-γ-open. Since {a, c} ⊆ X
is an open set of X, but (g ◦ f)({a, c}) = {a, c} /∈ b-γO(Z).

Theorem 4.5. Let f : X → Y and g : Y → Z be two mappings. Then the
following are hold:
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(i) If f is an open and g is a b-γ-open mappings, then the composite map g ◦ f
is b-γ-open;

(ii) if f is an onto continuous map and the composite map g ◦ f is a b-γ-open
mapping, then the map g is b-γ-open, ;

(iii) If the composite map g ◦ f is an open and g is an one-one b-γ-continuous
map, then the map f is b-γ-open, .

Proof. (i) Let U be an open set in X. Since f is an open, f(U) is an open in
Y. But g is a b-γ-open map, then g(f(U)) is b-γ-open set on Z. Hence, g ◦ f is
b-γ-open.
(ii) Let U be an open set in Y and f be a continuous map. Then f−1(U) is open
in X. But g ◦ f is a b-γ-open map, then (g ◦ f)(f−1(U)) is b-γ-open in Z. Since f
is onto, g(U) is b-γ-open in Z. Thus, g is b-γ-open.
(iii) Let U be an open set in X. and g◦f be an open map. Then (g◦f)(U) = g(f(U))
is open in Z. Since g is an onto b-γ-continuous map, f(U) is b-γ-open in Y. Thus,
f is b-γ-open.

Theorem 4.6. Let f : X → Y be a bijective b-γ-open mapping. Then the following
statements are hold:

(i) If X is a Ti-space, then Y is b-γ-Ti where i = 1, 2;

(ii) If Y is a b-γ-compact (b-γ-Lindelöff) space, then X is compact (Lindelöff).

Proof. (i) We prove that for the case of T1-space. Let y1, y2 ∈ Y and y1 6= y2.
Then there exists x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. Since X is a
T1-space, then there exists two open sets U, V of X such that x1 ∈ U, x2 /∈ U and
x2 ∈ V, x1 /∈ V. But, f is a b-γ-open map, then f(U) and f(V ) are b-γ-open sets
of Y with y1 ∈ f(U), y2 /∈ f(U) and y2 ∈ f(V ), y1 /∈ f(V ). Thus, Y is b-γ-T1.
(ii) We prove that the theorem for b-γ-compact. Let {Ui : i ∈ I} be a family of
open cover of X and f be a onto b-γ-open mapping. Then {f(Ui) : i ∈ I} is a
b-γ-open cover of Y. But, Y is b-γ-compact space, hence there exists a finite subset
Io of I such that Y = ∪{f(Ui) : i ∈ I0} Then by one-one of f, {Ui : i ∈ I0} is a
finite subfamily of X. Hence, X is compact.

Theorem 4.7. If f : X → Y is a onto b-γ-open mapping and Y is b-γ-connected
space, then X is connected.
Proof. Assume that X is a disconnected space. Then there exists two non-empty
sets U, V of X and U ∩ V = φ such that X = U ∪ V. But f is a onto b-γ-open
map, then f(U) and f(V ) are non-empty b-γ-open sets of Y and f(U)∩ f(V ) = φ
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with Y = f(U) ∪ f(V ), which is a contradiction to our assumption that Y is b-γ-
connected.

5. sb-γ-open and sb-γ-closed mappings
Definition 5.1. A mapping f : (X, τ)→ (Y, σ) is called:

(i) super b-γ-open (shortly, sb-γ-open), if the image of b-γ-open set of (X, τ) is
open in (Y, σ);

(ii) super b-γ-closed (shortly, sb-γ-closed), if the image of b-γ-closed set of (X, τ)
is closed in (Y, σ).

Example 5.1. Let X = Y = {a, b, c} with topologies τX = {X,φ, {a}, {b}, {a, b},
{b, c}} and τY be the discrete topology. Define an operation γ on τX by

γ(A) =

{
int(cl(A)), if a ∈ A
cl(A), if a /∈ A.

Also the map f : (X, τX) → (Y, τY ) is defined as f(a) = b, f(b) = c and f(c) = a
is sb-γ-open.

Theorem 5.1. If f : (X, τ) → (Y, σ) is a mapping, then the following are
equivalent:

(i) f is sb-γ-open;

(ii) for every x ∈ X and each b-γ-neighborhood U of x, there exists a neighborhood
V of f(x) such that V ⊆ f(U);

(iii) For every subset A of X, f(bintγ(A)) ⊆ int(f(A));

(iv) For every subset B of Y, bintγ(f
−1(B)) ⊆ f−1(int(B));

(v) For every subset B of Y, f−1(Br(B)) ⊆ b-γBr(f−1(B));

(vi) For every subset B of Y, f−1(cl(B)) ⊆ bclγ(f
−1(B));

(vii) If f is onto, then for every subset B of Y and for any set F ∈ b-γC(X)
containing f−1(B), there exists a closed subset H of Y containing B such
that f−1(H) ⊆ F.
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Proof. (i)⇒ (ii) Let x ∈ X and U be a b-γ-neighborhood of x. Then there exists
K ∈ b-γO(X) such that x ∈ K ⊆ U and hence f(x) ∈ f(K) ⊆ f(U). Hence by
hypothesis, f(K) ∈ σ and containing f(x). Take f(K) = V, then f(x) ∈ V ⊆ f(U).
(ii)⇒ (i) Let x ∈ X and U be a b-γ-open set of X containing x. Then f(x) ∈ f(U).
Hence by hypothesis, there exists V ∈ σ containing f(x) such that f(x) ∈ V ⊆
f(U). Therefore, f(U) is neighborhood for f(x) ∈ f(U). Hence f(U) is open in Y
and therefore f is sb-γ-open.
(i) ⇒ (iii) Let A ⊆ X. Since bintγ(A) ⊆ A ⊆ X is b-γ-open set and by hypothesis,
f(bintγ(A)) ⊆ f(A) is open in Y. Thus, f(bintγ(A)) ⊆ int(f(A)).
(iii)⇒ (iv) LetA = f−1(B). Then by hypothesis, f(bintγ(f

−1(B)))⊆ int (f(f−1(B)))
⊆ int(B). Thus, bintγ(f

−1(B)) ⊆ f−1(int(B)).
(iv)⇒ (v) Let B be a subset of Y. Then by hypothesis and Definition 2.4, we have
f−1(B) \ f−1(int(B)) ⊆ f−1(B) \ bintγ(f−1(B)) and therefore, f−1(Br(B)) ⊆ b-
γBr(f−1(B)).
(v) ⇒ (iv) Let B be a subset of Y. Then by hypothesis and Definition 2.4, we
have f−1(B \ int(B)) ⊆ f−1(B)\bintγ(f−1(B)) and hence f−1(B) \ f−1(int(B)) ⊆
f−1(B) \ bintγ(f−1(B)). Thus, bintγ(f

−1(B)) ⊆ f−1(int(B)).
(iv)⇒ (vi) Let B be a subset of Y. Then Y \B ⊆ Y, hence by hypothesis, we have
bintγ(f

−1(Y \B)) ⊆ f−1(int(Y \B)) and hence X \bclγ(f−1(B)) ⊆ X \f−1(cl(B)).
Thus, f−1(cl(B)) ⊆ bclγ(f

−1(B)).
(vi) ⇒ (iv) Let B be a subset of Y. Then Y \ B ⊆ Y. So by hypothesis, we have
f−1(cl(Y \B)) ⊆ bclγ(f

−1(Y \B)) and hence X \f−1(int(B)) ⊆ X \bintγ(f−1(B)).
Thus, bintγ(f

−1(B) ⊆ f−1(int(B)).
(iv) ⇒ (i) Let A be a b-γ-open set in X. Then f(A) ⊆ Y and by hypothesis,
bintγ(f

−1(f(A))) ⊆ f−1(int(f(A))). This gives that, bintγ(A) ⊆ f−1(int(f(A))).
Thus f(bintγ(A)) ⊆ int(f(A)). Hence by (iii), f is sb-γ-open.
(i)⇒ (vii) Let H = Y \f(X \F ) and F be a b-γ-closed set of X containing f−1(B).
Then X \ F is a b-γ-open set. But f is a sb-γ-open mapping, then f(X \ F ) is
open in Y. Therefore, H is a closed set of Y and f−1(H) = X \ f−1f(X \ F ) ⊆
X \ (X \ F ) = F.
(vii) ⇒ (i) Let U be a b-γ-open set in X and put B = Y \ f(U). Then X \ U is
b-γ-closed with f−1(B) ⊆ X \ U. By hypothesis, there exists a closed set M of Y
such that B ⊆ M and f−1(M) ⊆ X \ U. Hence, f(U) ⊆ Y \M and since B ⊆ M,
then Y \M ⊆ Y \ B = f(U). Therefore f(U) = Y \M which is open. Thus, f is
sb-γ-open.

Theorem 5.2. Let f : (X, τ)→ (Y, σ) be an one-one and onto sb-γ-open mapping.
Then the following are hold:
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(i) If X is a b-γ-Ti-space, then Y is Ti, where i = 1, 2;

(ii) If Y is a compact (Lindelöff) space, then X is b-γ-compact (b-γ-Lindelöff).

Proof. (i) We prove that for the case of b-γ-T2-space. Let y1, y2 ∈ Y and y1 6= y2.
Then there exists x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. Since X is a
b-γ-T2-space, then there exists two b-γ-open sets U, V of X and U ∩ V = φ such
that x1 ∈ U and x2 ∈ V. But, f is sb-γ-open map, then f(U), f(V ) are open sets
of Y with y1 ∈ f(U), y2 ∈ f(V ), and f(U) ∩ f(V ) = φ. Thus, Y is T2.
(ii) We prove that the theorem for b-γ-Lindelöff space. Let {Ui : i ∈ I} be a family
of b-γ-open cover of X and f be a onto sb-γ-open mapping. Then {f(Ui) : i ∈ I}
is an open cover of Y. But, Y is a Lindelöff space, hence there exists a countable
subset I0 of I such that Y = ∪{f(Ui) : i ∈ I0}. Then by one-one of f, {Ui : i ∈ I0}
is a countable subfamily of X. Therefore, X is b-γ-Lindelöff.

Theorem 5.3. If f : (X, τ) → (Y, σ) is an onto sb-γ-open mapping and Y is a
connected space, then X is b-γ-connected.
Proof. Obvious.

6. bs-γ-open and bs-γ-closed mappings
Definition 6.1. A mapping f : (X, τ)→ (Y, σ) is said to be:

(i) b-star-γ-open (shortly, bs-γ-open), if the image of b-γ-open set of (X, τ) is
b-γ-open in (Y, σ);

(ii) b-star-γ-closed (shortly, bs-γ-closed), if the image of b-γ-closed set of (X, τ)
is b-γ-closed in (Y, σ).

Theorem 6.1. Let f : X → Y be an 1-1 and onto mapping. Then the following
statements are equivalent:

(i) f is bs-γ-closed;

(ii) f is bs-γ-open;

(iii) f−1 is b-γ-irresolute.

Proof. Evident.

Example 6.1. Let X = Y = {a, b, c} with topologies τ = {X,φ, {a}, {b}, {a, b},
{b, c}} and σ = {Y, φ, {a, c}}. Define an operation γ on τ and σ by γ(A) = A. Also
a mapping f : (X, τ) → (Y, σ) which defined by f(a) = c, f(b) = a and f(c) = b.
Then f is bs-γ-open.

Theorem 6.2. For a mapping f : X → Y the following statements are equivalent:
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(i) f is bs-γ-open;

(ii) For each x ∈ X and each b-γ-neighborhood U of x, there exists V ∈ b-γO(Y )
containing f(x) such that V ⊆ f(U);

(iii) For every subset A of X, f(bintγ(A)) ⊆ bintγ(f(A));

(iv) For every subset B of Y, bintγ(f
−1(B)) ⊆ f−1(bintγ(B));

(v) For every subset B of Y, f−1(b-γBr(B)) ⊆ b-γBr(f−1(B));

(vi) For every subset B of Y, f−1(bclγ(B)) ⊆ bclγ(f
−1(B)).

Proof. It is similar to that of Theorem 5.1.

Theorem 6.3. If f : X → Y is an onto bs-γ-closed mapping and f−1(M), f−1(N)
have disjoint b-γ-neighborhoods of X, then M and N are disjoint of Y.
Proof. Evident.

Theorem 6.4. For a mapping f : X → Y, then the following statements are
equivalent:

(i) f is bs-γ-closed;

(ii) For every subset A of X, bclγ(f(A)) ⊆ f(bclγ(A));

(iii) If f is an onto, then for every subset B of Y and for each b-γ-open set U of
X containing f−1(B), there exists a b-γ-open set V of Y containing B such
that f−1(V ) ⊆ U.

Proof. Evident.

Theorem 6.5. Let f : (X, τX) → (Y, τY ) and g : (Y, τY ) → (Z, τZ) be two
mappings. Then the following statements are hold:

(i) If f and g are bs-γ-open, then the composite map g◦f is a bs-γ-open mapping;

(ii) If f is a onto b-γ-continuous mapping and the composite map g ◦ f is bs-γ-
open, then g is b-γ-open.

Proof. (i) Let U be a b-γ-open in X and f be a bs-γ-open mapping. Then f(U)
is b-γ-open in Y. Since g is bs-γ-open, g(f(U)) is b-γ-open in Z. Thus, g ◦ f is
bs-γ-open.
(ii) Let U be an open set in Y and f be a bs-γ-continuous mapping. Then f−1(U) ∈
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b-γO(X). Since, g ◦ f is bs-γ-open, (g ◦ f)(f−1(U)) is b-γ-open in Z. Also, by onto
of f, g(U) is b-γ-open in Z. Thus, g is b-γ-open.

Theorem 6.6. Let f : X → Y and g : Y → Z be two mappings.

(i) If g is an one-one bs-γ-open mapping and g ◦ f is b-γ-irresolute, then f is
b-γ-irresolute;

(ii) If f is an onto bs-γ-open mapping and g ◦ f is b-γ-irresolute, then g is b-γ-
irresolute,

Proof. (i) Let U be a b-γ-open in Y. Then g(U) is b-γ-open in Z. Since, g ◦ f is
b-γ-irresolute, (g ◦ f)−1(g(U)) is b-γ-open in X. Since g is an one-one map, f−1(U)
is b-γ-open in X. Thus, f is b-γ-irresolute.
(ii) Let V be a b-γ-open in Z. Then (g ◦ f)−1(V ) is b-γ-open in X. Since, f is a
bs-γ-open mapping, f((g ◦ f)−1(V )) is b-γ-open in Y. Since f is a onto map, then
g−1(V ) is b-γ-open in Y. Thus, g is b-γ-irresolute.

Theorem 6.7. Let f : (X, τ)→ (Y, σ) be an one-one and onto b-γ-open mapping.
Then the following statements are hold:

(i) If X is a b-γ-Ti-space, then Y is b-γ-Ti, where i = 1, 2;

(ii) If Y is a b-γ-compact (b-γ-Lindelöff) space, then X is b-γ-compact (b-γ-
Lindelöff).

Proof. Evident.

Theorem 6.8. If f : (X, τ) → (Y, σ) is a onto bs-γ-open mapping and Y is a
b-γ-connected space, then X is b-γ-connected.
Proof. Evident.

7. Conclusion
In this paper, we introduced and investigated b-γ-continuous, b-γ-irresolute, b-γ-

open, bs-γ-open and sb-γ-open mappings. These maps are stated to be independent
of each other. Similarly b-γ-connected and b-γ-compact have different notions. We
have also discussed the relationships between these mappings in topological spaces.
Applications of b-γ-connected and b-γ-compact will be discussed in my future work.
There is a scope to study and extend these newly defined mappings.
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