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1. Introduction
Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)
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which are analytic in the open unit disk ∆ = {z : z ∈ C and |z| < 1}. Further, by
S we shall denote the class of all functions in A which are univalent in ∆.

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ ∆)

and

f(f−1(w)) = w (|w| < r0(f); r0(f) =
1

4
),

where

f−1(w) = w − a2w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in ∆ if both the function f and its
inverse f−1 are univalent in ∆. Let σ denote the class of bi-univalent functions in
∆ given by (1.1).

In 2010, Srivastava et al. [35] revived the study of bi-univalent functions by
their pioneering work on the study of coefficient problems. Various subclasses of
the bi-univalent function class σ were introduced and non-sharp estimates on the
first two coefficients |a2| and |a3| in the Taylor-Maclaurin series expansion (1.1)
were found in the very recent investigations (see, for example, [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [13], [14], [16], [19], [20], [22], [23], [25], [26], [27], [28], [29], [31],
[32], [33], [34], [36], [37]) and including the references therein. The afore-cited all
these papers on the subject were actually motivated by the work of Srivastava et
al. [35]. However, the problem to find the coefficient bounds on |an| (n = 3, 4, · · · )
for functions f ∈ σ is still an open problem.

For analytic functions f and g in ∆, f is said to be subordinate to g if there
exists an analytic function w such that (see, for example, [12], [24])

w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)).

This subordination will be denoted here by

f ≺ g

or, conventionally, by
f(z) ≺ g(z).

In particular, when g is univalent in ∆,

f ≺ g (z ∈ ∆) ⇔ f(0) = g(0) and f(∆) ⊂ g(∆).
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The Bessel function of the first kind of order ν is defined by the infinite series (see
[21])

Jν(z) :=
∞∑
n=0

(−1)n(z/2)2n+ν

n!Γ(n+ ν + 1)
, (z ∈ C, ν ∈ R) (1.3)

where Γ stands for the Gamma function. Recently, Szasz and Kupan [30] investi-
gated the univalence of the normalized Bessel function of the first kind κν : ∆→ C
defined by

κν(z) :=2νΓ(ν + 1)z1−ν/2Jν(z
1/2)

=z +
∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)
zn, (z ∈ ∆, ν ∈ R) (1.4)

For 0 < q < 1, El-Deeb and Bulboaca [15] defined the q−derivateive operator for
κν as follows:

∂qκν(z) =∂q

[
z +

∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)
zn

]
:=

κν(qz)− κν(z)

z(q − 1)

=1 +
∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)
[n, q]zn−1, (z ∈ ∆) (1.5)

where

[n, q] :=
1− qn

1− q
= 1 +

n−1∑
j=1

qj, [0, q] := 0. (1.6)

Using (1.6), we will define the next two products:

1. For any nonnegative integer n, the q−shifted factorial is given by

[n, q] :=

{
1, if n = 0
[1, q][2, q] . . . [k, q] if n ∈ N. (1.7)

2. For any positive number r, the q− generalized Pochhammer symbol is defined
by

[r, q]n :=

{
1, if n = 0
[r, q][r+1, q] . . . [r+k-1, q] if n ∈ N. (1.8)
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For ν > 0, λ > −1 and 0 < q < 1, El-Deeb and Bulboacǎ [15] defined the function
J λ
ν, q : ∆→ C by (see [14], [16])

J λ
ν, q(z) := z +

∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)

[n, q]!

[λ+ 1, q]n−1
zn, (z ∈ ∆). (1.9)

A simple computation shows that

J λ
ν, q(z) ∗Mq, λ+1(z) = z∂qκν(z), (z ∈ ∆), (1.10)

where the function Mq, λ+1(z) is given by

Mq, λ+1(z) := z +
∞∑
n=2

[λ+ 1, q]n−1
[n− 1, q]!

zn, (z ∈ ∆). (1.11)

Using the definition of q−derivative along with the idea of convolutions, El-Deeb
and Bulboacǎ [15] introduced the linear operator N λ

ν, q : A → A defined by

N λ
ν, qf(z) :=J λ

ν, q ∗ f(z)

=z +
∞∑
n=2

ψnanz
n, (ν > 0, λ > −1, 0 < q < 1, z ∈ ∆), (1.12)

where

ψn :=
(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)

[n, q]!

[λ+ 1, q]n−1
(1.13)

Remark 1.1. [15] From the definition relation (1.12), we can easily verify that the
next relations hold for all f ∈ A :

[λ+ 1, q]N λ
ν, qf(z) = [λ, q]N λ+1

ν, q f(z) + qλz∂q
(
[λ+ 1, q]N λ+1

ν, q f(z)
)
, z ∈ ∆

(1.14)
and

lim
q→1−

N λ
ν, qf(z) =J λ

ν, 1f(z) := J λ
ν f(z)

=z +
∞∑
n=2

(−1)n−1Γ(ν + 1)

4n−1(n− 1)!Γ(n+ ν)

n!

(λ+ 1)n−1
anz

n, (z ∈ ∆). (1.15)

The Horadam polynomials hn(x, a, b; p, q), or briefly hn(x) are given by the
following recurrence relation (see [17], [18])):

h1(x) = a, h2(x) = bx and hn(x) = pxhn−1(x) + qhn−2(x) (n ≥ 3)
(1.16)
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for some real constants a, b, p and q.
The generating function of the Horadam polynomials hn(x) (see [18]) is given

by

Π(x, z) :=
∞∑
n=1

hn(x)zn−1 =
a+ (b− ap)xz
1− pxz − qz2

, 1− pxz − qz2 6= 0, ∀z ∈ ∆.

(1.17)
Here, and in what follows, the argument x ∈ R is independent of the argument
z ∈ C; that is, x 6= <(z).

Note that for particular values of a, b, p and q, the Horadam polynomial hn(x)
leads to various polynomials, among those, we list a few cases here (see, [17], [18]
for more details):

1. For a = b = p = q = 1, we have the Fibonacci polynomials Fn(x).

2. For a = 2 and b = p = q = 1, we obtain the Lucas polynomials Ln(x).

3. For a = q = 1 and b = p = 2, we get the Pell polynomials Pn(x).

4. For a = b = p = 2 and q = 1, we attain the Pell-Lucas polynomials Qn(x).

5. For a = b = 1, p = 2 and q = −1, we have the Chebyshev polynomials Tn(x)
of the first kind

6. For a = 1, b = p = 2 and q = −1, we obtain the Chebyshev polynomials
Un(x) of the second kind.

Abirami et al. [1] considered bi- Mocanu - convex functions and bi-µ− starlike
functions to discuss initial estimations of Taylor-Macularin series which is associ-
ated with Horadam polynomials, Abirami et al. [2] discussed coefficient estimates
for the classes of λ−bi-pseudo-starlike and bi-Bazilevič functions using Horadam
polynomial, Alamoush [3], [4] defined subclasses of bi-starlike and bi-convex func-
tions involving the Poisson distribution series involving Horadam polynomials and
a class of bi-univalent functions associated with Horadam polynomials respectively
and obtained initial coefficient estimates, Altınkaya and Yalçın [7], [8] obtained co-
efficient estimates for Pascu-type bi-univalent functions and for the class of linear
combinations of bi-univalent functions by means of (p, q)-Lucas polynomials re-
spectively, Aouf et al. [10] discussed initial coefficient estimates for general class of
pascu-type bi-univalent functions of complex order defined by q−Sălăgean operator
and associated with Chebyshev polynomials, Awolere and Oladipo [11] found initial
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coefficients of bi-univalent functions defined by sigmoid functions involving pseudo-
starlikeness associated with Chebyshev polynomials, Naeem et al. [22] considered
a general class of bi-Bazilevič type functions associated with Faber polynomial to
discuss n-th coefficients estimates, Magesh and Bulut [23] discussed Chebyshev
polynomial coefficient estimates for a class of analytic bi-univalent functions re-
lated to pseudo-starlike functions, Orhan et al. [25] discussed initial estimates and
Fekete-Szegö bounds for bi-Bazilevič functions related to shell-like curves, Sakar
and Aydogan [28] obtained initial bounds for the class of generalized Sălăgean type
bi-α− convex functions of complex order associated with the Horadam polynomi-
als, Singh et al. [31] found coefficient estimates for bi-α-convex functions defined
by generalized Sãlãgean operator related to shell-like curves connected with Fi-
bonacci numbers, Srivastava et al. [32] introduced a technique by defining a new
class of bi-univalent functions associated with the Horadam polynomials to discuss
the coefficient estimates, Srivastava et al. [34] gave a direction to study the Faber
polynomial coefficient estimates for bi-univalent functions defined by the Tremblay
fractional derivative operator, Srivastava et al. [36] obtained general coefficient |an|
for a general class analytic and bi-univalent functions defined by using differential
subordination and a certain fractional derivative operator associated with Faber
polynomial, Wanas and Alina [37] discussed applications of Horadam polynomials
on Bazilevič bi-univalent functions by means of subordination and found initial
bounds. Motivated in these lines, estimates on initial coefficients of the Taylor-
Maclaurin series expansion (1.1) and Fekete-Szegö inequalities for certain classes
of bi-univalent functions defined by means of Horadam polynomials are obtained.
The classes introduced in this paper are motivated by the corresponding classes
investigated in [19], [14].

2. Coefficient Estimates and Fekete-Szegö Inequalities
Definition 2.1. A function f ∈ A of the form (1.1) belongs to the class Mσ (α,
λ, ν, q, x) for α ≥ 0, ν > 0, λ > −1, 0 < q < 1, and z, w ∈ ∆, if the following
conditions are satisfied:

α

(
1 +

z
(
N λ
ν, qf(z)

)′′(
N λ
ν, qf(z)

)′
)

+ (1− α)
1(

N λ
ν, qf(z)

)′ ≺ Π(x, z) + 1− a

and for g the analytic extension (continuation) of f−1 given by (1.2)

α

(
1 +

w
(
N λ
ν, qg(w)

)′′(
N λ
ν, qg(w)

)′
)

+ (1− α)
1(

N λ
ν, qg(w)

)′ ≺ Π(x, w) + 1− a,

where the real constant a is as in (1.16).
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Remark 2.1. Putting q → 1−, we obtain that

lim
q→1−

Mσ(α, λ, ν, q, x) =:Mσ(α, λ, ν, x),

where f ∈ σ,

α

(
1 +

z
(
J λ
ν f(z)

)′′
(J λ

ν f(z))′

)
+ (1− α)

1

(J λ
ν f(z))′

≺ Π(x, z) + 1− a

and for g the analytic extension (continuation) of f−1 given by (1.2)

α

(
1 +

w
(
J λ
ν g(w)

)′′
(J λ

ν g(w))′

)
+ (1− α)

1

(J λ
ν g(w))′

≺ Π(x, w) + 1− a,

where the real constant a is as in (1.16).
For functions in the classMσ(α, λ, ν, q, x), the following coefficient estimates

and Fekete-Szegö inequality are obtained.

Theorem 2.1. Let f(z) = z +
∞∑
n=2

anz
n be in the class Mσ(α, λ, ν, q, x). Then

|a2| ≤
|bx|

√
|bx|√∣∣(9α− 3)ψ3b2x2 −

[
(8α− 4) b2x2 + 4 (px2b+ qa) (2α− 1)2

]
ψ2

2
∣∣ ,

|a3| ≤
|bx|

(9α− 3)ψ3

+
b2x2

4 (2α− 1)2 ψ2
2

and for µ ∈ R∣∣a3 − µa22∣∣

≤



|bx|
(9α− 3)ψ3

if |µ− 1| ≤

∣∣∣(9α− 3)ψ3b
2x2 −

[
(8α− 4) b2x2 + 4

(
px2b+ qa

)
(2α− 1)2

]
ψ2

2
∣∣∣

b2x2 (9α− 3)ψ3

|bx|3 |µ− 1|∣∣∣(9α− 3)ψ3b2x2 −
[
(8α− 4) b2x2 + 4 (px2b+ qa) (2α− 1)2

]
ψ2

2
∣∣∣

if |µ− 1| ≥

∣∣∣(9α− 3)ψ3b
2x2 −

[
(8α− 4) b2x2 + 4

(
px2b+ qa

)
(2α− 1)2

]
ψ2

2
∣∣∣

b2x2 (9α− 3)ψ3
.
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Proof. Let f ∈ Mσ(α, λ, ν, q, x) be given by the Taylor-Maclaurin expansion
(1.1). Then, there are analytic functions r(z) and s(w) such that

r(0) = 0; s(0) = 0, |rn| < 1 and |sn| < 1 (∀ z, w ∈ ∆),

and we can write

α

(
1 +

z
(
N λ
ν, qf(z)

)′′(
N λ
ν, qf(z)

)′
)

+ (1− α)
1(

N λ
ν, qf(z)

)′ = Π(x, r(z)) + 1− a (2.1)

and

α

(
1 +

w
(
N λ
ν, qg(w)

)′′(
N λ
ν, qg(w)

)′
)

+ (1− α)
1(

N λ
ν, qg(w)

)′ = Π(x, s(w)) + 1− a. (2.2)

Equivalently,

α

(
1 +

z
(
N λ
ν, qf(z)

)′′(
N λ
ν, qf(z)

)′
)

+ (1− α)
1(

N λ
ν, qf(z)

)′
= 1 + h1(x)− a+ h2(x)r(z) + h3(x)[r(z)]2 + · · · (2.3)

and

α

(
1 +

w
(
N λ
ν, qg(w)

)′′(
N λ
ν, qg(w)

)′
)

+ (1− α)
1(

N λ
ν, qg(w)

)′
= 1 + h1(x)− a+ h2(x)s(w) + h3(x)[s(w)]2 + · · · . (2.4)

From (2.3) and (2.4) and in view of (1.17), we obtain

α

(
1 +

z
(
N λ
ν, qf(z)

)′′(
N λ
ν, qf(z)

)′
)

+ (1− α)
1(

N λ
ν, qf(z)

)′
= 1 + h2(x)r1z + [h2(x)r2 + h3(x)r21]z

2 + · · · (2.5)

and

α

(
1 +

w
(
N λ
ν, qg(w)

)′′(
N λ
ν, qg(w)

)′
)

+ (1− α)
1(

N λ
ν, qg(w)

)′
= 1 + h2(x)s1w + [h2(x)s2 + h3(x)s21]w

2 + · · · . (2.6)



Certain Classes of Bi-univalent Functions Associated with q−analogue ... 69

If

r(z) =
∞∑
n=1

rnz
n and s(w) =

∞∑
n=1

snw
n,

then it is well known that

|rn| ≤ 1 and |sn| ≤ 1 (n ∈ N).

Thus upon comparing the corresponding coefficients in (2.5) and (2.6), we have

2ψ2 (2α− 1) a2 = h2(x)r1 (2.7)

(9α− 3)ψ3a3 − 4 (2α− 1)ψ2
2a

2
2 = h2(x)r2 + h3(x)r21 (2.8)

−2 (2α− 1)ψ2a2 = h2(x)s1 (2.9)

and

[(18α− 6)ψ3 − 4(2α− 1)ψ2
2]a22 − 3 (3α− 1)ψ3a3 = h2(x)s2 + h3(x)s21. (2.10)

From (2.7) and (2.9), we can easily see that

r1 = −s1, provided h2(x) = bx 6= 0 (2.11)

and

8 a22 (2α− 1)2 ψ2
2 = (h2 (x))2

(
r1

2 + s1
2
)

a22 =
(h2 (x))2 (r1

2 + s1
2)

8 (2α− 1)2 ψ2
2

. (2.12)

If we add (2.8) to (2.10), we get(
(18α− 6)ψ3 − 2 (8α− 4)ψ2

2
)
a2

2 = (r2 + s2)h2 (x) + h3 (x)
(
r1

2 + s1
2
)
.

(2.13)

By substituting (2.12) in (2.13), we obtain

a22 =
(r2 + s2) (h2 (x))3[

(18α− 6)ψ3 − (16α− 8)ψ2
2
]

(h2 (x))2 − 8h3 (x) (2α− 1)2 ψ2
2

(2.14)

and by taking h2(x) = bx and h3(x) = bpx2 + qa in (2.14), it further yields

|a2| ≤
|bx|

√
|bx|√∣∣(9α− 3)ψ3b2x2 −

[
(8α− 4) b2x2 + 4 (px2b+ qa) (2α− 1)2

]
ψ2

2
∣∣ .

(2.15)
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By subtracting (2.10) from (2.8) we get

−6 (3α− 1)ψ3

(
a2

2 − a3
)

= (r2 − s2)h2 (x) +
(
r1

2 − s12
)
h3 (x)

In view of (2.11) , we obtain

a3 =
(r2 − s2)h2 (x)

(18α− 6)ψ3

+ a2
2. (2.16)

Then in view of (2.12), (2.16) becomes

a3 =
(r2 − s2)h2 (x)

(18α− 6)ψ3

+
(h2 (x))2 (r1

2 + s1
2)

8 (2α− 1)2 ψ2
2

.

Applying (1.16), we deduce that

|a3| ≤
|bx|

(9α− 3)ψ3

+
b2x2

4 (2α− 1)2 ψ2
2

.

From (2.16), for µ ∈ R, we write

a3 − µa22 =
h2(x) (r2 − s2)
(18α− 6)ψ3

+ (1− µ) a22. (2.17)

By substituting (2.14) in (2.17), we have

a3 − µa22 =
h2(x) (r2 − s2)
(18α− 6)ψ3

+

(
(1− µ) (r2 + s2) (h2 (x))3[

(18α− 6)ψ3 − (16α− 8)ψ2
2
]

(h2 (x))2 − 8h3 (x) (2α− 1)2 ψ2
2

)

=h2(x)

{(
Λ(µ, x) +

1

(18α− 6)ψ3

)
r2

+

(
Λ(µ, x)− 1

(18α− 6)ψ3

)
s2

}
, (2.18)

where

Λ(µ, x) =
(1− µ) [h2(x)]2[

(18α− 6)ψ3 − (16α− 8)ψ2
2
]

(h2 (x))2 − 8h3 (x) (2α− 1)2 ψ2
2
.
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Hence, we conclude that

∣∣a3 − µa22∣∣ ≤


|h2(x)|
(9α− 3)ψ3

; 0 ≤ |Λ(µ, x)| ≤ 1

(18α− 6)ψ3

2 |h2(x)| |Λ(µ, x)| ; |Λ(µ, x)| ≥ 1

(18α− 6)ψ3

and in view of (1.16), it evidently completes the proof of Theorem 2.1.

Definition 2.2. A function f ∈ A of the form (1.1) belongs to the class Lσ(λ, ν, q, x)
for ν > 0, λ > −1, 0 < q < 1, and z, w ∈ ∆, if the following conditions are satis-
fied:

1 +
z
(
N λ
ν, qf(z)

)′′(
N λ
ν, qf(z)

)′
z
(
N λ
ν, qf(z)

)′
N λ
ν, qf(z)

≺ Π(x, z) + 1− a

and for g the analytic extension (continuation) of f−1 given by (1.2)

1 +
w
(
N λ
ν, qg(w)

)′′(
N λ
ν, qg(w)

)′
w
(
N λ
ν, qg(w)

)′
N λ
ν, qg(w)

≺ Π(x, w) + 1− a,

where the real constant a is as in (1.16).

Remark 2.2. Putting q → 1−, we obtain that

lim
q→1−

L∗σ(λ, ν, q, x) =:Mσ(λ, ν, x),

where f ∈ σ,

1 +
z
(
J λ
ν f(z)

)′′
(J λ

ν f(z))′

z
(
J λ
ν f(z)

)′
J λ
ν f(z)

≺ Π(x, z) + 1− a
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and for g the analytic extension (continuation) of f−1 given by (1.2)

1 +
w
(
J λ
ν g(w)

)′′
(J λ

ν g(w))′

w
(
J λ
ν g(w)

)′
J λ
ν g(w)

≺ Π(x, w) + 1− a,

where the real constant a is as in (1.16).
For functions in the class Lσ(λ, ν, q, x), the following coefficient estimates and

Fekete-Szegö inequality are obtained.

Theorem 2.2. Let f(z) = z +
∞∑
n=2

anz
n be in the class Lσ(λ, ν, q, x). Then

|a2| ≤
|bx|

√
|bx|√∣∣4 b2x2ψ3 − (4 b2x2 + px2b+ qa)ψ2

2
∣∣ , and |a3| ≤

|bx|
4ψ3

+
b2x2

ψ2
2

and for µ ∈ R

∣∣a3 − µa22∣∣ ≤



|bx|
4ψ3

if |µ− 1| ≤
∣∣4 b2x2ψ3 −

(
4 b2x2 + px2b+ qa

)
ψ2

2
∣∣

4b2x2ψ3

|bx|3 |µ− 1|∣∣4 b2x2ψ3 − (4 b2x2 + px2b+ qa)ψ2
2
∣∣

if |µ− 1| ≥
∣∣4 b2x2ψ3 −

(
4 b2x2 + px2b+ qa

)
ψ2

2
∣∣

4b2x2ψ3
.

Proof. Let f ∈ Lσ(λ, ν, q, x) be given by the Taylor-Maclaurin expansion (1.1).
Then, there are analytic functions r(z) and s(w) such that

r(0) = 0; s(0) = 0, |rn| < 1 and |sn| < 1 (∀ z, w ∈ ∆),

and we can write

1 +
z
(
N λ
ν, qf(z)

)′′(
N λ
ν, qf(z)

)′
z
(
N λ
ν, qf(z)

)′
N λ
ν, qf(z)

= Π(x, r(z)) + 1− a (2.19)
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and

1 +
w
(
N λ
ν, qg(w)

)′′(
N λ
ν, qg(w)

)′
w
(
N λ
ν, qg(w)

)′
N λ
ν, qg(w)

= Π(x, s(w)) + 1− a. (2.20)

Equivalently,

1 +
z
(
N λ
ν, qf(z)

)′′(
N λ
ν, qf(z)

)′
z
(
N λ
ν, qf(z)

)′
N λ
ν, qf(z)

= 1 + h1(x)− a+ h2(x)r(z) + h3(x)[r(z)]2 + · · · (2.21)

and

1 +
w
(
N λ
ν, qg(w)

)′′(
N λ
ν, qg(w)

)′
w
(
N λ
ν, qg(w)

)′
N λ
ν, qg(w)

= 1 + h1(x)− a+ h2(x)s(w) + h3(x)[s(w)]2 + · · · . (2.22)

From (2.21) and (2.22) and in view of (1.17), we obtain

1 +
z
(
N λ
ν, qf(z)

)′′(
N λ
ν, qf(z)

)′
z
(
N λ
ν, qf(z)

)′
N λ
ν, qf(z)

= 1 + h2(x)r1z + [h2(x)r2 + h3(x)r21]z
2 + · · · (2.23)

and

1 +
w
(
N λ
ν, qg(w)

)′′(
N λ
ν, qg(w)

)′
w
(
N λ
ν, qg(w)

)′
N λ
ν, qg(w)

= 1 + h2(x)s1w + [h2(x)s2 + h3(x)s21]w
2 + · · · . (2.24)

If

r(z) =
∞∑
n=1

rnz
n and s(w) =

∞∑
n=1

snw
n,
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then it is well known that

|rn| ≤ 1 and |sn| ≤ 1 (n ∈ N).

Thus upon comparing the corresponding coefficients in (2.23) and (2.24), we have

ψ2a2 = h2(x)r1 (2.25)

4
(
a3ψ3 − a22ψ2

2

)
= h2(x)r2 + h3(x)r21 (2.26)

−ψ2a2 = h2(x)s1 (2.27)

and (
8 a2

2 − 4 a3
)
ψ3 − 4 a2

2ψ2
2 = h2(x)s2 + h3(x)s21. (2.28)

The results of this theorem now follow from (2.25)-(2.28) by applying the procedure
as in Theorem 2.1 with respect to (2.7)-(2.10).

Definition 2.3. A function f ∈ A of the form (1.1) belongs to the class Pσ (γ, λ,
ν, q, x) for 0 ≤ γ ≤ 1, ν > 0, λ > −1, 0 < q < 1, and z, w ∈ ∆, if the following
conditions are satisfied:

z
(
N λ
ν, qf(z)

)′
+ γz2

(
N λ
ν, qf(z)

)′′
(1− γ)

(
N λ
ν, qf(z)

)
+ γz

(
N λ
ν, qf(z)

)′ ≺ Π(x, z) + 1− a

and for g the analytic extension (continuation) of f−1 given by (1.2)

w
(
N λ
ν, qg(w)

)′
+ γw2

(
N λ
ν, qg(w)

)′′
(1− γ)

(
N λ
ν, qg(w)

)
+ γw

(
N λ
ν, qg(w)

)′ ≺ Π(x, w) + 1− a,

where the real constant a is as in (1.16).

Remark 2.3. Putting q → 1−, we obtain that

lim
q→1−

Pσ(γ, λ, ν, q, x) =: Pσ(γ, λ, ν, x),

where f ∈ σ,

z
(
J λ
ν f(z)

)′
+ γz2

(
J λ
ν f(z)

)′′
(1− γ) (J λ

ν f(z)) + γz (J λ
ν f(z))′

≺ Π(x, z) + 1− a
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and for g the analytic extension (continuation) of f−1 given by (1.2)

w
(
J λ
ν g(w)

)′
+ γw2

(
J λ
ν g(w)

)′′
(1− γ) (J λ

ν g(w)) + γw (J λ
ν g(w))′

≺ Π(x, w) + 1− a,

For functions in the class Pσ(γ, λ, ν, q, x), the following coefficient estimates
and Fekete-Szegö inequality are obtained.

Theorem 2.3. Let f(z) = z +
∞∑
n=2

anz
n be in the class Pσ(γ, λ, ν, q, x). Then

|a2| ≤
|bx|

√
|bx|√∣∣2 b2x2 (2γ + 1)ψ3 − (1 + γ)2 (b2x2 + px2b+ qa)ψ2

2
∣∣ ,

|a3| ≤
|bx|

2ψ3 (2 γ + 1)
+

b2x2

(1 + γ)2 ψ2
2

and for µ ∈ R

∣∣a3 − µa22∣∣ ≤



|bx|
2ψ3 (2 γ + 1)

if |µ− 1| ≤

∣∣∣2 b2x2 (2γ + 1)ψ3 − (1 + γ)2
(
b2x2 + px2b+ qa

)
ψ2

2
∣∣∣

2b2x2ψ3 (2 γ + 1)

|bx|3 |µ− 1|∣∣∣2 b2x2 (2γ + 1)ψ3 − (1 + γ)2 (b2x2 + px2b+ qa)ψ2
2
∣∣∣

if |µ− 1| ≥

∣∣∣2 b2x2 (2γ + 1)ψ3 − (1 + γ)2
(
b2x2 + px2b+ qa

)
ψ2

2
∣∣∣

2b2x2ψ3 (2 γ + 1)
.

Proof. Let f ∈ Pσ(γ, λ, ν, q, x) be given by the Taylor-Maclaurin expansion
(1.1). Then, there are analytic functions r(z) and s(w) such that

r(0) = 0; s(0) = 0, |rn| < 1 and |sn| < 1 (∀ z, w ∈ ∆),

and we can write

z
(
N λ
ν, qf(z)

)′
+ γz2

(
N λ
ν, qf(z)

)′′
(1− γ)

(
N λ
ν, qf(z)

)
+ γz

(
N λ
ν, qf(z)

)′ = Π(x, r(z)) + 1− a (2.29)
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and

w
(
N λ
ν, qg(w)

)′
+ γw2

(
N λ
ν, qg(w)

)′′
(1− γ)

(
N λ
ν, qg(w)

)
+ γw

(
N λ
ν, qg(w)

)′ = Π(x, s(w)) + 1− a. (2.30)

Equivalently,

z
(
N λ
ν, qf(z)

)′
+ γz2

(
N λ
ν, qf(z)

)′′
(1− γ)

(
N λ
ν, qf(z)

)
+ γz

(
N λ
ν, qf(z)

)′
= 1 + h1(x)− a+ h2(x)r(z) + h3(x)[r(z)]2 + · · · (2.31)

and

w
(
N λ
ν, qg(w)

)′
+ γw2

(
N λ
ν, qg(w)

)′′
(1− γ)

(
N λ
ν, qg(w)

)
+ γw

(
N λ
ν, qg(w)

)′
= 1 + h1(x)− a+ h2(x)s(w) + h3(x)[s(w)]2 + · · · . (2.32)

From (2.31) and (2.32) and in view of (1.17), we obtain

z
(
N λ
ν, qf(z)

)′
+ γz2

(
N λ
ν, qf(z)

)′′
(1− γ)

(
N λ
ν, qf(z)

)
+ γz

(
N λ
ν, qf(z)

)′
= 1 + h2(x)r1z + [h2(x)r2 + h3(x)r21]z

2 + · · · (2.33)

and

w
(
N λ
ν, qg(w)

)′
+ γw2

(
N λ
ν, qg(w)

)′′
(1− γ)

(
N λ
ν, qg(w)

)
+ γw

(
N λ
ν, qg(w)

)′
= 1 + h2(x)s1w + [h2(x)s2 + h3(x)s21]w

2 + · · · . (2.34)

If

r(z) =
∞∑
n=1

rnz
n and s(w) =

∞∑
n=1

snw
n,

then it is well known that

|rn| ≤ 1 and |sn| ≤ 1 (n ∈ N).

Thus upon comparing the corresponding coefficients in (2.33) and (2.34), we have

(1 + γ)ψ2a2 = h2(x)r1 (2.35)
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2(1 + 2γ)ψ3a3 − (1 + γ)2ψ2
2a

2
2 = h2(x)r2 + h3(x)r21 (2.36)

−(1 + γ)ψ2a2 = h2(x)s1 (2.37)

and(
(8 γ + 4)ψ3 − ψ2

2 (1 + γ)2
)
a2

2 − 2 a3 (2γ + 1)ψ3 = h3 (x) s1
2 + h2 (x) s2 (2.38)

The results of this theorem now follow from (2.35)-(2.38) by applying the procedure
as in Theorem 2.1 with respect to (2.7)-(2.10).

3. Corollaries and Consequences
Taking γ = 0 in Theorem (2.3), we have following corollary.

Corollary 3.1. Let f(z) = z +
∞∑
n=2

anz
n be in the class Sσ(λ, ν, q, x). Then

|a2| ≤
|bx|

√
|bx|√∣∣2 b2x2ψ3 − (b2x2 + px2b+ qa)ψ2

2
∣∣ , |a3| ≤

|bx|
2ψ3

+
b2x2

ψ2
2

and for µ ∈ R

∣∣a3 − µa22∣∣ ≤



|bx|
2ψ3

if |µ− 1| ≤
∣∣2 b2x2ψ3 −

(
b2x2 + px2b+ qa

)
ψ2

2
∣∣

2b2x2ψ3

|bx|3 |µ− 1|∣∣2 b2x2ψ3 − (b2x2 + px2b+ qa)ψ2
2
∣∣

if |µ− 1| ≥
∣∣2 b2x2ψ3 −

(
b2x2 + px2b+ qa

)
ψ2

2
∣∣

2b2x2ψ3
.

Taking α = 1 in Theorem 2.1 or γ = 1 in Theorem 2.3, we have following corollary.

Corollary 3.2. Let f(z) = z +
∞∑
n=2

anz
n be in the class Kσ(λ, ν, q, x). Then

|a2| ≤
|bx|

√
|bx|√∣∣6 b2x2ψ3 − 4 (b2x2 + px2b+ qa)ψ2

2
∣∣ , |a3| ≤

|bx|
6ψ3

+
b2x2

4ψ2
2
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and for µ ∈ R

∣∣a3 − µa22∣∣ ≤



|bx|
6ψ3

if |µ− 1| ≤
∣∣3 b2x2ψ3 − 2

(
b2x2 + px2b+ qa

)
ψ2

2
∣∣

3b2x2ψ3

|bx|3 |µ− 1|∣∣6 b2x2ψ3 − 4 (b2x2 + px2b+ qa)ψ2
2
∣∣

if |µ− 1| ≥
∣∣3 b2x2ψ3 − 2

(
b2x2 + px2b+ qa

)
ψ2

2
∣∣

3b2x2ψ3
.

4. Conclusion
One could find initial coefficient estimates for the classes defined in Remarks

2.1, 2.2 and 2.3. We leave those to interested readers.
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