A NOTE ON RAMANUJAN'S GENERAL THETA FUNCTION

Himanshu Shekhar
Department of Mathematics, Town Senior Secondary School, Hajipur, Bihar, INDIA
E-mail : hshekhar266@gmail.com

(Received: Sep. 09, 2020 Accepted: Oct. 05, 2020 Published: Dec. 30, 2020)

Abstract: In this paper, Ramanujan's general theta function has been generalized and its properties have been discussed.

Keywords and Phrases: Jacobi's theta functions, identities, Ramanujan's general theta function, generalized Ramanujan's theta function.

2010 Mathematics Subject Classification: 33D15, 11P81, 11P82, 11F11, 05A17, 05A30.

1. Introduction

Jacobi in 1829 [3] defined following four functions which are called Jacobi's theta functions,

$$
\begin{gather*}
\theta_{1}(z, q)=2 \sum_{n=0}^{\infty}(-1)^{n} q^{\left(n+\frac{1}{2}\right)^{2}} \sin (2 n+1) z \tag{1.1}\\
\theta_{2}(z, q)=2 \sum_{n=0}^{\infty} q^{\left(n+\frac{1}{2}\right)^{2}} \cos (2 n+1) z \tag{1.2}\\
\theta_{3}(z, q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}} \cos 2 n z \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\theta_{4}(z, q)=1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}} \cos 2 n z \tag{1.4}
\end{equation*}
$$

For $z=0,(1.1)-(1.4)$ yield,

$$
\begin{gather*}
\theta_{1}(q)=0 \tag{1.5}\\
\theta_{2}(q)=2 \sum_{n=0}^{\infty} q^{n^{2}+n+\frac{1}{4}} \\
=2 q^{1 / 4} \sum_{n=0}^{\infty} q^{n^{2}+n}=q^{1 / 4} \sum_{n=-\infty}^{\infty} q^{n^{2}+n}
\end{gather*}
$$

Applying Jacobi's triple product identity [2; App. II (II.28)],

$$
\begin{align*}
& \theta_{2}(q)=2 q^{1 / 4}\left(q^{2} ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{2}\right)_{\infty}^{2} \tag{1.6}\\
& \theta_{3}(q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}}=\sum_{n=-\infty}^{\infty} q^{n^{2}}
\end{align*}
$$

By an appeal of triple product identity [2; App. II (II.28)],

$$
\begin{gather*}
\theta_{3}(q)=\left(q^{2} ; q^{2}\right)_{\infty}\left(-q ; q^{2}\right)_{\infty}^{2} \tag{1.7}\\
\theta_{4}(q)=1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}}=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}}
\end{gather*}
$$

Applying triple product identity [2; App. II (II.28)] we find,

$$
\begin{equation*}
\theta_{4}(q)=\left(q^{2} ; q^{2}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}^{2} \tag{1.8}
\end{equation*}
$$

Large number of fascinating identities are available in the literature involving $\theta_{2}(q)$, $\theta_{3}(q)$ and $\theta_{4}(q)$, out of which most celebrated one is

$$
\begin{equation*}
\theta_{3}^{4}(q)=\theta_{2}^{4}(q)+\theta_{4}^{4}(q) \tag{1.9}
\end{equation*}
$$

Motivated with these remarkable results involving $\theta_{2}(q), \theta_{3}(q)$ and $\theta_{4}(q)$, Ramanujan defined a general theta function as,

$$
\begin{equation*}
f(a, b)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}, \quad|a b|<1 \tag{1.10}
\end{equation*}
$$

which by an appeal of Jacobi's triple product identity [2; App. II (II. 28)] yields,

$$
\begin{align*}
f(a, b) & =\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2}=\sum_{n=-\infty}^{\infty}(a b)^{\frac{n^{2}}{2}}\left(\frac{a^{1 / 2}}{b^{1 / 2}}\right)^{n}, \\
& =(a b ; a b)_{\infty}(-a ; a b)_{\infty}(-b ; a b)_{\infty}, \quad|a b|<1 . \tag{1.11}
\end{align*}
$$

Further, Ramanujan defined following functions as the special cases of (1.11).

$$
\begin{gather*}
\Phi(q)=f(q, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}=\left(q^{2} ; q^{2}\right)_{\infty}\left(-q ; q^{2}\right)_{\infty}, \tag{1.12}\\
\Psi(q)=f\left(q, q^{3}\right)=\sum_{n=0}^{\infty} q^{n(n+1) / 2}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q ; q^{2}\right)_{\infty}}, \tag{1.13}
\end{gather*}
$$

and

$$
\begin{equation*}
f(-q)=f\left(-q,-q^{2}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n(3 n-1) / 2}=(q ; q)_{\infty} . \tag{1.14}
\end{equation*}
$$

[1; (1.1.6), (1.1.7) and (1.1.8), p. 11]
Making use of these functions, Ramanujan has established large number of identities in his second and 'Lost' notebooks [4, 5].

2. Notations and Definitions

Here and the sequel we employ the customary q - product notation given as below.
For arbitrary number α and $q,|q|<1$, let

$$
\begin{gather*}
(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), \quad n \in\{1,2,3, \ldots\}, \tag{2.1}\\
(a ; q)_{\infty}=\prod_{r=0}^{\infty}\left(1-a q^{r}\right) \tag{2.2}
\end{gather*}
$$

and for brevity we write,

$$
\begin{equation*}
\left(a_{1}, a_{2}, . . ., a_{r} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{r} ; q\right)_{n} . \tag{2.3}
\end{equation*}
$$

3. Further Generalization of Ramanujan's Theta Function

In this section, we give following generalized Ramanujan's theta function.

$$
f(a, b, z)=\sum_{n=-\infty}^{\infty} a^{n(n+1) / 2} b^{n(n-1) / 2} z^{n}
$$

$$
\begin{equation*}
=\sum_{n=-\infty}^{\infty}(a b)^{n^{2} / 2}\left(\frac{a^{1 / 2} z}{b^{1 / 2}}\right)^{n} \tag{3.1}
\end{equation*}
$$

By an appeal of Jacobi's triple product identity [2; App. II (II. 28)] we have

$$
\begin{equation*}
f(a, b, z)=(a b,-a z,-b / z ; a b)_{\infty} \tag{3.2}
\end{equation*}
$$

Following Ramanujan, we have

$$
\begin{gather*}
\Phi(q, z)=f(q, q, z)=\sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n}=\left(q^{2} ; q^{2}\right)_{\infty}\left(-z q,-q / z ; q^{2}\right)_{\infty} \tag{3.3}\\
\Psi(q, z)=f\left(q, q^{3}, z\right)=\left(q^{4} ; q^{4}\right)_{\infty}\left(-z q,-q^{3} / z ; q^{4}\right)_{\infty} \tag{3.4}\\
f(-q, z)=f\left(-q,-q^{2}, z\right)=\left(q^{3} ; q^{3}\right)_{\infty}\left(z q, q^{2} / z ; q^{3}\right)_{\infty} \tag{3.5}
\end{gather*}
$$

Putting $z=e^{2 i \theta}$ in (3.3) we get

$$
\begin{equation*}
\Phi\left(q, e^{2 i \theta}\right)=\left(q^{2} ; q^{2}\right)_{\infty} \prod_{r=0}^{\infty}\left(1+2 q^{2 r+1} \cos 2 \theta+q^{4 r+2}\right) \tag{3.6}
\end{equation*}
$$

where as the partial $\Phi\left(q, e^{2 i \theta}\right)$ is expressed as,

$$
\begin{equation*}
\Phi_{N}\left(q, e^{2 i \theta}\right)=\left(q^{2} ; q^{2}\right)_{\infty} \prod_{r=0}^{N}\left(1+2 q^{2 r+1} \cos 2 \theta+q^{4 r+2}\right) \tag{3.7}
\end{equation*}
$$

Putting $z q$ for z in (3.4) and then replacing z by $e^{2 i \theta}$ we have

$$
\begin{gather*}
\Psi\left(q, q e^{2 i \theta}\right)=f\left(q, q^{3}, q e^{2 i \theta}\right) \\
=\left(q^{4} ; q^{4}\right)_{\infty} \prod_{r=0}^{\infty}\left(1+2 q^{4 r+2} \cos 2 \theta+q^{8 r+4}\right) \tag{3.8}
\end{gather*}
$$

Partial $\Psi\left(q, q e^{2 i \theta}\right)$ is represented by

$$
\begin{equation*}
\Psi_{N}\left(q, q e^{2 i \theta}\right)=\left(q^{4} ; q^{4}\right)_{\infty} \prod_{r=0}^{N}\left(1+2 q^{4 r+2} \cos 2 \theta+q^{8 r+4}\right) \tag{3.9}
\end{equation*}
$$

From (3.6) and (3.8) we have,

$$
\begin{equation*}
\Phi\left(q^{2}, e^{2 i z}\right)=\Psi\left(q, q e^{2 i z}\right) \tag{3.10}
\end{equation*}
$$

4. Certain Properties of $\Phi\left(q, e^{2 i \theta}\right)$ and $\Psi\left(q, q e^{2 i \theta}\right)$

Putting $\theta=0$ in (3.6) we get,

$$
\begin{equation*}
\Phi(q, 1)=\Phi(q)=\left(q^{2} ; q^{2}\right)_{\infty} \prod_{r=0}^{\infty}\left(1+q^{2 r+1}\right)^{2}=\left(q^{2} ; q^{2}\right)_{\infty}\left(-q ; q^{2}\right)_{\infty}^{2} . \tag{4.1}
\end{equation*}
$$

For $\theta=\pi / 2$, (3.6) yields

$$
\begin{equation*}
\Phi\left(q, e^{i \pi}\right)=\left(q^{2} ; q^{2}\right)_{\infty}\left(q ; q^{2}\right)_{\infty}^{2} \tag{4.2}
\end{equation*}
$$

Putting $\theta=\pi / 4$ in (3.6) we have

$$
\begin{equation*}
\Phi\left(q, e^{i \pi / 2}\right)=\left(q^{2} ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{4}\right)_{\infty} . \tag{4.3}
\end{equation*}
$$

Differentiating both sides of (3.6) with respect to θ and then putting $\theta=\pi / 4$ we get,

$$
\begin{equation*}
\frac{d}{d \theta} \Phi\left(q, e^{2 i \theta}\right)=-4\left(q^{2} ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{4}\right)_{\infty} \sum_{r=0}^{\infty} \frac{q^{2 r+1}}{1+q^{4 r+2}} . \tag{4.4}
\end{equation*}
$$

(For $\theta=\pi / 4$)
From (3.3) we have,

$$
\begin{equation*}
\Phi\left(q, e^{2 i \theta}\right)=\sum_{n=-\infty}^{\infty} q^{n^{2}} e^{2 i n \theta} . \tag{4.5}
\end{equation*}
$$

Differentiating (4.5) with respect to θ we have

$$
\begin{equation*}
\frac{d}{d \theta} \Phi\left(q, e^{2 i \theta}\right)=\sum_{n=-\infty}^{\infty} i 2 n q^{n^{2}} e^{2 i n \theta} . \tag{4.6}
\end{equation*}
$$

Putting $\theta=\pi / 4$ in (4.6) we have,

$$
\frac{d}{d \theta} \Phi\left(q, e^{2 i \theta}\right)=2 i \sum_{n=-\infty}^{\infty} n q^{n^{2}} i^{n}
$$

For $\theta=\pi / 4$

$$
\begin{equation*}
=-2 \sum_{n=-\infty}^{\infty}(-1)^{(n-1) / 2} n q^{n^{2}} . \tag{4.7}
\end{equation*}
$$

Equating (4.4) and (4.7) we have

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} n(-1)^{\frac{n-1}{2}} q^{n^{2}}=2\left(q^{2} ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{4}\right)_{\infty} \sum_{r=0}^{\infty} \frac{q^{2 r+1}}{1+q^{4 r+2}} . \tag{4.8}
\end{equation*}
$$

Identity (4.8) can be put as,

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}(-1)^{n}(2 n+1) q^{(2 n+1)^{2}}=2\left(q^{2} ; q^{2}\right)_{\infty}\left(-q^{2} ; q^{4}\right)_{\infty} \sum_{r=0}^{\infty} \frac{q^{2 r+1}}{1+q^{4 r+2}} \tag{4.9}
\end{equation*}
$$

Similar other interesting results can also be scored.

References

[1] Andrews, G. E. and Berndt, B. C., Ramanujan's Lost Notebook Part I, Springer, 2005.
[2] Gasper, G. and Rahman, M., Basic Hypergeometric Series (Second Edition), Cambridge University Press, 2004.
[3] Jacobi, C. G. J., Fundamenta Nova Theoriae Functionum, Borntrager, Regiomonti, 1829.
[4] Ramanujan, S., Notebooks (2nd volume), Tata Institute of Fundamental Research, Bombay, 1957.
[5] Ramanujan, S., The Lost Notebook and other unpublished papers, Narosa, New Delhi, 1988.

