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Abstract: The aim of the present investigation is to create some summation the-
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1. Introduction and Preliminaries

Recently, the extension of the special functions has been painstaking by numer-
ous authors. The generalization of the gamma and beta functions presented by
number of researchers (See [2, 3, 5, 8]) in the form of a new parameter k, where
k > 0, called k-gamma and k-beta functions respectively.
The k -Pochhammer symbol and k -Gamma function demarcated as

n -1
Fk(x) = lim M, k>0,zeC\kZ™, (1)

n—oo ﬂ’jn k
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where (z), is the k-pochhammer symbol and given by
I'y(z + nk)
Pp(z)

we use following relation of k-Gamma Function

(@) =x(x + k)...(z+ (n—1)k = reC ke Rne N*.

Szn(ﬂx/k’)
The connection between k-gamma and k beta functlons is assumed by
Ly (2)L(y)
Bi(x,y) = ———==, Re(x), Re(y) > 0. 2
) = F o Rele), Rely) @

Mubeen et al. [7] demarcated the k-hypergeometric function and k-confluent hy-
pergeometric function which are as follows:

oF1 j (a,b;c;2) = Z —‘, k>0,]z| >0,c#0,—1,.. (3)
n=0 n, :
and .
A 2"
1Pk (a;0,2) = Z Eb; :m, k>0,]z| >0,b#£0,—1,.. (4)
n=0 2 ’

Mubeen and Habibullah [6] also presented integral representation of k - hypergeo-
metric function and k-Gauss theorem such as

oFup(a,bre;z) = ka(bl;lliic()c— 3 /O (N1 — ) F (1 — kat) Rt (5)
and
1\ Ti(e)Tp(c—b—a)
151 (a’b’ £ E) = Tele—a)Thc—b) (6)

Numerous authors (see [1, 2, 4, 9]) offered the well-known summation theorems for
the series o F71(—) such as of Gauss, Bailey and Kummer. This paper is divide into
two sections as follows.

2. Some summation theorem in terms of | F}(—)

In this section we proving some known familiar summation theorem for k- Gauss
hypergeometric function and these results convert the original summation Theo-
rems, when k£ — 1.

Theorem 2.1. If R(a) > 0, R(b) > 0,k > 0, then

(a+b+k)
2F1,k (a’b W 21k) \/% (Faik) 2 (s (7)
D e
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Proof. Using the equation (5) in left side of equation (7), we have

1 25T (c) /1 v g by _a
F byc; —| = t 1t 2—t) kdt 8
241,k [aa 3 6 Qk} ka(b)Fk(C . b) 0 b ( ) b ( ) F ( )

After substituting u = 1 — ¢ in equation(8), we get

1 2T ! . .
2 Fiifa, b;c; "Li() >/ 1 —w)t T 1 4u) fdu  (9)
0

o) = kT(5)Tx(c — b
Let

1
t/ﬂ—wﬁlfﬁlu+u>wuzﬂ,
0

in above equation (9) replacing u = Tan?(%), therefore du = T'an(4)Sec*(%)df and

Tan(%) = Sin0) S H becomes
—1 241
2 k
—_— dé
1+ Cos(0)

1+Cos(6’)’

i- [ (Feww) (Fom)

iﬁ<wm@><quwmff”)w
0 (Cos2(§)) 71

B / 2<COS(8))Z_1(SZ'”(§))W‘l(cos(g))(_%f:m“de

O (10)

(a+b+k)
2

Again put ¢ = in equation (10), we get

(a—b)

H = / (Cos(0))x*(Sin(0)) = db

Using k-Beta function property and k-Gamma function property in above equation,
we get

2(b oI’ (a b+k) r (%) _ 2@_1krk (aigﬂﬁ) g (g) (11)

 (5F)

Combining equations (11), (9) after putting the value ¢, we obtain

@by 1, 2TTe(HFE) T .
T’%}_ Ti(b)Ty (2£2) (12)

H =

\]
)1
—~
IS}
|+
o
~—
)1

2F1,k [a, b;
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Using duplication formula I'y(2z) = ﬂZ%_le(x)Fk(x + %) by substituting in

above equation (12) and simplify we obtain the desired result.
Theorem 2.2. If R(%) > R(a) > 0,k > 0 then

1, Tplk—a+b)ly (2 +k)

2F1,k[a,b;k‘—a+b;7} = Fk<b—|—k)rk (k_g+b)

(13)

Proof. Using the integral representation of k-Gauss Hypergeometric function by

putting c=k —a+band z = ’71 in equation (5), we have

—1 Fk(k—a—b) ! b_q 2\ —a
F by k — b, — | = te T (1 —t7) kdt 14
241,k |f% ) a + 0; L :| kPk(b)Fk(kﬁ—a)/@ ( ) ’ ( )

Put t* = u , in the right hand side of equation (14), we get

—1 . Fk(k—a—b) ! %_1 _%
7} - ka(b)Fk(k—a)/o (1 —u)"kdu

2F1,k |:(1,, b, k—a -+ b,

 Ty(k—a—0) b
~ kDL(b) Tk — a)kBk (z’k > ’

Using k-Beta function property, we get desired result.
Theorem 2.3. If R(5) > R(5) > 0,k > 0 then

1] DR () Tk (5 +5)
| Qk] T (%) T (55) (15)

o F1

a,k—a;c

Proof. Using equation (5) and put z = i and b = k—a,then the resulting integral
can be evaluated (by putting in (1 — ¢) = u, after using k -beta function, we have

1 a —1
o F g [fl’k‘ —a; ¢ ﬁ} = 2% o g, {6%04-&— k; c; 7} ;

Applying equation (13) in right hand side of above given equation, we have

1 o Tplc) Dy (et
2F'1 {a, k—a;c; —] = 2% 1(¢) L z_azk ;
2k Li(c+a) Ty (=4E)
Finally, using the duplication formulal'y(2z) = %2%’1Fk(:ﬁ)l“k(:c + %), we get

desired result.
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3. Kummer’s Differential Equation in k—parameter and Transformations
In this section we prove k- Kummers differential equation and k-first transfor-
mation and k-second transformation. These results also convert original results as
k — 1 The differential equation of k-Gauss Hypergeometric function defined by S.
Mubeen [7] as
2
kz(l—kz)d—u+(c—(a+b+/€)kz)d—u—abu:O (16)

dz? dz

by replacing z — 7 in above equation and taking b — oo, where k > 0.

du  dw . d*u _b2d2w
dz dz dz2  dz?’
then we get
2
kz%+(e—kz)2—j —aw =10 (17)

This is the required differential equation for k -parameter. Mubeen et al. [6] defined
integral representation in k—parameter where R(c) > R(b) > 0 then for all finite z

F(C) 1 2_1 C;b_l
Fip(bycz) = ———7"—— t 1—t “lt 1

Theorem 3.1. If ¢ is the neither zero nor a negative integer, then
1Frr(bye; z) =€ 1 Fig(c—byc;—2) (19)
Proof. With the help of integral representation fork-Parameter, it follows that

[k (c) /1 L S L
Fii(bicz) = t 1-—1¢ tdt 2
1 Lk( ;G Z) kJFk(b)Fk(C — b) 0 k ( ) k € ( 0)

using property of definite integral, we get

F (b c: Z) — €Z Fk(C) /1 tgfl(l o t)%bflefztdt
17LERD & kDw(0)Ti(c—b) J,

1Fr(bc;z) =€ 1 Fip(c—byc;—2)

Theorem 3.2. If 2a is not an odd integer less than zero then

1 22
e " 1 Fp(a;2a;2) = oFhy (—; a + §§ Z) (21)



102 South FEast Asian J. of Mathematics and Mathematical Sciences

Proof. Using Kummer’s first transformation
1Fii(a; 2a; 2) = € 1 Fy(a; 2a; —2)
If we multiply both side by e= , we obtain
ez 1Fi(a;2a; 2) = e3 1F1x(a; 2a; —2)

i.e. e 1F(a;2a;2) is even function of z and therefore e=* | F} 4 (a; 2a; 22) is an
even function of z (Replacing z by 2z)
Again we consider

e * 1Fk(a;2a;2z2) = Z (=2)" Z (a)"’k(zz)m' (22)

n=0 m=0
n=0 m=0 (2a)n,k k™ n! m)!

0o 5 o
¢ s 202 = 3 2P (_n; @ 20; z) i
n=0 .

Since left hand side be an even function of z so right-hand side should be even
function of z so odd terms will be vanishes.

2
o F) 1 (—2n — 1; a; 2a; E) =0 (23)
then
e * 1F1x(a;2a;22) = i Fy (=255 a; 2q; 2)Z28 (24)
141,6\Q; ) - o 2471k y Uy ak 24!

Again the u =; F} x(a;c; z) is one solution of the Kummer’s differential equation

d?u

du
— — —au= 2
kzd% + (¢ — k=) . o 0 (25)

when ¢ = 2a and z = 2z then

d*u du
kz@ +2(a — kz)a —2au =0 (26)
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Ifweputu:ezwthen%—ezd“’—i—ew
d*u d (du _d?w Ldw
Y (R P P 27
dz2?  dz <dz) a2 e dz e (27)

using the value of u and 2 and equation (27 ) in equation (26 ), we have

d*w _dw dw
SR P 2a — = Wy ) — 2aefw =
k:z(ed2+ ed +ew>—|— (a k:z)<e dz+ew) acw =0

After some simplification, we obtain

d*w dw
kzﬁ + 2@5 —kzw =0 (28)

u = 1F,(a;c; 2) solution of (25) then u = e*w is also solution of (28 ) or w =
e *u=e* 1 I x(a;2a;2z) is also satisfy the equation (28) , if we put kdz = tadt

then 4 = dwdt _ 3 k% and jfl;g = k2 (5”3“: + t‘fltg’) in equation (28), we get

1 1dw d2 1 dw 1
22 k2 t—— Qat2k— — 2t2w = 0
’ (2dt+dt2)+a2 at Y

After simplifying it, we get

d*w kY dw
& w= 2
th? (dt2)+k< 2) il 0 (29)

this is differential equation of ¢ F} x(—;a;t),So the solution of above equation is

k k
LW = AOFl,k:(_;a + E,t) + Btl_(a—i_%) OFl,k (—7 2 — <6L -+ 5) ’t)

kE 22 22 1=(at5) E\ 2°
w=AgF k(s a+ o Z) +B (Z) o1k (—7 2— (a + 5) ; Z) (30)

Where a + % is not a positive integer and 2a is not an odd integer, where A and B
are constants. When 2 =0 = A =1 then

—z k 2 2 1—((1—{-%)
w=e"1F(a;2a;22) = oFiy <—;a + 55 Zz) + B <Zz> X

x oF i (-; 2— (a+%); z) (31)



104

South FEast Asian J. of Mathematics and Mathematical Sciences

The left hand member and first term of (31) are analytic at but second term is not
analytic at z =0so B =0

k 2
w=e " 1F(a;2a;22) = oFix (—; a+ X %) (32)
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