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1. Introduction
Let X denote an arbitrary vector space and T be a linear operator on X. Let

D(T ), N(T ) and R(T ) denote domain, kernel and range of T respectively. Let N
denote the set of natural numbers. Let lp, (1 ≤ p <∞) be the Banach space of all
p-summable sequences of complex numbers under the standard p-norm on it and
let u be a complex-valued function with domain N. For f ∈ lp define

(uCφ)(f)(n) = u(n)f(φ(n)), for each n ∈ N.

If (uCφ)(f) ∈ lp whenever f ∈ lp then uCφ is a linear transformation on lp and is
called a weighted composition operator on lp. When u is identically equal to one
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we get the composition operator Cφ. In this paper S(u) denotes the support of u.
Weighted composition operators appear naturally in the study weighted shift op-
erators due to Shield [24]. These operators have been subject matter of study by
authors such as Kumar [14], Singh [12], Whitley [28] and others ([3], [11], [13]).

Definition 1.1. If there is some integer n ≥ 0 such that dim (N(T n+1)/N(T n))
is finite, the smallest such integer is called the essential ascent of T and is denoted
by ae(T ). If no such integer exists then ae(T ) =∞; see [20].

Definition 1.2. If there is some integer n ≥ 0 such that dim (R(T n)/R(T n+1)) is
finite, the smallest such integer is called the essential descent of T and is denoted
by de(T ). If no such integer exists then de(T ) =∞; see [20].

2. Essential Ascent and Essential Descent of Weighted Composition
Operators On lp spaces

In this section we prove results about essential ascent and essential descent of
weighted composition operators on lp spaces where 1 ≤ p <∞.

Theorem 2.1. ae(uCφ) = ∞ if and only if there exist a sequence {Ek}∞k=1 of
subsets of N such that each Ek is infinite, Ek ⊆ φk−1(Nk−1) and φk(Nk)

⋂
Ek = φ

for each k ∈ N, where Nk = {n ∈ S(u) : φi(n) ∈ S(u);∀i, 1 ≤ i ≤ k − 1}.
Proof. Suppose that ae(uCφ) = ∞. Let Ek =

{
m : m ∈ φk−1(Nk−1)− φk(Nk)

}
.

By construction of Ek, it is clear that Ek ⊆ φk−1(Nk−1) and φk(Nk)
⋂
Ek = φ for

each k ∈ N. We claim that Ek is infinite set. Let EK be finite for some K. We
make the following claims :

Claim-I : If n ∈ EK , this implies that n ∈ φK−1(NK−1) and n /∈ φK(NK).
Therefore (φK−1)−1(n) ∩ NK−1 6= φ but (φK)−1(n) ∩ NK = φ. There exists an
i ∈ (φK−1)−1(n) such that u(i)u(φ(i)) . . . . . . u(φK−2(i)) 6= 0 but
u(j)u(φ(j)) . . . . . . u(φK−1(j)) = 0 for each j ∈ (φK)−1(n).
Thus (uCφ)K(χn) =

∑
j∈(φK)−1(n)

u(j)u(φ(j)) . . . . . . u(φK−1(j))χj = 0 and

(uCφ)K−1(χn) =
∑

i∈(φK−1)−1(n)

u(i)u(φ(i)) . . . . . . u(φK−2(i))χi 6= 0.

Therefore χn /∈ N((uCφ)K−1) but χn ∈ N((uCφ)K).

Claim-II : Let n ∈ φK(NK). This implies that n = φK(m) for some m ∈ NK .
Since NK ∩ (φK)−1(n) 6= φ, hence
(uCφ)K(χn) =

∑
i∈(φK)−1(n)

u(i)u(φ(i)) . . . . . . u(φK−1(i))χi 6= 0.

Therefore χn /∈ N((uCφ)K).

Claim-III : suppose n /∈ φK−1(NK−1). Then for each i ∈ NK−1 satisfying φK−1(i) =
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n and u(i)u(φ(i)) . . . . . . u(φK−2(i)) = 0.
Therefore (uCφ)K−1(χn) =

∑
i∈(φK−1)−1(n)

u(i)u(φ(i)) . . . . . . u(φK−2(i))χi = 0. So

χn ∈ N((uCφ)K−1). Now we show that N((uCφ)K)/N((uCφ)K−1) is spanned by{
χn +N((uCφ)K−1) : n ∈ EK

}
.

Let f = g +N((uCφ)K−1), where g ∈ N((uCφ)K).
Let g =

∑
αnχn. Now we can expressed g as follows :

g =
∑

m∈EK

αmχm +
∑

p∈(N−(φK(NK)∪EK))

αpχp.

Clearly
∑

p∈(N−(φK(NK)∪EK))

αpχp belongs to N((uCφ)K−1).

Then f = g +N((uCφ)K−1) =
∑

m∈EK

αmχm +N((uCφ)K−1)

=
∑

m∈EK

αm(χm +N((uCφ)K−1)).

This implies that
{
χn +N((uCφ)K−1) : n ∈ EK

}
spans N((uCφ)K)/N((uCφ)K−1).

Therefore dim N((uCφ)K)/N((uCφ)K−1) ≤ EK < ∞. Thus ae(uCφ) ≤ (K − 1).
This is a contradiction. Hence Ek is infinite set.
Conversely, assume that there exist a sequence {Ek}∞k=1 of subsets of N such that
each Ek is infinite, Ek ⊆ φk−1(Nk−1) and φk(Nk) ∩ Ek = φ for each k ∈ N, where
Ek =

{
m : m ∈ φk−1(Nk−1)− φk(Nk)

}
.

Now we claim that
{
χn +N((uCφ)k−1) : n ∈ Ek

}
are linearly independent sequence

of N((uCφ)k)/N((uCφ)k−1). It is sufficient if we prove that every finite subset{
χn +N((uCφ)k−1) : n ∈ Ek

}
are linearly independent inN((uCφ)k)/N((uCφ)k−1).

Let β1(χn1 +N((uCφ)k−1) + . . . · · ·+ βl(χnl
+N((uCφ)k−1) = N((uCφ)k−1).

This implies that β1χn1 + . . . · · ·+ βlχnl
∈ N((uCφ)k−1).

Therefore (uCφ)k−1(β1χn1 + . . . · · ·+ βlχnl
) = 0. Thus

βj
∑

i∈(φk−1)−1(nj)

u(i)u(φ(i))u(φk−2(i))χi = 0 for each j, 1 ≤ j ≤ l.

Hence (uCφ)k(χnj
) = 0 and (uCφ)k−1(χnj

) 6= 0 for each j, 1 ≤ j ≤ l.
Since i ∈ Nk−1 ∩ (φk−1)−1(nj) 6= φ for 1 ≤ j ≤ l. This implies that∑
i∈(φk−1)−1(nj)

u(i)u(φ(i))u(φk−2(i))χi 6= 0 for each j, 1 ≤ j ≤ l.

Hence βj = 0 for each j, 1 ≤ j ≤ l. Thus
{
χn +N((uCφ)k−1) : n ∈ Ek

}
are linearly

independent sequence of N((uCφ)k)/N((uCφ)k−1). Since each Ek is infinite set.
Therefore dim (N((uCφ)k)/N((uCφ)k−1)) =∞ for each k ≥ 1.
Hence ae(uCφ) =∞.

Remark 2.1. The following example shows that for each n ∈ N there exist a
weighted composition operator uCφ on lp such that ae(uCφ) = n− 1.
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Example 2.1. Let n be any fixed natural number and φ be a self-map on N defined
as :

φ(m) =

{
m, if n/(m− 1)

m-1, otherwise.

and

u =
{

1
n

}∞
n=1

Then ae(uCφ) = n− 1 and de(uCφ) = n− 1.

Theorem 2.2. de(uCφ) =∞ if and only if for each k ≥ 0; φ−1(n) > 1 for infinitely
many n ∈ φk(Nk),where Nk = {n ∈ S(u) : φi(n) ∈ S(u);∀i, 1 ≤ i ≥ k − 1}.
Proof. If possible, suppose A =

{
n ∈ φK(N0) : φ−1(n) > 1)

}
is finite for some

natural number K. We claim that dim (R((uCφ)K)/R((uCφ)K+1)) ≤ A < ∞. Let
f ∈ R((uCφ)K). Then f = (uCφ)K(g), for some g ∈ lp. Let g =

∑
αnχn. Then

(uCφ)K(g) =
∑

n∈ (φK)−1(Nk)

u(n)u(φ(n)) . . . . . . u(φK−1(n))αφK(n)χn

=
∑

n
′∈ (φK)−1(Nk)

and φ−1(n′ )>1

u(n
′
)u(φ(n

′
)) . . . . . . u(φK−1(n

′
))αφK(n′ )χn′

+
∑

n
′′∈ (φK)−1(Nk)

and φ−1(n′′ )=1

u(n
′′
)u(φ(n

′′
)) . . . . . . u(φK−1(n

′′
))αφK(n′′ )χn′′

i.e.

(uCφ)K(g) = h1 + h2(say) (1)

We claim that h2 ∈ R((uCφ)K+1). Let g
′
=
∑
βnχn, where

βn =

{
0, when n /∈ φK+1(Nk+1) or φ−1(n) > 1

αφ−1(n)/u(φK(n)), when n ∈ φK+1(Nk+1) and φ−1(n) = 1.
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Then, clearly g
′ ∈ lp. Now

(uCφ)K+1(g
′
) =

∑
n∈ (φK+1)−1(Nk+1)

and φ−1(n)=1

u(n)u(φ(n)) . . . . . . u(φK(n))βφK+1(n)χn

+
∑

n/∈ (φK+1)−1(Nk+1)

or φ−1(n)>1

u(n)u(φ(n)) . . . . . . u(φK(n))βφK+1(n)χn

=
∑

n∈ (φK+1)−1(Nk+1)

and φ−1(n)=1

u(n)u(φ(n)) . . . . . . u(φK(n))βφK+1(n)χn

Now put n
′′

= φ−1(n), then n
′′ ∈ φK(Nk) and by our assumption we get φ−1(n) =

1⇔ φ−1(n′′) = 1. Therefore

(uCφ)K+1(g
′
) =

∑
n
′′∈ φK(Nk)

and φ−1(n′′ )=1

u(n
′′
)u(φ(n

′′
)) . . . . . . u(φK−1(n

′′
))αφK(n′′ )χn′′ = h2

(2)
Thus h2 ∈ R((uCφ)K+1).
Combining equation (1) and (2), we get dim (R((uCφ)K)/R((uCφ)K+1)) is finite.
Thus de(uCφ) ≤ K.

Conversely, assume that φ−1(n) > 1 for infinitely many n ∈ φk(N0). Let {nm}∞m=1 ∈
φk(N0) such that φ−1(nm) > 1 for each m ≥ 1. Let {αnm , βnm} ⊆ φ−1(nm).
Define a sequence {fm}∞m=1 as follows :

fm(n) =


1, if φk−1(n) = αnm

−1, if φk−1(n) = βnm

0, otherwise.

Clearly {fm}∞m=1 ∈ lp and also define a sequence {hm}∞m=1 as follows :

hm(n) =


1/u(n)u(φ(n)) . . . . . . u(φk−2(n)), if n = αnm

−1/u(n)u(φ(n)) . . . . . . u(φk−2(n)), if n = βnm

0, otherwise.

Clearly {hm}∞m=1 ∈ lp. We claim that {fm}∞m=1 ∈ R((uCφ)k−1) and {fm}∞m=1 /∈
R((uCφ)k). Now
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((uCφ)k−1hm)(n) =


1, if φk−1(n) = αnm

−1, if φk−1(n) = βnm

0, otherwise.

This implies that (uCφ)k−1(hm) = fm. Therefore {fm}∞m=1 ∈ R((uCφ)k−1). We
claim that {fm}∞m=1 /∈ R((uCφ)k). If possible, assume that {fm0}

∞
m0=1 ∈ R((uCφ)k),

for some m0 ≥ 1. This implies that fm0 = (uCφ)k(h0), for some h0 ∈ lp. Let n
(1)
m

and n
(2)
m be such that φk−1(n

(1)
m ) = αnm and φk−1(n

(2)
m ) = βnm , where φ(αnm) =

φ(βnm) = nm. A simple computation shows that {fm}∞m=1 /∈ R((uCφ)k). Thus
sequence

{
fm/R((uCφ)k)

}∞
m=1

are linearly independent in R((uCφ)k−1)/R((uCφ)k).

Therefore dim (R((uCφ)k−1)/R((uCφ)k)) is not finite. Since k ≥ 1 is arbitrary it
follows that de(uCφ) =∞
Remark 2.2. From Example (2.1) it follows that for each n ∈ N there exist a
weighted composition operator uCφ on lp such that de(uCφ) = n− 1.

3. Example
Note that a linear operator T belongs to exactly one of the following cases:

1. ae(T ) = de(T ) = finite.
2. ae(T ) =∞ but de(T ) is finite.
3. de(T ) =∞ but ae(T ) is finite.
4. ae(T ) =∞ and de(T ) =∞.
We give examples of weighted composition operators, exactly one for each of the
above type, as follows:

Example 3.1. Let φ be a self-map on N defined as:

φ(n) =

{
n, if n is odd

n-1, if n is even .

and

u =
{

1
n

}∞
n=1

Then ae(uCφ) = 1 and de(uCφ) = 1.

Example 3.2. Let φ be the self-map on N defined as :

φ(pnk) = pnk+1 for all k ∈ N.

Where {pk : k ∈ N} denote the enumeration of primes.
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and φ(n) = n when n ∈
(
N−

⋃
k∈N

Ek

)
where Ek = {pnk : n ≥ 1} for each k ∈ N.

also

u =
{

1
n

}∞
n=1

Then ae(uCφ) =∞ and de(uCφ) = 0.

Example 3.3. Let φ be the self-map on N defined as:

φ(n) = n+ 2, if n is odd

and

φ(2n− 2) = φ(2n) = n, if n is even.

also

u(n) =

{
1, if n is odd

-1, if n is even.

Then ae(uCφ) = 0 and de(uCφ) =∞.

Example 3.4. Let P =
⋃
k∈N
{pnk : n ∈ N} where pk denote the k-th prime and

N−P = {qk : k ≥ 1} = {1, 6, 10, 12, . . . . . . }. Clearly N−P is an infinite subset of
N and φ be the self-map on N defined as :

φ(pnk) = pnk+1 for all k ∈ N.

φ(q1) = φ(q2) = q1

and

φ(q2k−1) = φ(q2k) = q2k−2 for each k ≥ 2.

also

u =
{

1
n

}∞
n=1

Then it is easy to show that ae(uCφ) =∞ and de(uCφ) =∞.
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