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1. Introduction
Jacobi in 1829 [3]| defined following four functions which are called Jacobi’s

theta functions,
[ee]

Z ”+2 sm(2n+ 1)z, (1.1)
n=0
2(2,q) —QZq"Jr " cos (2n+ 1)z, (1.2)
O5(z,q) =1+2 Z ¢ cos2nz (1.3)

n=1

and

0a(2,q) =1+2) (~1)"q"" cos 2nz. (1.4)
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For z =0, (1.1) - (1.4) yield,
01(q) =0 (1.5)

[e.9]

QQ(Q) -9 an2+n+i

n=0

— 2q1/4 iqn%rn — q1/4 i qn2+n
n=0

n=—0oo

Applying Jacobi’s triple product identity [2; App. II (I1.28)],

02(q) = 2¢"(¢* ") oo (=% ) (1.6)
O3(q) =1 +2iQ"2 = i g
n=1 n=-—oo
By an appeal of triple product identity [2; App. II (I1.28)],
03(q) = (4% ¢*)oo(—4: 4% (1.7)
o) =1+ 23 (-1 = Y (-1,
n=1 n=—o0

Applying triple product identity [2; App. II (I1.28)] we find,

01(q) = (6% ¢*) oo (¢ ¢*)2- (1.8)

Large number of fascinating identities are available in the literature involving s (q),
05(q) and 04(q), out of which most celebrated one is

05(q) = 03(q) + 04(q). (19)

Motivated with these remarkable results involving 62(q), 63(q) and 64(q), Ramanu-
jan defined a general theta function as,

fla,b) = > a2 gh) < 1, (1.10)

n=—oo

[1; (1.1.5), p. 11]
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which by an appeal of Jacobi’s triple product identity [2; App. II (II. 28)] yields,

f(a, b) _ Z an(n+1)/2bn(n /2 _ Z (ab) 2 <m> ,

= (ab; ab)s(—a; ab)oo(—b; ab)so, |abl < 1. (1.11)

Further, Ramanujan defined following functions as the special cases of (1.11).
O(g) = fla.0) = Y, 0" = (5 0)e(~¢ ")oor (1.12)

N (45 ¢%)oe
V(g) = fla,¢*) = ) ¢""™D2 =700, 1.13
)= o) ; (4 ¢%)o0 (1.13)
and .

f=q) = f(=0,=¢") = > (=1)"¢"®" V7 = (g; ¢)ow- (1.14)

[1; (1.1.6), (1.1.7) and (1.1.8), p. 11]

Making use of these functions, Ramanujan has established large number of identi-
ties in his second and ‘Lost’ notebooks [4, 5.

2. Notations and Definitions

Here and the sequel we employ the customary ¢— product notation given as
below.
For arbitrary number « and ¢, |q| < 1, let

(a;¢)n = (1 —a)(1 —aq)...(1 —aqg"™ "), nec{l,2,3, .}, (2.1)
(@:0)o0 = [ J(1 — aq") (2.2)

and for brevity we write,

(a1, a2, .. ar; @)n = (a1; Qn(a2; Qn-.-(ar; @)n- (2.3)

3. Further Generalization of Ramanujan’s Theta Function
In this section, we give following generalized Ramanujan’s theta function.

fla,b,z) = Z D /2pn(n=1)/2 0

n=—oo
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= _f: (ab)™/? (abll/fj)n . (3.1)

By an appeal of Jacobi’s triple product identity [2; App. II (II. 28)] we have

fla,b,z) = (ab, —az, —b/z; ab) . (3.2)

Following Ramanujan, we have

®(q,2) = fa,q,2 Z ¢ " )oo(=2¢,=0/% e (3.3)
U(q,2) = f(q, 4%, 2) = (¢" ¢ )oc(—2¢, —¢*/ 2 ¢*) - (3.4)
f(=4,2) = f(=4,=¢% 2) = (0% ¢°)oo (24, ©°/ 2 ¢*) .- (3.5)

Putting z = €2 in (3.3) we get
<I>(q, 229) (q q OOH 1+2q2r+1 00820+q4r+2) (36)
r=0

where as the partial ®(q, e*?) is expressed as,

N
O (g, ) = (0% ¢%)oo [ [(1 + 267+ c0s 20 + ¢*+2), (3.7)
r=0

Putting zq for z in (3.4) and then replacing z by €% we have

U(q, qe*) = f(q, 4% qe*)

= (g% "o [ [ (1 + 26"+ cos 20 + ¢* ). (3-8)
r=0

Partial W(q, qe*?) is represented by

N

Uy (g, qe”) = (g% q*)o [ [ (1 + 26"+ cos 20 + ¢* ). (3.9)
r=0

From (3.6) and (3.8) we have,

D (g%, *%) = W(q, ge**). (3.10)
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4. Certain Properties of ®(q,e*’) and ¥(q, ge*?)
Putting 6 = 0 in (3.6) we get,

®(q,1) = ®(q) = (¢*¢° ooH ¢ = ()~ )% (A1)

For 0 = /2, (3.6) yields

P(q, ™) = (¢*; ") o (45 ¢°) - (4.2)
Putting = 7/4 in (3.6) we have
D(q,e™?) = (6% ¢*)oo(— 0% ¢*) o (4.3)

Differentiating both sides of (3.6) with respect to 6 and then putting § = 7/4 we
get,

L 0(0,) = A Pl Y s (44
de Y ) o ) OOT:01+q4""+2 .
(For 8 = m/4)
From (3.3) we have,
210 Z q 622710 (45)
Differentiating (4.5) with respect to 6 we have
d 27,9 21n9
@é q,e Z i2ng" e (4.6)
Putting 0 = 7/4 in (4.6) we have,
iq)q 2’9 =21 Z nq
o ° =
For 6 = /4
=2 ) ()" Vg, (4.7)
Equating (4.4) and (4.7) we have
S n_l p2 2. 2 0 1y N~
Z n(=1)7q" =2(¢"¢)(—q"3q )OOZTW‘ (4.8)

n=-—00 r=0
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Identity (4.8) can be put as,

> o0 2r+1
n n+1)2 q
> (=1 2n+ 1D)g Y = 2(¢% ) oo(— % 0 ) D Tr g (4.9)
n=-—00 r=0

Similar other interesting results can also be scored.
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