South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 3 (2020), pp. 97-104

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

STUDY ON k-GAUSS SECOND SUMMATION THEOREMS AND k-KUMMER'S TRANSFORMATION

Ekta Mittal and Sunil Joshi*

Department of Mathematics, IIS Deemed to be University, Jaipur - 302020, INDIA

E-mail: ekta.mittal@iisuniv.ac.in

*Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur - 303007, INDIA

E-mail: sunil.joshi@jaipur.manipal.edu

(Received: Apr. 17, 2020 Accepted: Sep. 19, 2020 Published: Dec. 30, 2020)

Abstract: The aim of the present investigation is to create some summation theorems like Gauss, Bailey, and Kummer in the form of k- hypergeometric function. Further, we develop a new class of Kummer's differential equation of k-parameter and Kummer's transformations formulae in terms k- confluent hypergeometric function.

Keywords and Phrases: k-Gamma function, k-Beta function, k-hypergeometric functions, k-pochhammer symbols.

2010 Mathematics Subject Classification: 33E12, 44A10, 33B15.

1. Introduction and Preliminaries

Recently, the extension of the special functions has been painstaking by numerous authors. The generalization of the gamma and beta functions presented by number of researchers (See [2, 3, 5, 8]) in the form of a new parameter k, where k > 0, called k-gamma and k-beta functions respectively.

The k -Pochhammer symbol and k -Gamma function demarcated as

$$\Gamma_k(x) = \lim_{n \to \infty} \frac{n! k^n (nk)^{\frac{x}{k} - 1}}{x_{n,k}}, \quad k > 0, x \in C \setminus kZ^-,$$
(1)

where $(x)_{n,k}$ is the k-pochhammer symbol and given by

$$(x)_{n,k} = x(x+k)...(x+(n-1)k) = \frac{\Gamma_k(x+nk)}{\Gamma_k(x)}, \quad x \in C, k \in R, n \in N^+.$$

we use following relation of k-Gamma Function

$$\Gamma_k(x+k) = x\Gamma_k(x), \Gamma_k(k) = 1 \text{ and } \Gamma_k(x)\Gamma_k(k-x) = \frac{\pi}{\sin(\pi x/k)}$$

The connection between k-gamma and k- beta functions is assumed by

$$B_k(x,y) = \frac{\Gamma_k(x)\Gamma_k(y)}{\Gamma_k(x+y)}, \quad Re(x), Re(y) > 0.$$
 (2)

Mubeen et al. [7] demarcated the k-hypergeometric function and k-confluent hypergeometric function which are as follows:

$$_{2}F_{1,k}(a,b;c;z) = \sum_{n=0}^{\infty} \frac{(a)_{n,k}(b)_{n,k}}{(c)_{n,k}} \frac{z^{n}}{n!}, \quad k > 0, |z| > 0, c \neq 0, -1, \dots$$
 (3)

and

$$_{1}F_{1,k}(a;b;z) = \sum_{n=0}^{\infty} \frac{(a)_{n,k}}{(b)_{n,k}} \frac{z^{n}}{n!}, \quad k > 0, |z| > 0, b \neq 0, -1, \dots$$
 (4)

Mubeen and Habibullah [6] also presented integral representation of k - hypergeometric function and k-Gauss theorem such as

$${}_{2}F_{1,k}(a,b;c;z) = \frac{\Gamma_{k}(c)}{k\Gamma_{k}(b)\Gamma_{k}(c-b)} \int_{0}^{1} t^{\frac{b}{k}-1} (1-t)^{\frac{c-b}{k}-1} (1-kzt)^{-\frac{a}{k}} dt \qquad (5)$$

and

$${}_{1}F_{1,k}\left(a,b;c;\frac{1}{k}\right) = \frac{\Gamma_{k}(c)\ \Gamma_{k}(c-b-a)}{\Gamma_{k}(c-a)\Gamma_{k}(c-b)} \tag{6}$$

Numerous authors (see [1, 2, 4, 9]) offered the well-known summation theorems for the series ${}_{2}F_{1}(-)$ such as of Gauss, Bailey and Kummer. This paper is divide into two sections as follows.

2. Some summation theorem in terms of $_1F_1(-)$

In this section we proving some known familiar summation theorem for k-Gauss hypergeometric function and these results convert the original summation Theorems, when $k \to 1$.

Theorem 2.1. If R(a) > 0, R(b) > 0, k > 0, then

$$_{2}F_{1,k}\left(a,b;\frac{(a+b+k)}{2};\frac{1}{2k}\right) = \sqrt{\frac{\pi}{k}} \frac{\Gamma_{k}\frac{(a+b+k)}{2}}{\Gamma_{k}\frac{(a+k)}{2}\Gamma_{k}\frac{(b+k)}{2}}$$
 (7)

Proof. Using the equation (5) in left side of equation (7), we have

$${}_{2}F_{1,k}\left[a,b;c;\frac{1}{2k}\right] = \frac{2^{\frac{a}{k}}\Gamma_{k}(c)}{k\Gamma_{k}(b)\Gamma_{k}(c-b)} \int_{0}^{1} t^{\frac{b}{k}-1} (1-t)^{\frac{c-b}{k}-1} (2-t)^{-\frac{a}{k}} dt \tag{8}$$

After substituting u = 1 - t in equation(8), we get

$${}_{2}F_{1,k}\left[a,b;c;\frac{1}{2k}\right] = \frac{2^{\frac{a}{k}}\Gamma_{k}(c)}{k\Gamma_{k}(b)\Gamma_{k}(c-b)} \int_{0}^{1} (1-u)^{\frac{b}{k}-1} u^{\frac{c-b}{k}-1} (1+u)^{-\frac{a}{k}} du \qquad (9)$$

Let

$$\int_0^1 (1-u)^{\frac{b}{k}-1} u^{\frac{c-b}{k}-1} (1+u)^{-\frac{a}{k}} du = H,$$

in above equation (9) replacing $u = Tan^2(\frac{\theta}{2})$, therefore $du = Tan(\frac{\theta}{2})Sec^2(\frac{\theta}{2})d\theta$ and $Tan(\frac{\theta}{2}) = \frac{Sin(\theta)}{1+Cos(\theta)}$, So H becomes

$$H = \int_{0}^{\frac{\pi}{2}} \left(\frac{2Cos(\theta)}{1 + Cos(\theta)} \right)^{\frac{b}{k} - 1} \left(\frac{Sin(\theta)}{1 + Cos(\theta)} \right)^{\frac{2c - 2b}{k} - 1} \left(\frac{2}{1 + Cos(\theta)} \right)^{\frac{-a}{k} + 1} d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \left(\frac{(Cos(\theta))^{\frac{b}{k} - 1} (Sin(\frac{\theta}{2})Cos(\frac{\theta}{2}))^{\frac{(2c - 2b)}{k} - 1}}{(Cos^{2}(\frac{\theta}{2}))^{\frac{(2c - ba)}{k} - 1}} \right) d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} (Cos(\theta))^{\frac{b}{k} - 1} (Sin(\frac{\theta}{2}))^{\frac{(2c - 2b)}{k} - 1} (Cos(\frac{\theta}{2}))^{\frac{(-2c + 2a)}{k} + 1} d\theta$$
(10)

Again put $c = \frac{(a+b+k)}{2}$ in equation (10), we get

$$H = \int_0^{\frac{\pi}{2}} (Cos(\theta))^{\frac{b}{k}-1} (Sin(\theta))^{\frac{(a-b)}{k}} d\theta$$

Using k-Beta function property and k-Gamma function property in above equation, we get

$$H = 2^{\frac{(b-a)}{k}} \frac{\Gamma\left(\frac{a-b+k}{2k}\right) \Gamma\left(\frac{b}{2k}\right)}{2\Gamma\left(\frac{a+k}{2k}\right)} = 2^{\frac{(b-a)}{k}-1} k \frac{\Gamma_k\left(\frac{a-b+k}{2}\right) \Gamma_k\left(\frac{b}{2}\right)}{\Gamma_k\left(\frac{a+k}{2}\right)}$$
(11)

Combining equations (11), (9) after putting the value c, we obtain

$${}_{2}F_{1,k}\left[a,b;\frac{\left(a+b+k\right)}{2};\frac{1}{2k}\right] = \frac{2^{\frac{b}{k}-1}\Gamma_{k}\left(\frac{\left(a+b+k\right)}{2}\right)\Gamma_{k}\left(\frac{b}{2}\right)}{\Gamma_{k}\left(b\right)\Gamma_{k}\left(\frac{a+k}{2}\right)}$$
(12)

Using duplication formula $\Gamma_k(2x) = \sqrt{\frac{k}{\pi}} 2^{\frac{2x}{k}-1} \Gamma_k(x) \Gamma_k(x+\frac{k}{2})$ by substituting in above equation (12) and simplify we obtain the desired result.

Theorem 2.2. If $R(\frac{b}{2}) > R(a) > 0, k > 0$ then

$${}_{2}F_{1,k}\left[a,b;k-a+b;\frac{-1}{k}\right] = \frac{\Gamma_{k}(k-a+b)\Gamma_{k}\left(\frac{b}{2}+k\right)}{\Gamma_{k}(b+k)\Gamma_{k}\left(\frac{k-a+b}{2}\right)}$$
(13)

Proof. Using the integral representation of k-Gauss Hypergeometric function by putting c = k - a + b and $z = \frac{-1}{k}$ in equation (5), we have

$${}_{2}F_{1,k}\left[a,b;k-a+b;\frac{-1}{k}\right] = \frac{\Gamma_{k}(k-a-b)}{k\Gamma_{k}(b)\Gamma_{k}(k-a)} \int_{0}^{1} t^{\frac{b}{k}-1} (1-t^{2})^{-\frac{a}{k}} dt, \tag{14}$$

Put $t^2 = u$, in the right hand side of equation (14), we get

$${}_{2}F_{1,k}\left[a,b;k-a+b;\frac{-1}{k}\right] = \frac{\Gamma_{k}(k-a-b)}{k\Gamma_{k}(b)\Gamma_{k}(k-a)} \int_{0}^{1} u^{\frac{b}{2k}-1} (1-u)^{-\frac{a}{k}} du$$
$$= \frac{\Gamma_{k}(k-a-b)}{k\Gamma_{k}(b)\Gamma_{k}(k-a)} kB_{k}\left(\frac{b}{2},k-a\right),$$

Using k-Beta function property, we get desired result.

Theorem 2.3. If $R(\frac{c}{2}) > R(\frac{a}{2}) > 0, k > 0$ then

$${}_{2}F_{1,k}\left[a,k-a;c;\frac{1}{2k}\right] = \frac{\Gamma_{k}\left(\frac{c+k}{2}\right)\Gamma_{k}\left(\frac{c}{2}+k\right)}{\Gamma_{k}\left(\frac{c+a}{2}\right)\Gamma_{k}\left(\frac{c-a+k}{2}\right)}$$
(15)

Proof. Using equation (5) and put $z = \frac{1}{2k}$ and b = k - a, then the resulting integral can be evaluated (by putting in (1 - t) = u, after using k -beta function, we have

$$_{2}F_{1,k}\left[a,k-a;c;\frac{1}{2k}\right] = 2^{\frac{a}{k}} \,_{2}F_{1,k}\left[a,c+a-k;c;\frac{-1}{k}\right],$$

Applying equation (13) in right hand side of above given equation, we have

$$_{2}F_{1,k}\left[a,k-a;c;\frac{1}{2k}\right]=2^{\frac{a}{k}}\frac{\Gamma_{k}(c)\Gamma_{k}\left(\frac{c+a+k}{2}\right)}{\Gamma_{k}(c+a)\Gamma_{k}\left(\frac{c-a+k}{2}\right)},$$

Finally, using the duplication formula $\Gamma_k(2x) = \sqrt{\frac{k}{\pi}} 2^{\frac{2x}{k}-1} \Gamma_k(x) \Gamma_k(x+\frac{k}{2})$, we get desired result.

3. Kummer's Differential Equation in k-parameter and Transformations

In this section we prove k- Kummers differential equation and k-first transformation and k-second transformation. These results also convert original results as $k \to 1$ The differential equation of k-Gauss Hypergeometric function defined by S. Mubeen [7] as

$$kz(1-kz)\frac{d^{2}u}{dz^{2}} + (c - (a+b+k)kz)\frac{du}{dz} - abu = 0$$
(16)

by replacing $z \to \frac{z}{b}$ in above equation and taking $b \to \infty$, where k > 0.

$$\frac{du}{dz} = b\frac{dw}{dz} \implies \frac{d^2u}{dz^2} = b^2\frac{d^2w}{dz^2},$$

then we get

$$kz\frac{d^2w}{dz^2} + (c - kz)\frac{dw}{dz} - aw = 0$$

$$\tag{17}$$

This is the required differential equation for k-parameter. Mubeen et al. [6] defined integral representation in k-parameter where R(c) > R(b) > 0 then for all finite z

$${}_{1}F_{1,k}(b;c;z) = \frac{\Gamma(c)}{k\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t^{\frac{b}{k}-1} (1-t)^{\frac{c-b}{k}-1} e^{zt} dt$$
 (18)

Theorem 3.1. If c is the neither zero nor a negative integer, then

$$_{1}F_{1,k}(b;c;z) = e^{z} {}_{1}F_{1,k}(c-b;c;-z)$$
 (19)

Proof. With the help of integral representation for k-Parameter, it follows that

$${}_{1}F_{1,k}(b;c;z) = \frac{\Gamma_{k}(c)}{k\Gamma_{k}(b)\Gamma_{k}(c-b)} \int_{0}^{1} t^{\frac{b}{k}-1} (1-t)^{\frac{c-b}{k}-1} e^{zt} dt$$
 (20)

using property of definite integral, we get

$$_{1}F_{1,k}(b;c;z) = e^{z} \frac{\Gamma_{k}(c)}{k\Gamma_{k}(b)\Gamma_{k}(c-b)} \int_{0}^{1} t^{\frac{b}{k}-1} (1-t)^{\frac{c-b}{k}-1} e^{-zt} dt$$

$$_{1}F_{1,k}(b;c;z) = e^{z} _{1}F_{1,k}(c-b;c;-z)$$

Theorem 3.2. If 2a is not an odd integer less than zero then

$$e^{-z} {}_{1}F_{1,k}(a;2a;z) = {}_{0}F_{1,k}\left(-;a+\frac{1}{2};\frac{z^{2}}{4}\right)$$
 (21)

Proof. Using Kummer's first transformation

$$_{1}F_{1,k}(a;2a;z) = e^{z} {}_{1}F_{1,k}(a;2a;-z)$$

If we multiply both side by $e^{\frac{-z}{2}}$, we obtain

$$e^{\frac{-z}{2}} {}_{1}F_{1,k}(a;2a;z) = e^{\frac{z}{2}} {}_{1}F_{1,k}(a;2a;-z)$$

i.e. $e^{\frac{-z}{2}} \,_1F_{1,k}(a;2a;z)$ is even function of z and therefore $e^{-z} \,_1F_{1,k}(a;2a;2z)$ is an even function of z (Replacing z by 2z)

Again we consider

$$e^{-z} {}_{1}F_{1,k}(a;2a;2z) = \sum_{n=0}^{\infty} \frac{(-z)^{n}}{n!} \sum_{m=0}^{\infty} \frac{(a)_{n,k}(2z)^{m}}{(2a)_{n,k} k^{m} m!}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{(a)_{n,k}(-1)^{n-m} z^{n} 2^{m}}{(2a)_{n,k} k^{m} (n-m)! m!}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{(a)_{n,k}(-n)_{m} (-z)^{n} 2^{m}}{(2a)_{n,k} k^{m} n! m!}$$

$$e^{-z} {}_{1}F_{1,k}(a;2a;2z) = \sum_{n=0}^{\infty} {}_{2}F_{1,k} \left(-n;a;2a;\frac{2}{k}\right) \frac{(-z)^{n}}{n!}$$

Since left hand side be an even function of z so right-hand side should be even function of z so odd terms will be vanishes.

$$_{2}F_{1,k}(-2n-1;a;2a;\frac{2}{k}) = 0$$
 (23)

then

$$e^{-z} {}_{1}F_{1,k}(a;2a;2z) = \sum_{s=0}^{\infty} {}_{2}F_{1,k}(-2s;a;2a;\frac{2}{k})\frac{z^{2s}}{2s!}$$
 (24)

Again the $u = F_{1,k}(a; c; z)$ is one solution of the Kummer's differential equation

$$kz\frac{d^2u}{dz^2} + (c - kz)\frac{du}{dz} - au = 0$$
(25)

when c = 2a and z = 2z then

$$kz\frac{d^2u}{dz^2} + 2(a - kz)\frac{du}{dz} - 2au = 0$$
 (26)

If we put $u = e^z w$ then $\frac{du}{dz} = e^z \frac{dw}{dz} + e^z w$

$$\frac{d^2u}{dz^2} = \frac{d}{dz}\left(\frac{du}{dz}\right) = e^z \frac{d^2w}{dz^2} + 2e^z \frac{dw}{dz} + e^z w \tag{27}$$

using the value of u and $\frac{du}{dz}$ and equation (27) in equation (26), we have

$$kz\left(e^z\frac{d^2w}{dz^2} + 2e^z\frac{dw}{dz} + e^zw\right) + 2(a - kz)\left(e^z\frac{dw}{dz} + e^zw\right) - 2ae^zw = 0$$

After some simplification, we obtain

$$kz\frac{d^2w}{dz^2} + 2a\frac{dw}{dz} - kzw = 0 (28)$$

 $u={}_1F_{1,k}(a;c;z)$ solution of (25) then $u=e^zw$ is also solution of (28) or $w=e^{-z}u=e^{-z}{}_1F_{1,k}(a;2a;2z)$ is also satisfy the equation (28), if we put $kdz=t^{-\frac{1}{2}}dt$ then $\frac{dw}{dz}=\frac{dw}{dt}\frac{dt}{dz}=t^{\frac{1}{2}}k\frac{dw}{dt}$ and $\frac{d^2w}{dz^2}=k^2\left(\frac{1}{2}\frac{dw}{dt}+t\frac{d^2w}{dt^2}\right)$ in equation (28), we get

$$2t^{\frac{1}{2}}k^{2}\left(\frac{1}{2}\frac{dw}{dt} + t\frac{d^{2}w}{dt^{2}}\right) + 2at^{\frac{1}{2}}k\frac{dw}{dt} - 2t^{\frac{1}{2}}w = 0$$

After simplifying it, we get

$$tk^{2}\left(\frac{d^{2}w}{dt^{2}}\right) + k\left(a + \frac{k}{2}\right)\frac{dw}{dt} - w = 0$$
(29)

this is differential equation of ${}_{0}F_{1,k}(-;a;t)$, So the solution of above equation is

$$\therefore w = A_0 F_{1,k}(-; a + \frac{k}{2}; t) + B t^{1 - \left(a + \frac{k}{2}\right)} {}_0 F_{1,k}\left(-; 2 - \left(a + \frac{k}{2}\right); t\right)$$

$$\therefore w = A_0 F_{1,k}(-; a + \frac{k}{2}; \frac{z^2}{4}) + B\left(\frac{z^2}{4}\right)^{1 - \left(a + \frac{k}{2}\right)} {}_{0} F_{1,k}\left(-; 2 - \left(a + \frac{k}{2}\right); \frac{z^2}{4}\right)$$
(30)

Where $a + \frac{k}{2}$ is not a positive integer and 2a is not an odd integer, where A and B are constants. When $z = 0 \implies A = 1$ then

$$w = e^{-z} {}_{1}F_{1,k}(a; 2a; 2z) = {}_{0}F_{1,k}\left(-; a + \frac{k}{2}; \frac{z^{2}}{4}\right) + B\left(\frac{z^{2}}{4}\right)^{1 - \left(a + \frac{k}{2}\right)} \times$$

$$\times {}_{0}F_{1,k}\left(-; 2 - \left(a + \frac{k}{2}\right); \frac{z^{2}}{4}\right)$$
(31)

The left hand member and first term of (31) are analytic at but second term is not analytic at z = 0 so B = 0

$$w = e^{-z} {}_{1}F_{1,k}(a; 2a; 2z) = {}_{0}F_{1,k}\left(-; a + \frac{k}{2}; \frac{z^{2}}{4}\right)$$
(32)

References

- [1] Choi, J., Rathie, A. K. and Purnima, A note on Gauss's second summation theorem for the series $_2F_1(\frac{1}{2})$, Commun. Korean Math. Soc., 22(4) (2007), 509–512.
- [2] Diaz, R. and Pariguan, E., On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Mathematics, 15(2) (2007), 179-192.
- [3] Kokologiannaki, C. G., Properties and inequalities of generalized k-Gamma, Beta and Zeta functions, Int. J. Contemp. Math. Sciences, 5(14), (2010), 653-660.
- [4] Kodavanji, S., Rathie, A. K. and Paris, R., A derivation of two transformation formulas contiguous to that of Kummer's second theorem via a differential equation approach, Mathematica Aeterna, 5(1) (2015), 225-230.
- [5] Mansour, M., Determining the k-generalized Gamma function $\Gamma_k(x)$ by functional equations, Int. J. Contemp. Math. Sciences, 4 (2009), 1037-1042.
- [6] Mubeen, S. and Habibullah, G. M., An Integral Representation of Some k-Hypergeometric Functions, International Mathematical Forum, 7(4) (2012), 203–207.
- [7] Mubeen, S., Naz, M., Rehman, A. and Rahman, G., Solutions of k Hypergeometric Differential Equations, Hindawi Publishing Corporation Journal of Applied Mathematics 2014, Article ID 128787, 13 pages, (2014).
- [8] Rainville, E. D., Special Functions, Macmillan Company, New York, (1960). Reprinted by Chelsea Publishing Company, Bronx, New York, (1971).
- [9] Rathie, A. K. and Choi, J., Another proof of Kummer's second theorem, Commun. Korean Math. Soc., 13 (1998), 933-936.