CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH q-ANALOGUE OF BESSEL FUNCTIONS

S. R. Swamy and P. K. Mamatha*
Department of Computer Science and Engineering,
R. V. College of Engineering, Bangalore - 560059 Karnataka, INDIA
E-mail : sondekola.swamy@gmail.com
ORCID Address : http://orcid.org/0000-0002-8088-4103
*Department of Mathematics,
R. V. College of Engineering, Bangalore - 560059, Karnataka, INDIA
E-mail : mamatharaviv@gmail.com
ORCID Address : http://orcid.org/0000-0002-7610-9585

(Received: Jun. 20, 2020 Accepted: Sep. 19, 2020 Published: Dec. 30, 2020)
Abstract: In this paper we consider various subclasses of bi-univalent functions defined by the Horadam polynomials associated with q-analogue of Bessel functions. Further, we obtain coefficient estimates and Fekete-Szegö inequalities for the defined classes.

Keywords and Phrases: Univalent functions, bi-univalent functions, bi-convex functions, bi-starlike functions, Fekete-Szegö inequality, q-derivative operator, Horadam polynomials, Bessel functions.

2010 Mathematics Subject Classification: Primary 11B39, 30C45, 33C45, Secondary 30C50, 33C05.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\Delta=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, by \mathcal{S} we shall denote the class of all functions in \mathcal{A} which are univalent in Δ.

It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \Delta)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geqq \frac{1}{4}\right),
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in Δ if both the function f and its inverse f^{-1} are univalent in Δ. Let σ denote the class of bi-univalent functions in Δ given by (1.1).

In 2010, Srivastava et al. [35] revived the study of bi-univalent functions by their pioneering work on the study of coefficient problems. Various subclasses of the bi-univalent function class σ were introduced and non-sharp estimates on the first two coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ in the Taylor-Maclaurin series expansion (1.1) were found in the very recent investigations (see, for example, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [13], [14], [16], [19], [20], [22], [23], [25], [26], [27], [28], [29], [31], [32], [33], [34], [36], [37]) and including the references therein. The afore-cited all these papers on the subject were actually motivated by the work of Srivastava et al. [35]. However, the problem to find the coefficient bounds on $\left|a_{n}\right|(n=3,4, \cdots)$ for functions $f \in \sigma$ is still an open problem.

For analytic functions f and g in Δ, f is said to be subordinate to g if there exists an analytic function w such that (see, for example, [12], [24])

$$
w(0)=0, \quad|w(z)|<1 \quad \text { and } \quad f(z)=g(w(z)) .
$$

This subordination will be denoted here by

$$
f \prec g
$$

or, conventionally, by

$$
f(z) \prec g(z) .
$$

In particular, when g is univalent in Δ,

$$
f \prec g \quad(z \in \Delta) \Leftrightarrow f(0)=g(0) \quad \text { and } \quad f(\Delta) \subset g(\Delta) .
$$

The Bessel function of the first kind of order ν is defined by the infinite series (see [21])

$$
\begin{equation*}
J_{\nu}(z):=\sum_{n=0}^{\infty} \frac{(-1)^{n}(z / 2)^{2 n+\nu}}{n!\Gamma(n+\nu+1)}, \quad(z \in \mathbb{C}, \nu \in \mathbb{R}) \tag{1.3}
\end{equation*}
$$

where Γ stands for the Gamma function. Recently, Szasz and Kupan [30] investigated the univalence of the normalized Bessel function of the first kind $\kappa_{\nu}: \Delta \rightarrow \mathbb{C}$ defined by

$$
\begin{align*}
\kappa_{\nu}(z) & :=2^{\nu} \Gamma(\nu+1) z^{1-\nu / 2} J_{\nu}\left(z^{1 / 2}\right) \\
& =z+\sum_{n=2}^{\infty} \frac{(-1)^{n-1} \Gamma(\nu+1)}{4^{n-1}(n-1)!\Gamma(n+\nu)} z^{n}, \quad(z \in \Delta, \nu \in \mathbb{R}) \tag{1.4}
\end{align*}
$$

For $0<q<1$, El-Deeb and Bulboaca [15] defined the q-derivateive operator for κ_{ν} as follows:

$$
\begin{align*}
\partial_{q} \kappa_{\nu}(z) & =\partial_{q}\left[z+\sum_{n=2}^{\infty} \frac{(-1)^{n-1} \Gamma(\nu+1)}{4^{n-1}(n-1)!\Gamma(n+\nu)} z^{n}\right]:=\frac{\kappa_{\nu}(q z)-\kappa_{\nu}(z)}{z(q-1)} \\
& =1+\sum_{n=2}^{\infty} \frac{(-1)^{n-1} \Gamma(\nu+1)}{4^{n-1}(n-1)!\Gamma(n+\nu)}[n, q] z^{n-1}, \quad(z \in \Delta) \tag{1.5}
\end{align*}
$$

where

$$
\begin{equation*}
[n, q]:=\frac{1-q^{n}}{1-q}=1+\sum_{j=1}^{n-1} q^{j}, \quad[0, q]:=0 \tag{1.6}
\end{equation*}
$$

Using (1.6), we will define the next two products:

1. For any nonnegative integer n, the q-shifted factorial is given by

$$
[n, q]:= \begin{cases}1, & \text { if } n=0 \tag{1.7}\\ {[1, \mathrm{q}][2, \mathrm{q}] \ldots[\mathrm{k}, \mathrm{q}]} & \text { if } n \in \mathbb{N} .\end{cases}
$$

2. For any positive number r, the q - generalized Pochhammer symbol is defined by

$$
[r, q]_{n}:= \begin{cases}1, & \text { if } n=0 \tag{1.8}\\ {[\mathrm{r}, \mathrm{q}][\mathrm{r}+1, \mathrm{q}] \ldots[\mathrm{r}+\mathrm{k}-1, \mathrm{q}]} & \text { if } n \in \mathbb{N} .\end{cases}
$$

For $\nu>0, \lambda>-1$ and $0<q<1$, El-Deeb and Bulboacǎ [15] defined the function $\mathcal{J}_{\nu, q}^{\lambda}: \Delta \rightarrow \mathbb{C}$ by (see [14], [16])

$$
\begin{equation*}
\mathcal{J}_{\nu, q}^{\lambda}(z):=z+\sum_{n=2}^{\infty} \frac{(-1)^{n-1} \Gamma(\nu+1)}{4^{n-1}(n-1)!\Gamma(n+\nu)} \frac{[n, q]!}{[\lambda+1, q]_{n-1}} z^{n}, \quad(z \in \Delta) \tag{1.9}
\end{equation*}
$$

A simple computation shows that

$$
\begin{equation*}
\mathcal{J}_{\nu, q}^{\lambda}(z) * \mathcal{M}_{q, \lambda+1}(z)=z \partial_{q} \kappa_{\nu}(z), \quad(z \in \Delta) \tag{1.10}
\end{equation*}
$$

where the function $\mathcal{M}_{q, \lambda+1}(z)$ is given by

$$
\begin{equation*}
\mathcal{M}_{q, \lambda+1}(z):=z+\sum_{n=2}^{\infty} \frac{[\lambda+1, q]_{n-1}}{[n-1, q]!} z^{n}, \quad(z \in \Delta) \tag{1.11}
\end{equation*}
$$

Using the definition of q-derivative along with the idea of convolutions, El-Deeb and Bulboacǎ [15] introduced the linear operator $\mathcal{N}_{\nu, q}^{\lambda}: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\begin{align*}
\mathcal{N}_{\nu, q}^{\lambda} f(z) & :=\mathcal{J}_{\nu, q}^{\lambda} * f(z) \\
& =z+\sum_{n=2}^{\infty} \psi_{n} a_{n} z^{n}, \quad(\nu>0, \lambda>-1,0<q<1, z \in \Delta) \tag{1.12}
\end{align*}
$$

where

$$
\begin{equation*}
\psi_{n}:=\frac{(-1)^{n-1} \Gamma(\nu+1)}{4^{n-1}(n-1)!\Gamma(n+\nu)} \frac{[n, q]!}{[\lambda+1, q]_{n-1}} \tag{1.13}
\end{equation*}
$$

Remark 1.1. [15] From the definition relation (1.12), we can easily verify that the next relations hold for all $f \in \mathcal{A}$:

$$
\begin{equation*}
[\lambda+1, q] \mathcal{N}_{\nu, q}^{\lambda} f(z)=[\lambda, q] \mathcal{N}_{\nu, q}^{\lambda+1} f(z)+q^{\lambda} z \partial_{q}\left([\lambda+1, q] \mathcal{N}_{\nu, q}^{\lambda+1} f(z)\right), \quad z \in \Delta \tag{1.14}
\end{equation*}
$$

and

$$
\begin{align*}
\lim _{q \rightarrow 1^{-}} \mathcal{N}_{\nu, q}^{\lambda} f(z) & =\mathcal{J}_{\nu, 1}^{\lambda} f(z):=\mathcal{J}_{\nu}^{\lambda} f(z) \\
& =z+\sum_{n=2}^{\infty} \frac{(-1)^{n-1} \Gamma(\nu+1)}{4^{n-1}(n-1)!\Gamma(n+\nu)} \frac{n!}{(\lambda+1)_{n-1}} a_{n} z^{n}, \quad(z \in \Delta) \tag{1.15}
\end{align*}
$$

The Horadam polynomials $h_{n}(x, a, b ; p, q)$, or briefly $h_{n}(x)$ are given by the following recurrence relation (see [17], [18])):

$$
\begin{equation*}
h_{1}(x)=a, \quad h_{2}(x)=b x \quad \text { and } \quad h_{n}(x)=\quad p x h_{n-1}(x)+q h_{n-2}(x) \quad(n \geq 3) \tag{1.16}
\end{equation*}
$$

for some real constants a, b, p and q.
The generating function of the Horadam polynomials $h_{n}(x)$ (see [18]) is given by

$$
\begin{equation*}
\Pi(x, z):=\sum_{n=1}^{\infty} h_{n}(x) z^{n-1}=\frac{a+(b-a p) x z}{1-p x z-q z^{2}}, \quad 1-p x z-q z^{2} \neq 0, \quad \forall z \in \Delta . \tag{1.17}
\end{equation*}
$$

Here, and in what follows, the argument $x \in \mathbb{R}$ is independent of the argument $z \in \mathbb{C}$; that is, $x \neq \Re(z)$.

Note that for particular values of a, b, p and q, the Horadam polynomial $h_{n}(x)$ leads to various polynomials, among those, we list a few cases here (see, [17], [18] for more details):

1. For $a=b=p=q=1$, we have the Fibonacci polynomials $F_{n}(x)$.
2. For $a=2$ and $b=p=q=1$, we obtain the Lucas polynomials $L_{n}(x)$.
3. For $a=q=1$ and $b=p=2$, we get the Pell polynomials $P_{n}(x)$.
4. For $a=b=p=2$ and $q=1$, we attain the Pell-Lucas polynomials $Q_{n}(x)$.
5. For $a=b=1, p=2$ and $q=-1$, we have the Chebyshev polynomials $T_{n}(x)$ of the first kind
6. For $a=1, b=p=2$ and $q=-1$, we obtain the Chebyshev polynomials $U_{n}(x)$ of the second kind.

Abirami et al. [1] considered bi- Mocanu - convex functions and bi- μ - starlike functions to discuss initial estimations of Taylor-Macularin series which is associated with Horadam polynomials, Abirami et al. [2] discussed coefficient estimates for the classes of λ-bi-pseudo-starlike and bi-Bazilevič functions using Horadam polynomial, Alamoush [3], [4] defined subclasses of bi-starlike and bi-convex functions involving the Poisson distribution series involving Horadam polynomials and a class of bi-univalent functions associated with Horadam polynomials respectively and obtained initial coefficient estimates, Altınkaya and Yalçın [7], [8] obtained coefficient estimates for Pascu-type bi-univalent functions and for the class of linear combinations of bi-univalent functions by means of (p, q)-Lucas polynomials respectively, Aouf et al. [10] discussed initial coefficient estimates for general class of pascu-type bi-univalent functions of complex order defined by q-Sălăgean operator and associated with Chebyshev polynomials, Awolere and Oladipo [11] found initial
coefficients of bi-univalent functions defined by sigmoid functions involving pseudostarlikeness associated with Chebyshev polynomials, Naeem et al. [22] considered a general class of bi-Bazilevič type functions associated with Faber polynomial to discuss n-th coefficients estimates, Magesh and Bulut [23] discussed Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Orhan et al. [25] discussed initial estimates and Fekete-Szegö bounds for bi-Bazilevič functions related to shell-like curves, Sakar and Aydogan [28] obtained initial bounds for the class of generalized Sălăgean type bi- $\alpha-$ convex functions of complex order associated with the Horadam polynomials, Singh et al. [31] found coefficient estimates for bi- α-convex functions defined by generalized Sãlãgean operator related to shell-like curves connected with Fibonacci numbers, Srivastava et al. [32] introduced a technique by defining a new class of bi-univalent functions associated with the Horadam polynomials to discuss the coefficient estimates, Srivastava et al. [34] gave a direction to study the Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Srivastava et al. [36] obtained general coefficient $\left|a_{n}\right|$ for a general class analytic and bi-univalent functions defined by using differential subordination and a certain fractional derivative operator associated with Faber polynomial, Wanas and Alina [37] discussed applications of Horadam polynomials on Bazilevič bi-univalent functions by means of subordination and found initial bounds. Motivated in these lines, estimates on initial coefficients of the TaylorMaclaurin series expansion (1.1) and Fekete-Szegö inequalities for certain classes of bi-univalent functions defined by means of Horadam polynomials are obtained. The classes introduced in this paper are motivated by the corresponding classes investigated in [19], [14].

2. Coefficient Estimates and Fekete-Szegö Inequalities

Definition 2.1. A function $f \in \mathcal{A}$ of the form (1.1) belongs to the class $\mathcal{M}_{\sigma}(\alpha$, $\lambda, \nu, q, x)$ for $\alpha \geq 0, \nu>0, \lambda>-1,0<q<1$, and $z, w \in \Delta$, if the following conditions are satisfied:

$$
\alpha\left(1+\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}} \prec \Pi(x, z)+1-a
$$

and for g the analytic extension (continuation) of f^{-1} given by (1.2)

$$
\alpha\left(1+\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}} \prec \Pi(x, w)+1-a
$$

where the real constant a is as in (1.16).

Remark 2.1. Putting $q \rightarrow 1^{-}$, we obtain that

$$
\lim _{q \rightarrow 1^{-}} \mathcal{M}_{\sigma}(\alpha, \lambda, \nu, q, x)=: \mathcal{M}_{\sigma}(\alpha, \lambda, \nu, x),
$$

where $f \in \sigma$,

$$
\alpha\left(1+\frac{z\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)^{\prime}} \prec \Pi(x, z)+1-a
$$

and for g the analytic extension (continuation) of f^{-1} given by (1.2)

$$
\alpha\left(1+\frac{w\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)^{\prime}} \prec \Pi(x, w)+1-a,
$$

where the real constant a is as in (1.16).
For functions in the class $\mathcal{M}_{\sigma}(\alpha, \lambda, \nu, q, x)$, the following coefficient estimates and Fekete-Szegö inequality are obtained.
Theorem 2.1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{M}_{\sigma}(\alpha, \lambda, \nu, q, x)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|(9 \alpha-3) \psi_{3} b^{2} x^{2}-\left[(8 \alpha-4) b^{2} x^{2}+4\left(p x^{2} b+q a\right)(2 \alpha-1)^{2}\right] \psi_{2}^{2}\right|}}, \\
& \left|a_{3}\right| \leq \frac{|b x|}{(9 \alpha-3) \psi_{3}}+\frac{b^{2} x^{2}}{4(2 \alpha-1)^{2} \psi_{2}^{2}}
\end{aligned}
$$

and for $\mu \in \mathbb{R}$

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& \leq\left\{\begin{array}{l}
\frac{|b x|}{(9 \alpha-3) \psi_{3}} \\
\text { if }|\mu-1| \leq \frac{\left|(9 \alpha-3) \psi_{3} b^{2} x^{2}-\left[(8 \alpha-4) b^{2} x^{2}+4\left(p x^{2} b+q a\right)(2 \alpha-1)^{2}\right] \psi_{2}^{2}\right|}{b^{2} x^{2}(9 \alpha-3) \psi_{3}} \\
\frac{|b x|^{3}|\mu-1|}{\left|(9 \alpha-3) \psi_{3} b^{2} x^{2}-\left[(8 \alpha-4) b^{2} x^{2}+4\left(p x^{2} b+q a\right)(2 \alpha-1)^{2}\right] \psi_{2}^{2}\right|} \\
\text { if }|\mu-1| \geq \frac{\left|(9 \alpha-3) \psi_{3} b^{2} x^{2}-\left[(8 \alpha-4) b^{2} x^{2}+4\left(p x^{2} b+q a\right)(2 \alpha-1)^{2}\right] \psi_{2}^{2}\right|}{b^{2} x^{2}(9 \alpha-3) \psi_{3}} .
\end{array}\right.
\end{aligned}
$$

Proof. Let $f \in \mathcal{M}_{\sigma}(\alpha, \lambda, \nu, q, x)$ be given by the Taylor-Maclaurin expansion (1.1). Then, there are analytic functions $r(z)$ and $s(w)$ such that

$$
r(0)=0 ; \quad s(0)=0, \quad\left|r_{n}\right|<1 \quad \text { and } \quad\left|s_{n}\right|<1 \quad(\forall z, w \in \Delta)
$$

and we can write

$$
\begin{equation*}
\alpha\left(1+\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}=\Pi(x, r(z))+1-a \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha\left(1+\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}=\Pi(x, s(w))+1-a \tag{2.2}
\end{equation*}
$$

Equivalently,

$$
\begin{align*}
\alpha\left(1+\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}} \\
=1+h_{1}(x)-a+h_{2}(x) r(z)+h_{3}(x)[r(z)]^{2}+\cdots \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
& \alpha\left(1+\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}} \\
& =1+h_{1}(x)-a+h_{2}(x) s(w)+h_{3}(x)[s(w)]^{2}+\cdots \tag{2.4}
\end{align*}
$$

From (2.3) and (2.4) and in view of (1.17), we obtain

$$
\begin{align*}
\alpha\left(1+\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}} \\
=1+h_{2}(x) r_{1} z+\left[h_{2}(x) r_{2}+h_{3}(x) r_{1}^{2}\right] z^{2}+\cdots \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
\alpha\left(1+\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}\right)+(1-\alpha) \frac{1}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}} \\
=1+h_{2}(x) s_{1} w+\left[h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2}\right] w^{2}+\cdots \tag{2.6}
\end{align*}
$$

If

$$
r(z)=\sum_{n=1}^{\infty} r_{n} z^{n} \quad \text { and } \quad s(w)=\sum_{n=1}^{\infty} s_{n} w^{n},
$$

then it is well known that

$$
\left|r_{n}\right| \leq 1 \quad \text { and } \quad\left|s_{n}\right| \leq 1 \quad(n \in \mathbb{N}) .
$$

Thus upon comparing the corresponding coefficients in (2.5) and (2.6), we have

$$
\begin{align*}
2 \psi_{2}(2 \alpha-1) a_{2} & =h_{2}(x) r_{1} \tag{2.7}\\
(9 \alpha-3) \psi_{3} a_{3}-4(2 \alpha-1) \psi_{2}^{2} a_{2}^{2} & =h_{2}(x) r_{2}+h_{3}(x) r_{1}^{2} \tag{2.8}\\
-2(2 \alpha-1) \psi_{2} a_{2} & =h_{2}(x) s_{1} \tag{2.9}
\end{align*}
$$

and

$$
\begin{equation*}
\left[(18 \alpha-6) \psi_{3}-4(2 \alpha-1) \psi_{2}^{2}\right] a_{2}^{2}-3(3 \alpha-1) \psi_{3} a_{3}=h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2} . \tag{2.10}
\end{equation*}
$$

From (2.7) and (2.9), we can easily see that

$$
\begin{equation*}
r_{1}=-s_{1}, \quad \text { provided } \quad h_{2}(x)=b x \neq 0 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{align*}
8 a_{2}^{2}(2 \alpha-1)^{2} \psi_{2}^{2} & =\left(h_{2}(x)\right)^{2}\left(r_{1}{ }^{2}+s_{1}{ }^{2}\right) \\
a_{2}^{2} & =\frac{\left(h_{2}(x)\right)^{2}\left(r_{1}{ }^{2}+s_{1}{ }^{2}\right)}{8(2 \alpha-1)^{2} \psi_{2}^{2}} . \tag{2.12}
\end{align*}
$$

If we add (2.8) to (2.10), we get

$$
\begin{equation*}
\left((18 \alpha-6) \psi_{3}-2(8 \alpha-4) \psi_{2}^{2}\right) a_{2}^{2}=\left(r_{2}+s_{2}\right) h_{2}(x)+h_{3}(x)\left(r_{1}^{2}+s_{1}^{2}\right) . \tag{2.13}
\end{equation*}
$$

By substituting (2.12) in (2.13), we obtain

$$
\begin{equation*}
a_{2}^{2}=\frac{\left(r_{2}+s_{2}\right)\left(h_{2}(x)\right)^{3}}{\left[(18 \alpha-6) \psi_{3}-(16 \alpha-8) \psi_{2}^{2}\right]\left(h_{2}(x)\right)^{2}-8 h_{3}(x)(2 \alpha-1)^{2}{\psi_{2}}^{2}} \tag{2.14}
\end{equation*}
$$

and by taking $h_{2}(x)=b x$ and $h_{3}(x)=b p x^{2}+q a$ in (2.14), it further yields

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|(9 \alpha-3) \psi_{3} b^{2} x^{2}-\left[(8 \alpha-4) b^{2} x^{2}+4\left(p x^{2} b+q a\right)(2 \alpha-1)^{2}\right] \psi_{2}{ }^{2}\right|}} . \tag{2.15}
\end{equation*}
$$

By subtracting (2.10) from (2.8) we get

$$
-6(3 \alpha-1) \psi_{3}\left(a_{2}^{2}-a_{3}\right)=\left(r_{2}-s_{2}\right) h_{2}(x)+\left(r_{1}^{2}-s_{1}^{2}\right) h_{3}(x)
$$

In view of (2.11), we obtain

$$
\begin{equation*}
a_{3}=\frac{\left(r_{2}-s_{2}\right) h_{2}(x)}{(18 \alpha-6) \psi_{3}}+a_{2}^{2} \tag{2.16}
\end{equation*}
$$

Then in view of (2.12), (2.16) becomes

$$
a_{3}=\frac{\left(r_{2}-s_{2}\right) h_{2}(x)}{(18 \alpha-6) \psi_{3}}+\frac{\left(h_{2}(x)\right)^{2}\left(r_{1}^{2}+s_{1}^{2}\right)}{8(2 \alpha-1)^{2} \psi_{2}^{2}}
$$

Applying (1.16), we deduce that

$$
\left|a_{3}\right| \leq \frac{|b x|}{(9 \alpha-3) \psi_{3}}+\frac{b^{2} x^{2}}{4(2 \alpha-1)^{2} \psi_{2}^{2}}
$$

From (2.16), for $\mu \in \mathbb{R}$, we write

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{h_{2}(x)\left(r_{2}-s_{2}\right)}{(18 \alpha-6) \psi_{3}}+(1-\mu) a_{2}^{2} \tag{2.17}
\end{equation*}
$$

By substituting (2.14) in (2.17), we have

$$
\begin{align*}
a_{3}-\mu a_{2}^{2}= & \frac{h_{2}(x)\left(r_{2}-s_{2}\right)}{(18 \alpha-6) \psi_{3}} \\
& +\left(\frac{(1-\mu)\left(r_{2}+s_{2}\right)\left(h_{2}(x)\right)^{3}}{\left[(18 \alpha-6) \psi_{3}-(16 \alpha-8) \psi_{2}^{2}\right]\left(h_{2}(x)\right)^{2}-8 h_{3}(x)(2 \alpha-1)^{2} \psi_{2}^{2}}\right) \\
= & h_{2}(x)\left\{\left(\Lambda(\mu, x)+\frac{1}{(18 \alpha-6) \psi_{3}}\right) r_{2}\right. \\
& \left.+\left(\Lambda(\mu, x)-\frac{1}{(18 \alpha-6) \psi_{3}}\right) s_{2}\right\} \tag{2.18}
\end{align*}
$$

where

$$
\Lambda(\mu, x)=\frac{(1-\mu)\left[h_{2}(x)\right]^{2}}{\left[(18 \alpha-6) \psi_{3}-(16 \alpha-8) \psi_{2}^{2}\right]\left(h_{2}(x)\right)^{2}-8 h_{3}(x)(2 \alpha-1)^{2} \psi_{2}^{2}}
$$

Hence, we conclude that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{\left|h_{2}(x)\right|}{(9 \alpha-3) \psi_{3}} & ; 0 \leq|\Lambda(\mu, x)| \leq \frac{1}{(18 \alpha-6) \psi_{3}} \\ 2\left|h_{2}(x)\right||\Lambda(\mu, x)| & ;|\Lambda(\mu, x)| \geq \frac{1}{(18 \alpha-6) \psi_{3}}\end{cases}
$$

and in view of (1.16), it evidently completes the proof of Theorem 2.1.
Definition 2.2. A function $f \in \mathcal{A}$ of the form (1.1) belongs to the class $\mathcal{L}_{\sigma}(\lambda, \nu, q, x)$ for $\nu>0, \lambda>-1,0<q<1$, and $z, w \in \Delta$, if the following conditions are satisfied:

$$
\frac{1+\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}}{\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}{\mathcal{N}_{\nu, q}^{\lambda} f(z)}} \prec \Pi(x, z)+1-a
$$

and for g the analytic extension (continuation) of f^{-1} given by (1.2)

$$
\frac{1+\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}}{\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}{\mathcal{N}_{\nu, q}^{\lambda} g(w)}} \prec \Pi(x, w)+1-a,
$$

where the real constant a is as in (1.16).
Remark 2.2. Putting $q \rightarrow 1^{-}$, we obtain that

$$
\lim _{q \rightarrow 1^{-}} \mathcal{L}_{\sigma}^{*}(\lambda, \nu, q, x)=: \mathcal{M}_{\sigma}(\lambda, \nu, x)
$$

where $f \in \sigma$,

$$
\frac{1+\frac{z\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)^{\prime}}}{\frac{z\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)^{\prime}}{\mathcal{J}_{\nu}^{\lambda} f(z)}} \prec \Pi(x, z)+1-a
$$

and for g the analytic extension (continuation) of f^{-1} given by (1.2)

$$
\frac{1+\frac{w\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)^{\prime}}}{\frac{w\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)^{\prime}}{\mathcal{J}_{\nu}^{\lambda} g(w)}} \prec \Pi(x, w)+1-a
$$

where the real constant a is as in (1.16).
For functions in the class $\mathcal{L}_{\sigma}(\lambda, \nu, q, x)$, the following coefficient estimates and Fekete-Szegö inequality are obtained.
Theorem 2.2. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{L}_{\sigma}(\lambda, \nu, q, x)$. Then

$$
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|4 b^{2} x^{2} \psi_{3}-\left(4 b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|}}, \quad \text { and } \quad\left|a_{3}\right| \leq \frac{|b x|}{4 \psi_{3}}+\frac{b^{2} x^{2}}{\psi_{2}^{2}}
$$

and for $\mu \in \mathbb{R}$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
\frac{|b x|}{4 \psi_{3}} \\
\text { if } \quad|\mu-1| \leq \frac{\left|4 b^{2} x^{2} \psi_{3}-\left(4 b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|}{4 b^{2} x^{2} \psi_{3}} \\
\frac{|b x|^{3}|\mu-1|}{\left|4 b^{2} x^{2} \psi_{3}-\left(4 b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|} \\
\text { if } \quad|\mu-1| \geq \frac{\left|4 b^{2} x^{2} \psi_{3}-\left(4 b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|}{4 b^{2} x^{2} \psi_{3}}
\end{array}\right.
$$

Proof. Let $f \in \mathcal{L}_{\sigma}(\lambda, \nu, q, x)$ be given by the Taylor-Maclaurin expansion (1.1). Then, there are analytic functions $r(z)$ and $s(w)$ such that

$$
r(0)=0 ; \quad s(0)=0, \quad\left|r_{n}\right|<1 \quad \text { and } \quad\left|s_{n}\right|<1 \quad(\forall z, w \in \Delta)
$$

and we can write

$$
\begin{equation*}
\frac{1+\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}}{\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}{\mathcal{N}_{\nu, q}^{\lambda} f(z)}}=\Pi(x, r(z))+1-a \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1+\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}}{\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}{\mathcal{N}_{\nu, q}^{\lambda} g(w)}}=\Pi(x, s(w))+1-a \tag{2.20}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\frac{1+\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}}{\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}{\mathcal{N}_{\nu, q}^{\lambda} f(z)}}=1+h_{1}(x)-a+h_{2}(x) r(z)+h_{3}(x)[r(z)]^{2}+\cdots \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1+\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}}{\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}{\mathcal{N}_{\nu, q}^{\lambda} g(w)}}=1+h_{1}(x)-a+h_{2}(x) s(w)+h_{3}(x)[s(w)]^{2}+\cdots . \tag{2.22}
\end{equation*}
$$

From (2.21) and (2.22) and in view of (1.17), we obtain

$$
\begin{equation*}
\frac{1+\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}}{\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}{\mathcal{N}_{\nu, q}^{\lambda} f(z)}}=1+h_{2}(x) r_{1} z+\left[h_{2}(x) r_{2}+h_{3}(x) r_{1}^{2}\right] z^{2}+\cdots \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1+\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}}{\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}{\mathcal{N}_{\nu, q}^{\lambda} g(w)}}=1+h_{2}(x) s_{1} w+\left[h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2}\right] w^{2}+\cdots . \tag{2.24}
\end{equation*}
$$

If

$$
r(z)=\sum_{n=1}^{\infty} r_{n} z^{n} \quad \text { and } \quad s(w)=\sum_{n=1}^{\infty} s_{n} w^{n},
$$

then it is well known that

$$
\left|r_{n}\right| \leq 1 \quad \text { and } \quad\left|s_{n}\right| \leq 1 \quad(n \in \mathbb{N})
$$

Thus upon comparing the corresponding coefficients in (2.23) and (2.24), we have

$$
\begin{align*}
\psi_{2} a_{2} & =h_{2}(x) r_{1} \tag{2.25}\\
4\left(a_{3} \psi_{3}-a_{2}^{2} \psi_{2}^{2}\right) & =h_{2}(x) r_{2}+h_{3}(x) r_{1}^{2} \tag{2.26}\\
-\psi_{2} a_{2} & =h_{2}(x) s_{1} \tag{2.27}
\end{align*}
$$

and

$$
\begin{equation*}
\left(8 a_{2}^{2}-4 a_{3}\right) \psi_{3}-4 a_{2}^{2} \psi_{2}^{2}=h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2} . \tag{2.28}
\end{equation*}
$$

The results of this theorem now follow from (2.25)-(2.28) by applying the procedure as in Theorem 2.1 with respect to (2.7)-(2.10).

Definition 2.3. A function $f \in \mathcal{A}$ of the form (1.1) belongs to the class $\mathcal{P}_{\sigma}(\gamma, \lambda$, $\nu, q, x)$ for $0 \leq \gamma \leq 1, \nu>0, \lambda>-1,0<q<1$, and $z, w \in \Delta$, if the following conditions are satisfied:

$$
\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}+\gamma z^{2}\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)+\gamma z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}} \prec \Pi(x, z)+1-a
$$

and for g the analytic extension (continuation) of f^{-1} given by (1.2)

$$
\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}+\gamma w^{2}\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)+\gamma w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}} \prec \Pi(x, w)+1-a
$$

where the real constant a is as in (1.16).
Remark 2.3. Putting $q \rightarrow 1^{-}$, we obtain that

$$
\lim _{q \rightarrow 1^{-}} \mathcal{P}_{\sigma}(\gamma, \lambda, \nu, q, x)=: \mathcal{P}_{\sigma}(\gamma, \lambda, \nu, x)
$$

where $f \in \sigma$,

$$
\frac{z\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)^{\prime}+\gamma z^{2}\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)+\gamma z\left(\mathcal{J}_{\nu}^{\lambda} f(z)\right)^{\prime}} \prec \Pi(x, z)+1-a
$$

and for g the analytic extension (continuation) of f^{-1} given by (1.2)

$$
\frac{w\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)^{\prime}+\gamma w^{2}\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)+\gamma w\left(\mathcal{J}_{\nu}^{\lambda} g(w)\right)^{\prime}} \prec \Pi(x, w)+1-a,
$$

For functions in the class $\mathcal{P}_{\sigma}(\gamma, \lambda, \nu, q, x)$, the following coefficient estimates and Fekete-Szegö inequality are obtained.
Theorem 2.3. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{P}_{\sigma}(\gamma, \lambda, \nu, q, x)$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|2 b^{2} x^{2}(2 \gamma+1) \psi_{3}-(1+\gamma)^{2}\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}{ }^{2}\right|}}, \\
& \left|a_{3}\right| \leq \frac{|b x|}{2 \psi_{3}(2 \gamma+1)}+\frac{b^{2} x^{2}}{(1+\gamma)^{2} \psi_{2}{ }^{2}}
\end{aligned}
$$

and for $\mu \in \mathbb{R}$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|b x|}{2 \psi_{3}(2 \gamma+1)} \\
\text { if } \quad|\mu-1| \leq \frac{\left|2 b^{2} x^{2}(2 \gamma+1) \psi_{3}-(1+\gamma)^{2}\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|}{2 b^{2} x^{2} \psi_{3}(2 \gamma+1)} \\
\frac{|b x|^{3}|\mu-1|}{\left|2 b^{2} x^{2}(2 \gamma+1) \psi_{3}-(1+\gamma)^{2}\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|} \\
\text { if } \quad|\mu-1| \geq \frac{\left|2 b^{2} x^{2}(2 \gamma+1) \psi_{3}-(1+\gamma)^{2}\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|}{2 b^{2} x^{2} \psi_{3}(2 \gamma+1)} .
\end{array}\right.
$$

Proof. Let $f \in \mathcal{P}_{\sigma}(\gamma, \lambda, \nu, q, x)$ be given by the Taylor-Maclaurin expansion (1.1). Then, there are analytic functions $r(z)$ and $s(w)$ such that

$$
r(0)=0 ; \quad s(0)=0, \quad\left|r_{n}\right|<1 \quad \text { and } \quad\left|s_{n}\right|<1 \quad(\forall z, w \in \Delta),
$$

and we can write

$$
\begin{equation*}
\frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}+\gamma z^{2}\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)+\gamma z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}}=\Pi(x, r(z))+1-a \tag{2.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}+\gamma w^{2}\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)+\gamma w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}}=\Pi(x, s(w))+1-a \tag{2.30}
\end{equation*}
$$

Equivalently,

$$
\begin{align*}
& \frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}+\gamma z^{2}\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)+\gamma z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}} \\
& \quad=1+h_{1}(x)-a+h_{2}(x) r(z)+h_{3}(x)[r(z)]^{2}+\cdots \tag{2.31}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}+\gamma w^{2}\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)+\gamma w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}} \\
& \quad=1+h_{1}(x)-a+h_{2}(x) s(w)+h_{3}(x)[s(w)]^{2}+\cdots \tag{2.32}
\end{align*}
$$

From (2.31) and (2.32) and in view of (1.17), we obtain

$$
\begin{align*}
& \frac{z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}+\gamma z^{2}\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)+\gamma z\left(\mathcal{N}_{\nu, q}^{\lambda} f(z)\right)^{\prime}} \\
& \quad=1+h_{2}(x) r_{1} z+\left[h_{2}(x) r_{2}+h_{3}(x) r_{1}^{2}\right] z^{2}+\cdots \tag{2.33}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}+\gamma w^{2}\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime \prime}}{(1-\gamma)\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)+\gamma w\left(\mathcal{N}_{\nu, q}^{\lambda} g(w)\right)^{\prime}} \\
& \quad=1+h_{2}(x) s_{1} w+\left[h_{2}(x) s_{2}+h_{3}(x) s_{1}^{2}\right] w^{2}+\cdots \tag{2.34}
\end{align*}
$$

If

$$
r(z)=\sum_{n=1}^{\infty} r_{n} z^{n} \quad \text { and } \quad s(w)=\sum_{n=1}^{\infty} s_{n} w^{n}
$$

then it is well known that

$$
\left|r_{n}\right| \leq 1 \quad \text { and } \quad\left|s_{n}\right| \leq 1 \quad(n \in \mathbb{N})
$$

Thus upon comparing the corresponding coefficients in (2.33) and (2.34), we have

$$
\begin{equation*}
(1+\gamma) \psi_{2} a_{2}=h_{2}(x) r_{1} \tag{2.35}
\end{equation*}
$$

$$
\begin{gather*}
2(1+2 \gamma) \psi_{3} a_{3}-(1+\gamma)^{2} \psi_{2}^{2} a_{2}^{2}=h_{2}(x) r_{2}+h_{3}(x) r_{1}^{2} \tag{2.36}\\
-(1+\gamma) \psi_{2} a_{2}=h_{2}(x) s_{1} \tag{2.37}
\end{gather*}
$$

and

$$
\begin{equation*}
\left((8 \gamma+4) \psi_{3}-\psi_{2}^{2}(1+\gamma)^{2}\right) a_{2}^{2}-2 a_{3}(2 \gamma+1) \psi_{3}=h_{3}(x) s_{1}^{2}+h_{2}(x) s_{2} \tag{2.38}
\end{equation*}
$$

The results of this theorem now follow from (2.35)-(2.38) by applying the procedure as in Theorem 2.1 with respect to (2.7)-(2.10).

3. Corollaries and Consequences

Taking $\gamma=0$ in Theorem (2.3), we have following corollary.
Corollary 3.1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{S}_{\sigma}(\lambda, \nu, q, x)$. Then

$$
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|2 b^{2} x^{2} \psi_{3}-\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}{ }^{2}\right|}}, \quad\left|a_{3}\right| \leq \frac{|b x|}{2 \psi_{3}}+\frac{b^{2} x^{2}}{\psi_{2}{ }^{2}}
$$

and for $\mu \in \mathbb{R}$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
\frac{|b x|}{2 \psi_{3}} \\
\text { if } \quad|\mu-1| \leq \frac{\left|2 b^{2} x^{2} \psi_{3}-\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|}{2 b^{2} x^{2} \psi_{3}} \\
\frac{|b x|^{3}|\mu-1|}{\left|2 b^{2} x^{2} \psi_{3}-\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|} \\
\text { if } \quad|\mu-1| \geq \frac{\left|2 b^{2} x^{2} \psi_{3}-\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|}{2 b^{2} x^{2} \psi_{3}} .
\end{array}\right.
$$

Taking $\alpha=1$ in Theorem 2.1 or $\gamma=1$ in Theorem 2.3, we have following corollary.
Corollary 3.2. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in the class $\mathcal{K}_{\sigma}(\lambda, \nu, q, x)$. Then

$$
\left|a_{2}\right| \leq \frac{|b x| \sqrt{|b x|}}{\sqrt{\left|6 b^{2} x^{2} \psi_{3}-4\left(b^{2} x^{2}+p x^{2} b+q a\right){\psi_{2}^{2}}^{2}\right|}}, \quad\left|a_{3}\right| \leq \frac{|b x|}{6 \psi_{3}}+\frac{b^{2} x^{2}}{4 \psi_{2}{ }^{2}}
$$

and for $\mu \in \mathbb{R}$

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
\frac{|b x|}{6 \psi_{3}} \\
\text { if } \quad|\mu-1| \leq \frac{\left|3 b^{2} x^{2} \psi_{3}-2\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|}{3 b^{2} x^{2} \psi_{3}} \\
\frac{|b x|^{3}|\mu-1|}{\left|6 b^{2} x^{2} \psi_{3}-4\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|} \\
\text { if } \quad|\mu-1| \geq \frac{\left|3 b^{2} x^{2} \psi_{3}-2\left(b^{2} x^{2}+p x^{2} b+q a\right) \psi_{2}^{2}\right|}{3 b^{2} x^{2} \psi_{3}}
\end{array} .\right.
$$

4. Conclusion

One could find initial coefficient estimates for the classes defined in Remarks 2.1, 2.2 and 2.3. We leave those to interested readers.

5. Acknowledgements

The authors would like to thank the referee(s) and editor for their constructive advices, valuable comments and suggestions which improved basically the final version of this work.

References

[1] Abirami, C., Magesh, N. and Yamini, J., Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstr. Appl. Anal. 2020, Art. ID 7391058, 8 pp.
[2] Abirami, C., Magesh, N., Yamini, J. and Gatti, N. B., Horadam polynomial coefficient estimates for the classes of $\lambda-$ bi-pseudo-starlike and bi-Bazilevič functions, J. Anal., (2020), 1-10.
[3] Alamoush, A. G., Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials, Malaya J. Mat., 7, no. 4 (2019), 618-624.
[4] Alamoush, A. G., On a subclass of bi-univalent functions associated to Horadam polynomials, Int. J. Open Problems Complex Anal., 12, no. 1 (2020), 58-65.
[5] Aldawish, I., Al-Hawary, T. and Frasin, B. A., Subclasses of bi-Univalent functions defined by Frasin differential operator, Mathematics, 8, 783 (2020), 1-11.
[6] Ali, R. M., Lee, S. K., Ravichandran, V., Supramanian, S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25, no. 3 (2012), 344-351.
[7] Altınkaya S. and Yalçın, S., On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class σ, Bol. Soc. Mat. Mex. (3) 25, no. 3 (2019), 567-575.
[8] Altınkaya S. and Yalçın, S., (p, q)-Lucas polynomials and their applications to bi-univalent functions, Proyecciones, 38, no. 5 (2019), 1093-1105.
[9] Al-Refai, O. and Ali, M., General coefficient estimates for bi-univalent functions: a new approach, Turk. J. Math., 44 (2020), 240-251.
[10] Aouf, M. K., Mostafa, A. O., Morsy, R. E. El., Coefficient bounds for general class of bi-univalent functions of complex order associated with q-Sălăgean operator and Chebyshev polynomials, Electr. J. Math. Anal. Appl., 8, no. 2 (2020), 251-260.
[11] Awolere, I. T. and Oladipo, A. T., Coefficients of bi-univalent functions involving pseudo-starlikeness associated with Chebyshev polynomials, Khayyam J. Math., 5, no. 1 (2019), 140-149.
[12] Bulboacă, T., Di̛đerential Subordinations and Superordinations, Recent Results, House of Scientic Book Publ., Cluj-Napoca, 2005.
[13] Çağlar, M., Deniz, E., Srivastava, H. M., Second Hankel determinant for certain subclasses of bi-univalent functions, Turk J Math., 41, (2017), 694706.
[14] El-Deeb, S. M., Maclaurin coefficient estimates for new subclasses of biunivalent functions connected with a q-analogue of Bessel function, Abstract Applied Analysis, (2020), Art. ID: 8368951, 1-7.
[15] El-Deeb, S. M. and Bulboaca, T., Fekete-Szegö inequalities for certain class of analytic functions connected with q-analogue of Bessel function, J. Egyptian Math. Soc., 27, no. 1 (2019), pp.
[16] El-Deeb, S. M., Bulboaca, T. and El-Matary, B. M., Maclaurin coefficient estimates of bi-Univalent functions connected with the q-derivative, Mathematics, 8, 418 (2020), 1-14.
[17] Horadam, A. F., Mahon, J. M., Pell and Pell-Lucas polynomials, Fibonacci Quart., 23 (1985), 7-20.
[18] Hörçum, T., Gökçen Koçer, E., On some properties of Horadam polynomials, Int Math Forum, 4 (2009), 1243-1252.
[19] Lashin, A. Y., Coefficient estimates for two subclasses of analytic and biunivalent functions, Ukrainian Math. J., 70, no. 9 (2019), 1484-1492
[20] Long, P., Tang, H., Wang, W., Fekete-Szegö functional problems for certain subclasses of bi-univalent functions involving the Hohlov operator, J. Math. Res. Appl., 40, no. 1 (2020), 1-12.
[21] Naeem, M., Hussain, S., Møuge Sakar, F., Mahmood, T. and Rasheed, A., Subclasses of uniformly convex and starlike functions associated with Bessel functions, Turk. J. Math., 43, no. 5 (2019), 2433-2443.
[22] Naeem, M., Khan, S. and Sakar, F. M., Faber polynomial coefficients estimates of bi-univalent functions, Inter. J. Maps Math., 3, no. 1 (2020), 57-67.
[23] Magesh, N. and Bulut, S., Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afr. Mat., 29, no. 1-2 (2018), 203-209.
[24] Miller, S. S. and Mocanu, P. T., Diøerential Subordinations, Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
[25] Orhan, H., Magesh, N. and Abirami, C., Fekete-Szegö problem for bi-Bazilevič functions related to shell-like curves, AIMS Mathematics, 5, no. 5 (2020), 4412-4423.
[26] Orhan, H., Mamatha, P. K., Swamy, S. R., Magesh, N. and Yamini, J., Certain classes of bi-univalent functions associated with the Horadam polynomials, Acta Univ. Sapientiae, Mathematica (In Press), (2020), 1-15.
[27] Porwal, S. and Kumar, S., New subclasses of bi-univalent functions defined by multiplier transformation, Stud. Univ. Babeş-Bolyai Math., 65, no. 1 (2020), 47-55.
[28] Sakar, F. M. and Aydogan, S. M., Initial bounds for certain subclasses of generalized Sălăgean type bi-univalent functions associated with the Horadam polynomials, J. Quality. Measur. Anal., 15, no. 1 (2019), 89-100.
[29] Sivasankari, V., Karthiyayini, O. and Magesh, N., Certain subclasses of biunivalent functions defined by Chebyshev polynomials, Afr. Mat. (2020), 1-15. https://doi.org/10.1007/s13370-020-00812-2.
[30] Szasz, R. and Kupan, P. A., About the univalence of the Bessel functions, Studia University Babes-Bolyai, Mathematica, LIV (2009), 127-132.
[31] Singh, G., Singh, G. and Singh, G., A subclass of bi-univalent functions defined by generalized Sãlãgean operator related to shell-like curves connected with Fibonacci numbers, Int. J. Math. Math. Sci., (2019), Art. ID 7628083, 1-7.
[32] Srivastava, H. M., Altınkaya and Yalçın, S., Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci., 43, no. 4 (2019), 1873-1879.
[33] Srivastava, H. M., Sakar, F. M. and Özlem Güney, H., Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32, no. 4 (2018), 1313-1322.
[34] Srivastava, H. M., Eker, S. S., Hamidi, S. G. and Jahangiri, J. M., Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc., 44, no. 1 (2018), 149-157.
[35] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23, no. 10 (2010), 1188-1192.
[36] Srivastava, H. M., Motamednezhad, A. and Adegani, E. A., Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator, Mathematics, 8, 172 (2020), 1-12.
[37] Wanas, A. K. and Alina, A. L., Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions, IOP Conf. Series: J. Phy., 1294 (2019), 032003, 1-6.

