South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 3 (2020), pp. 113-118

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

A NOTE ON RAMANUJAN'S GENERAL THETA FUNCTION

Himanshu Shekhar

Department of Mathematics, Town Senior Secondary School, Hajipur, Bihar, INDIA

E-mail: hshekhar266@gmail.com

(Received: Sep. 09, 2020 Accepted: Oct. 05, 2020 Published: Dec. 30, 2020)

Abstract: In this paper, Ramanujan's general theta function has been generalized and its properties have been discussed.

Keywords and Phrases: Jacobi's theta functions, identities, Ramanujan's general theta function, generalized Ramanujan's theta function.

2010 Mathematics Subject Classification: 33D15, 11P81, 11P82, 11F11, 05A17, 05A30.

1. Introduction

Jacobi in 1829 [3] defined following four functions which are called Jacobi's theta functions,

$$\theta_1(z,q) = 2\sum_{n=0}^{\infty} (-1)^n q^{\left(n + \frac{1}{2}\right)^2} \sin(2n+1)z, \tag{1.1}$$

$$\theta_2(z,q) = 2\sum_{n=0}^{\infty} q^{\left(n+\frac{1}{2}\right)^2} \cos(2n+1)z,$$
 (1.2)

$$\theta_3(z,q) = 1 + 2\sum_{n=1}^{\infty} q^{n^2} \cos 2nz$$
 (1.3)

and

$$\theta_4(z,q) = 1 + 2\sum_{n=1}^{\infty} (-1)^n q^{n^2} \cos 2nz. \tag{1.4}$$

For z = 0, (1.1) - (1.4) yield,

$$\theta_1(q) = 0 \tag{1.5}$$

$$\theta_2(q) = 2\sum_{n=0}^{\infty} q^{n^2 + n + \frac{1}{4}}$$

$$=2q^{1/4}\sum_{n=0}^{\infty}q^{n^2+n}=q^{1/4}\sum_{n=-\infty}^{\infty}q^{n^2+n}$$

Applying Jacobi's triple product identity [2; App. II (II.28)],

$$\theta_2(q) = 2q^{1/4}(q^2; q^2)_{\infty}(-q^2; q^2)_{\infty}^2. \tag{1.6}$$

$$\theta_3(q) = 1 + 2\sum_{n=1}^{\infty} q^{n^2} = \sum_{n=-\infty}^{\infty} q^{n^2}$$

By an appeal of triple product identity [2; App. II (II.28)],

$$\theta_3(q) = (q^2; q^2)_{\infty} (-q; q^2)_{\infty}^2. \tag{1.7}$$

$$\theta_4(q) = 1 + 2\sum_{n=1}^{\infty} (-1)^n q^{n^2} = \sum_{n=-\infty}^{\infty} (-1)^n q^{n^2},$$

Applying triple product identity [2; App. II (II.28)] we find,

$$\theta_4(q) = (q^2; q^2)_{\infty}(q; q^2)_{\infty}^2. \tag{1.8}$$

Large number of fascinating identities are available in the literature involving $\theta_2(q)$, $\theta_3(q)$ and $\theta_4(q)$, out of which most celebrated one is

$$\theta_3^4(q) = \theta_2^4(q) + \theta_4^4(q). \tag{1.9}$$

Motivated with these remarkable results involving $\theta_2(q)$, $\theta_3(q)$ and $\theta_4(q)$, Ramanujan defined a general theta function as,

$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}, \quad |ab| < 1, \tag{1.10}$$

[1; (1.1.5), p. 11]

which by an appeal of Jacobi's triple product identity [2; App. II (II. 28)] yields,

$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2} = \sum_{n=-\infty}^{\infty} (ab)^{\frac{n^2}{2}} \left(\frac{a^{1/2}}{b^{1/2}}\right)^n,$$

= $(ab; ab)_{\infty} (-a; ab)_{\infty} (-b; ab)_{\infty}, \quad |ab| < 1.$ (1.11)

Further, Ramanujan defined following functions as the special cases of (1.11).

$$\Phi(q) = f(q, q) = \sum_{n = -\infty}^{\infty} q^{n^2} = (q^2; q^2)_{\infty} (-q; q^2)_{\infty}, \tag{1.12}$$

$$\Psi(q) = f(q, q^3) = \sum_{n=0}^{\infty} q^{n(n+1)/2} = \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}},$$
(1.13)

and

$$f(-q) = f(-q, -q^2) = \sum_{n=-\infty}^{\infty} (-1)^n q^{n(3n-1)/2} = (q; q)_{\infty}.$$
 (1.14)

$$[1; (1.1.6), (1.1.7) \text{ and } (1.1.8), p. 11]$$

Making use of these functions, Ramanujan has established large number of identities in his second and 'Lost' notebooks [4, 5].

2. Notations and Definitions

Here and the sequel we employ the customary q- product notation given as below.

For arbitrary number α and q, |q| < 1, let

$$(a;q)_n = (1-a)(1-aq)...(1-aq^{n-1}), \quad n \in \{1,2,3,...\},$$
 (2.1)

$$(a;q)_{\infty} = \prod_{r=0}^{\infty} (1 - aq^r)$$
 (2.2)

and for brevity we write,

$$(a_1, a_2, ..., a_r; q)_n = (a_1; q)_n (a_2; q)_n ... (a_r; q)_n.$$
(2.3)

3. Further Generalization of Ramanujan's Theta Function

In this section, we give following generalized Ramanujan's theta function.

$$f(a, b, z) = \sum_{n = -\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2} z^n$$

$$= \sum_{n=-\infty}^{\infty} (ab)^{n^2/2} \left(\frac{a^{1/2}z}{b^{1/2}}\right)^n. \tag{3.1}$$

By an appeal of Jacobi's triple product identity [2; App. II (II. 28)] we have

$$f(a, b, z) = (ab, -az, -b/z; ab)_{\infty}.$$
 (3.2)

Following Ramanujan, we have

$$\Phi(q,z) = f(q,q,z) = \sum_{n=-\infty}^{\infty} q^{n^2} z^n = (q^2; q^2)_{\infty} (-zq, -q/z; q^2)_{\infty}.$$
 (3.3)

$$\Psi(q,z) = f(q,q^3,z) = (q^4;q^4)_{\infty}(-zq,-q^3/z;q^4)_{\infty}.$$
(3.4)

$$f(-q,z) = f(-q, -q^2, z) = (q^3; q^3)_{\infty} (zq, q^2/z; q^3)_{\infty}.$$
 (3.5)

Putting $z = e^{2i\theta}$ in (3.3) we get

$$\Phi(q, e^{2i\theta}) = (q^2; q^2)_{\infty} \prod_{r=0}^{\infty} (1 + 2q^{2r+1}\cos 2\theta + q^{4r+2}), \tag{3.6}$$

where as the partial $\Phi(q, e^{2i\theta})$ is expressed as,

$$\Phi_N(q, e^{2i\theta}) = (q^2; q^2)_{\infty} \prod_{r=0}^{N} (1 + 2q^{2r+1}\cos 2\theta + q^{4r+2}).$$
 (3.7)

Putting zq for z in (3.4) and then replacing z by $e^{2i\theta}$ we have

$$\Psi(q, qe^{2i\theta}) = f(q, q^3, qe^{2i\theta})$$

$$= (q^4; q^4)_{\infty} \prod_{r=0}^{\infty} (1 + 2q^{4r+2}\cos 2\theta + q^{8r+4}).$$
 (3.8)

Partial $\Psi(q, qe^{2i\theta})$ is represented by

$$\Psi_N(q, qe^{2i\theta}) = (q^4; q^4)_{\infty} \prod_{r=0}^N (1 + 2q^{4r+2}\cos 2\theta + q^{8r+4}).$$
 (3.9)

From (3.6) and (3.8) we have,

$$\Phi(q^2, e^{2iz}) = \Psi(q, qe^{2iz}). \tag{3.10}$$

4. Certain Properties of $\Phi(q, e^{2i\theta})$ and $\Psi(q, qe^{2i\theta})$

Putting $\theta = 0$ in (3.6) we get,

$$\Phi(q,1) = \Phi(q) = (q^2; q^2)_{\infty} \prod_{r=0}^{\infty} (1 + q^{2r+1})^2 = (q^2; q^2)_{\infty} (-q; q^2)_{\infty}^2.$$
 (4.1)

For $\theta = \pi/2$, (3.6) yields

$$\Phi(q, e^{i\pi}) = (q^2; q^2)_{\infty} (q; q^2)_{\infty}^2. \tag{4.2}$$

Putting $\theta = \pi/4$ in (3.6) we have

$$\Phi(q, e^{i\pi/2}) = (q^2; q^2)_{\infty} (-q^2; q^4)_{\infty}. \tag{4.3}$$

Differentiating both sides of (3.6) with respect to θ and then putting $\theta = \pi/4$ we get,

$$\frac{d}{d\theta}\Phi(q,e^{2i\theta}) = -4(q^2;q^2)_{\infty}(-q^2;q^4)_{\infty} \sum_{r=0}^{\infty} \frac{q^{2r+1}}{1+q^{4r+2}}.$$
(4.4)

(For $\theta = \pi/4$)

From (3.3) we have,

$$\Phi(q, e^{2i\theta}) = \sum_{n=-\infty}^{\infty} q^{n^2} e^{2in\theta}.$$
(4.5)

Differentiating (4.5) with respect to θ we have

$$\frac{d}{d\theta}\Phi(q,e^{2i\theta}) = \sum_{n=-\infty}^{\infty} i2nq^{n^2}e^{2in\theta}.$$
(4.6)

Putting $\theta = \pi/4$ in (4.6) we have,

$$\frac{d}{d\theta}\Phi(q,e^{2i\theta}) = 2i\sum_{n=-\infty}^{\infty} nq^{n^2}i^n$$

For $\theta = \pi/4$

$$= -2\sum_{n=-\infty}^{\infty} (-1)^{(n-1)/2} nq^{n^2}.$$
 (4.7)

Equating (4.4) and (4.7) we have

$$\sum_{n=-\infty}^{\infty} n(-1)^{\frac{n-1}{2}} q^{n^2} = 2(q^2; q^2)_{\infty} (-q^2; q^4)_{\infty} \sum_{r=0}^{\infty} \frac{q^{2r+1}}{1 + q^{4r+2}}.$$
 (4.8)

Identity (4.8) can be put as,

$$\sum_{n=-\infty}^{\infty} (-1)^n (2n+1) q^{(2n+1)^2} = 2(q^2; q^2)_{\infty} (-q^2; q^4)_{\infty} \sum_{r=0}^{\infty} \frac{q^{2r+1}}{1 + q^{4r+2}}.$$
 (4.9)

Similar other interesting results can also be scored.

References

- [1] Andrews, G. E. and Berndt, B. C., Ramanujan's Lost Notebook Part I, Springer, 2005.
- [2] Gasper, G. and Rahman, M., Basic Hypergeometric Series (Second Edition), Cambridge University Press, 2004.
- [3] Jacobi, C. G. J., Fundamenta Nova Theoriae Functionum, Borntrager, Regiomonti, 1829.
- [4] Ramanujan, S., Notebooks (2nd volume), Tata Institute of Fundamental Research, Bombay, 1957.
- [5] Ramanujan, S., The Lost Notebook and other unpublished papers, Narosa, New Delhi, 1988.