ESSENTIAL ASCENT AND ESSENTIAL DESCENT OF WEIGHTED COMPOSITION OPERATORS ON l^{p} SPACES

Harish Chandra and Pradeep Kumar*
Department of Mathematics, Banaras Hindu University, Varanasi - 221005, INDIA
E-mail : harish_pathak2004@yahoo.com
*Directorate of Census Operations, Uttarakhand, L. D. Tower-3, Saharanpur Road, Near Mata Wala Bagh, Dehradun - 248001, INDIA
E-mail : pradeep28_bhu@yahoo.co.in

(Received: Jun. 05, 2020 Accepted: Sep. 05, 2020 Published: Dec. 30, 2020)
Abstract: In this paper we give a complete characterization of essential ascent and essential descent of weighted composition operators on l^{p} spaces.
Keywords and Phrases: Essential Ascent, Essential Descent, Weighted Composition Operator.

2010 Mathematics Subject Classification: Primary: 47B33.

1. Introduction

Let X denote an arbitrary vector space and T be a linear operator on X . Let $D(T), N(T)$ and $R(T)$ denote domain, kernel and range of T respectively. Let \mathbb{N} denote the set of natural numbers. Let $l^{p},(1 \leq p<\infty)$ be the Banach space of all p-summable sequences of complex numbers under the standard p-norm on it and let u be a complex-valued function with domain \mathbb{N}. For $f \in l^{p}$ define

$$
\left(u C_{\phi}\right)(f)(n)=u(n) f(\phi(n)), \text { for each } n \in \mathbb{N} \text {. }
$$

If $\left(u C_{\phi}\right)(f) \in l^{p}$ whenever $f \in l^{p}$ then $u C_{\phi}$ is a linear transformation on l^{p} and is called a weighted composition operator on l^{p}. When u is identically equal to one
we get the composition operator C_{ϕ}. In this paper $S(u)$ denotes the support of u. Weighted composition operators appear naturally in the study weighted shift operators due to Shield [24]. These operators have been subject matter of study by authors such as Kumar [14], Singh [12], Whitley [28] and others ([3], [11], [13]).

Definition 1.1. If there is some integer $n \geq 0$ such that $\operatorname{dim}\left(N\left(T^{n+1}\right) / N\left(T^{n}\right)\right)$ is finite, the smallest such integer is called the essential ascent of T and is denoted by $a_{e}(T)$. If no such integer exists then $a_{e}(T)=\infty$; see [20].
Definition 1.2. If there is some integer $n \geq 0$ such that $\operatorname{dim}\left(R\left(T^{n}\right) / R\left(T^{n+1}\right)\right)$ is finite, the smallest such integer is called the essential descent of T and is denoted by $d_{e}(T)$. If no such integer exists then $d_{e}(T)=\infty$; see [20].

2. Essential Ascent and Essential Descent of Weighted Composition Operators On l^{p} spaces

In this section we prove results about essential ascent and essential descent of weighted composition operators on l^{p} spaces where $1 \leq p<\infty$.
Theorem 2.1. $a_{e}\left(u C_{\phi}\right)=\infty$ if and only if there exist a sequence $\left\{E_{k}\right\}_{k=1}^{\infty}$ of subsets of \mathbb{N} such that each E_{k} is infinite, $E_{k} \subseteq \phi^{k-1}\left(N_{k-1}\right)$ and $\phi^{k}\left(N_{k}\right) \bigcap E_{k}=\phi$ for each $k \in \mathbb{N}$, where $N_{k}=\left\{n \in S(u): \phi^{i}(n) \in S(u) ; \forall i, 1 \leq i \leq k-1\right\}$.
Proof. Suppose that $a_{e}\left(u C_{\phi}\right)=\infty$. Let $E_{k}=\left\{m: m \in \phi^{k-1}\left(N_{k-1}\right)-\phi^{k}\left(N_{k}\right)\right\}$. By construction of E_{k}, it is clear that $E_{k} \subseteq \phi^{k-1}\left(N_{k-1}\right)$ and $\phi^{k}\left(N_{k}\right) \bigcap E_{k}=\phi$ for each $k \in \mathbb{N}$. We claim that E_{k} is infinite set. Let E_{K} be finite for some K . We make the following claims :
Claim-I : If $n \in E_{K}$, this implies that $n \in \phi^{K-1}\left(N_{K-1}\right)$ and $n \notin \phi^{K}\left(N_{K}\right)$.
Therefore $\left(\phi^{K-1}\right)^{-1}(n) \cap N_{K-1} \neq \phi$ but $\left(\phi^{K}\right)^{-1}(n) \cap N_{K}=\phi$. There exists an $i \in\left(\phi^{K-1}\right)^{-1}(n)$ such that $u(i) u(\phi(i)) \ldots \ldots u\left(\phi^{K-2}(i)\right) \neq 0$ but
$u(j) u(\phi(j)) \ldots \ldots u\left(\phi^{K-1}(j)\right)=0$ for each $j \in\left(\phi^{K}\right)^{-1}(n)$.
Thus $\left(u C_{\phi}\right)^{K}\left(\chi_{n}\right)=\sum_{j \in\left(\phi^{K}\right)^{-1}(n)} u(j) u(\phi(j)) \ldots \ldots u\left(\phi^{K-1}(j)\right) \chi_{j}=0$ and
$\left(u C_{\phi}\right)^{K-1}\left(\chi_{n}\right)=\sum_{i \in\left(\phi^{K-1}\right)^{-1}(n)} u(i) u(\phi(i)) \ldots \ldots u\left(\phi^{K-2}(i)\right) \chi_{i} \neq 0$.
Therefore $\chi_{n} \notin N\left(\left(u C_{\phi}\right)^{K-1}\right)$ but $\chi_{n} \in N\left(\left(u C_{\phi}\right)^{K}\right)$.
Claim-II : Let $n \in \phi^{K}\left(N_{K}\right)$. This implies that $n=\phi^{K}(m)$ for some $m \in N_{K}$.
Since $N_{K} \cap\left(\phi^{K}\right)^{-1}(n) \neq \phi$, hence
$\left(u C_{\phi}\right)^{K}\left(\chi_{n}\right)=\sum_{i \in\left(\phi^{K}\right)^{-1}(n)} u(i) u(\phi(i)) \ldots \ldots u\left(\phi^{K-1}(i)\right) \chi_{i} \neq 0$.
Therefore $\chi_{n} \notin N\left(\left(u C_{\phi}\right)^{K}\right)$.
Claim-III : suppose $n \notin \phi^{K-1}\left(N_{K-1}\right)$. Then for each $i \in N_{K-1}$ satisfying $\phi^{K-1}(i)=$
n and $u(i) u(\phi(i)) \ldots \ldots u\left(\phi^{K-2}(i)\right)=0$.
Therefore $\left(u C_{\phi}\right)^{K-1}\left(\chi_{n}\right)=\sum_{i \in\left(\phi^{K-1}\right)^{-1}(n)} u(i) u(\phi(i)) \ldots \ldots u\left(\phi^{K-2}(i)\right) \chi_{i}=0$. So $\chi_{n} \in N\left(\left(u C_{\phi}\right)^{K-1}\right)$. Now we show that $N\left(\left(u C_{\phi}\right)^{K}\right) / N\left(\left(u C_{\phi}\right)^{K-1}\right)$ is spanned by $\left\{\chi_{n}+N\left(\left(u C_{\phi}\right)^{K-1}\right): n \in E_{K}\right\}$.
Let $f=g+N\left(\left(u C_{\phi}\right)^{K-1}\right)$, where $g \in N\left(\left(u C_{\phi}\right)^{K}\right)$.
Let $g=\sum \alpha_{n} \chi_{n}$. Now we can expressed g as follows :
$g=\sum_{m \in E_{K}} \alpha_{m} \chi_{m}+\sum_{p \in\left(\mathbb{N}-\left(\phi^{K}\left(N_{K}\right) \cup E_{K}\right)\right)} \alpha_{p} \chi_{p}$.
Clearly $\sum_{p \in\left(\mathbb{N}-\left(\phi^{K}\left(N_{K}\right) \cup E_{K}\right)\right)} \alpha_{p} \chi_{p}$ belongs to $N\left(\left(u C_{\phi}\right)^{K-1}\right)$.
Then $f=g+N\left(\left(u C_{\phi}\right)^{K-1}\right)=\sum_{m \in E_{K}} \alpha_{m} \chi_{m}+N\left(\left(u C_{\phi}\right)^{K-1}\right)$
$=\sum_{m \in E_{K}} \alpha_{m}\left(\chi_{m}+N\left(\left(u C_{\phi}\right)^{K-1}\right)\right)$.
This implies that $\left\{\chi_{n}+N\left(\left(u C_{\phi}\right)^{K-1}\right): n \in E_{K}\right\}$ spans $N\left(\left(u C_{\phi}\right)^{K}\right) / N\left(\left(u C_{\phi}\right)^{K-1}\right)$.
Therefore $\operatorname{dim} N\left(\left(u C_{\phi}\right)^{K}\right) / N\left(\left(u C_{\phi}\right)^{K-1}\right) \leq \overline{\overline{E_{K}}}<\infty$. Thus $a_{e}\left(u C_{\phi}\right) \leq(K-1)$.
This is a contradiction. Hence E_{k} is infinite set.
Conversely, assume that there exist a sequence $\left\{E_{k}\right\}_{k=1}^{\infty}$ of subsets of \mathbb{N} such that each E_{k} is infinite, $E_{k} \subseteq \phi^{k-1}\left(N_{k-1}\right)$ and $\phi^{k}\left(N_{k}\right) \cap E_{k}=\phi$ for each $k \in \mathbb{N}$, where $E_{k}=\left\{m: m \in \phi^{k-1}\left(N_{k-1}\right)-\phi^{k}\left(N_{k}\right)\right\}$.
Now we claim that $\left\{\chi_{n}+N\left(\left(u C_{\phi}\right)^{k-1}\right): n \in E_{k}\right\}$ are linearly independent sequence of $N\left(\left(u C_{\phi}\right)^{k}\right) / N\left(\left(u C_{\phi}\right)^{k-1}\right)$. It is sufficient if we prove that every finite subset $\left\{\chi_{n}+N\left(\left(u C_{\phi}\right)^{k-1}\right): n \in E_{k}\right\}$ are linearly independent in $N\left(\left(u C_{\phi}\right)^{k}\right) / N\left(\left(u C_{\phi}\right)^{k-1}\right)$.
Let $\beta_{1}\left(\chi_{n_{1}}+N\left(\left(u C_{\phi}\right)^{k-1}\right)+\ldots \cdots+\beta_{l}\left(\chi_{n_{l}}+N\left(\left(u C_{\phi}\right)^{k-1}\right)=N\left(\left(u C_{\phi}\right)^{k-1}\right)\right.\right.$.
This implies that $\beta_{1} \chi_{n_{1}}+\ldots \cdots+\beta_{l} \chi_{n_{l}} \in N\left(\left(u C_{\phi}\right)^{k-1}\right)$.
Therefore $\left(u C_{\phi}\right)^{k-1}\left(\beta_{1} \chi_{n_{1}}+\ldots \cdots+\beta_{l} \chi_{n_{l}}\right)=0$. Thus
$\beta_{j} \sum_{i \in\left(\phi^{k-1}\right)^{-1}\left(n_{j}\right)} u(i) u(\phi(i)) u\left(\phi^{k-2}(i)\right) \chi_{i}=0$ for each $\mathrm{j}, 1 \leq j \leq l$.
Hence $\left(u C_{\phi}\right)^{k}\left(\chi_{n_{j}}\right)=0$ and $\left(u C_{\phi}\right)^{k-1}\left(\chi_{n_{j}}\right) \neq 0$ for each $\mathrm{j}, 1 \leq j \leq l$.
Since $i \in N_{k-1} \cap\left(\phi^{k-1}\right)^{-1}\left(n_{j}\right) \neq \phi$ for $1 \leq j \leq l$. This implies that
$\sum_{i \in\left(\phi^{k-1}\right)^{-1}\left(n_{j}\right)} u(i) u(\phi(i)) u\left(\phi^{k-2}(i)\right) \chi_{i} \neq 0$ for each $\mathrm{j}, 1 \leq j \leq l$.
Hence $\beta_{j}=0$ for each $\mathrm{j}, 1 \leq j \leq l$. Thus $\left\{\chi_{n}+N\left(\left(u C_{\phi}\right)^{k-1}\right): n \in E_{k}\right\}$ are linearly independent sequence of $N\left(\left(u C_{\phi}\right)^{k}\right) / N\left(\left(u C_{\phi}\right)^{k-1}\right)$. Since each E_{k} is infinite set.
Therefore $\operatorname{dim}\left(N\left(\left(u C_{\phi}\right)^{k}\right) / N\left(\left(u C_{\phi}\right)^{k-1}\right)\right)=\infty$ for each $k \geq 1$.
Hence $a_{e}\left(u C_{\phi}\right)=\infty$.
Remark 2.1. The following example shows that for each $n \in \mathbb{N}$ there exist a weighted composition operator $u C_{\phi}$ on l^{p} such that $a_{e}\left(u C_{\phi}\right)=n-1$.

Example 2.1. Let n be any fixed natural number and ϕ be a self-map on \mathbb{N} defined as :

$$
\phi(m)= \begin{cases}m, & \text { if } n /(m-1) \\ m-1, & \text { otherwise }\end{cases}
$$

and

$$
u=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}
$$

Then $a_{e}\left(u C_{\phi}\right)=n-1$ and $d_{e}\left(u C_{\phi}\right)=n-1$.
Theorem 2.2. $d_{e}\left(u C_{\phi}\right)=\infty$ if and only if for each $k \geq 0 ; \overline{\overline{\phi^{-1}(n)}}>1$ for infinitely many $n \in \phi^{k}\left(N_{k}\right)$, where $N_{k}=\left\{n \in S(u): \phi^{i}(n) \in S(u) ; \forall i, 1 \leq i \geq k-1\right\}$.
Proof. If possible, suppose $\left.A=\left\{n \in \phi^{K}\left(N_{0}\right): \overline{\overline{\phi^{-1}(n)}}>1\right)\right\}$ is finite for some natural number K. We claim that $\operatorname{dim}\left(R\left(\left(u C_{\phi}\right)^{K}\right) / R\left(\left(u C_{\phi}\right)^{K+1}\right)\right) \leq \overline{\bar{A}}<\infty$. Let $f \in R\left(\left(u C_{\phi}\right)^{K}\right)$. Then $f=\left(u C_{\phi}\right)^{K}(g)$, for some $g \in l^{p}$. Let $g=\sum \alpha_{n} \chi_{n}$. Then

$$
\begin{aligned}
&\left(u C_{\phi}\right)^{K}(g)= \sum_{n \in\left(\phi^{K}\right)^{-1}\left(N_{k}\right)} u(n) u(\phi(n)) \ldots \ldots u\left(\phi^{K-1}(n)\right) \alpha_{\phi^{K}(n)} \chi_{n} \\
&= \sum_{\substack{n^{\prime} \in\left(\phi^{K}\right)^{-1}\left(N_{k}\right) \\
\text { and }}} u\left(n^{\prime}\right) u\left(\phi\left(n^{\prime}\right)\right) \ldots \ldots u\left(\phi^{K-1}\left(n^{\prime}\right)\right) \alpha_{\phi^{K}\left(n^{\prime}\right)} \chi_{n^{\prime}} \\
&+\sum_{\substack{\phi^{-1}\left(n^{\prime}\right)} 1} u\left(n^{\prime \prime}\right) u\left(\phi\left(n^{\prime \prime}\right)\right) \ldots \ldots u\left(\phi^{K-1}\left(n^{\prime \prime}\right)\right) \alpha_{\phi^{K}\left(n^{\prime \prime}\right)} \chi_{n^{\prime \prime}} \\
&\text { and } \left.\xlongequal\left[\phi^{\prime}\right)^{-1}\left(N_{k}\right)\right]{\phi^{-1}\left(n^{\prime \prime}\right)}=1
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\left(u C_{\phi}\right)^{K}(g)=h_{1}+h_{2}(\text { say }) \tag{1}
\end{equation*}
$$

We claim that $h_{2} \in R\left(\left(u C_{\phi}\right)^{K+1}\right)$. Let $g^{\prime}=\sum \beta_{n} \chi_{n}$, where

$$
\beta_{n}= \begin{cases}0, & \text { when } n \notin \phi^{K+1}\left(N_{k+1}\right) \text { or } \overline{\overline{\phi^{-1}(n)}}>1 \\ \alpha_{\phi^{-1}(n)} / u\left(\phi^{K}(n)\right), & \text { when } n \in \phi^{K+1}\left(N_{k+1}\right) \text { and } \overline{\overline{\phi^{-1}(n)}}=1\end{cases}
$$

Then, clearly $g^{\prime} \in l^{p}$. Now

$$
\begin{aligned}
& \left(u C_{\phi}\right)^{K+1}\left(g^{\prime}\right)=\sum_{\substack{n \in\left(\phi^{K+1}\right)^{-1}\left(N_{k+1}\right) \\
\text { and } \\
\overline{\phi^{-1}(n)}=1}} u(n) u(\phi(n)) \ldots \ldots u\left(\phi^{K}(n)\right) \beta_{\phi^{K+1}(n)} \chi_{n} \\
& +\sum_{\substack{n \notin\left(\phi^{K+1}\right)^{-1}\left(N_{k+1}\right) \\
\text { or } \overline{\bar{\phi}^{-1}(n)}>1}} u(n) u(\phi(n)) \ldots \ldots u\left(\phi^{K}(n)\right) \beta_{\phi^{K+1}(n)} \chi_{n} \\
& =\sum_{\substack{n \in\left(\phi^{K+1}\right)^{-1}\left(N_{k+1}\right) \\
\text { and } \overline{\phi^{-1}(n)}=1}} u(n) u(\phi(n)) \ldots \ldots u\left(\phi^{K}(n)\right) \beta_{\phi^{K+1}(n)} \chi_{n}
\end{aligned}
$$

Now put $n^{\prime \prime}=\phi^{-1}(n)$, then $n^{\prime \prime} \in \phi^{K}\left(N_{k}\right)$ and by our assumption we get $\overline{\overline{\phi^{-1}(n)}}=$ $1 \Leftrightarrow \overline{\overline{\phi^{-1}\left(n^{\prime \prime}\right)}}=1$. Therefore

$$
\begin{equation*}
\left(u C_{\phi}\right)^{K+1}\left(g^{\prime}\right)=\sum_{\substack{n^{\prime \prime} \in \phi^{K}\left(N_{k}\right) \\ \text { and } \\ \overline{\phi^{-1}\left(n^{\prime \prime}\right)}} 1} u\left(n^{\prime \prime}\right) u\left(\phi\left(n^{\prime \prime}\right)\right) \ldots \ldots u\left(\phi^{K-1}\left(n^{\prime \prime}\right)\right) \alpha_{\phi^{K}\left(n^{\prime \prime}\right)} \chi_{n^{\prime \prime}}=h_{2} \tag{2}
\end{equation*}
$$

Thus $h_{2} \in R\left(\left(u C_{\phi}\right)^{K+1}\right)$.
Combining equation (1) and (2), we get $\operatorname{dim}\left(R\left(\left(u C_{\phi}\right)^{K}\right) / R\left(\left(u C_{\phi}\right)^{K+1}\right)\right)$ is finite. Thus $d_{e}\left(u C_{\phi}\right) \leq K$.
Conversely, assume that $\overline{\overline{\phi^{-1}(n)}}>1$ for infinitely many $n \in \phi^{k}\left(N_{0}\right)$. Let $\left\{n_{m}\right\}_{m=1}^{\infty} \in$ $\phi^{k}\left(N_{0}\right)$ such that $\overline{\overline{\phi^{-1}\left(n_{m}\right)}}>1$ for each $m \geq 1$. Let $\left\{\alpha_{n_{m}}, \beta_{n_{m}}\right\} \subseteq \phi^{-1}\left(n_{m}\right)$. Define a sequence $\left\{f_{m}\right\}_{m=1}^{\infty}$ as follows :

$$
f_{m}(n)= \begin{cases}1, & \text { if } \phi^{k-1}(n)=\alpha_{n_{m}} \\ -1, & \text { if } \phi^{k-1}(n)=\beta_{n_{m}} \\ 0, & \text { otherwise }\end{cases}
$$

Clearly $\left\{f_{m}\right\}_{m=1}^{\infty} \in l^{p}$ and also define a sequence $\left\{h_{m}\right\}_{m=1}^{\infty}$ as follows :

$$
h_{m}(n)= \begin{cases}1 / u(n) u(\phi(n)) \ldots \ldots u\left(\phi^{k-2}(n)\right), & \text { if } n=\alpha_{n_{m}} \\ -1 / u(n) u(\phi(n)) \ldots \ldots u\left(\phi^{k-2}(n)\right), & \text { if } n=\beta_{n_{m}} \\ 0, & \text { otherwise }\end{cases}
$$

Clearly $\left\{h_{m}\right\}_{m=1}^{\infty} \in l^{p}$. We claim that $\left\{f_{m}\right\}_{m=1}^{\infty} \in R\left(\left(u C_{\phi}\right)^{k-1}\right)$ and $\left\{f_{m}\right\}_{m=1}^{\infty} \notin$ $R\left(\left(u C_{\phi}\right)^{k}\right)$. Now

$$
\left(\left(u C_{\phi}\right)^{k-1} h_{m}\right)(n)= \begin{cases}1, & \text { if } \phi^{k-1}(n)=\alpha_{n_{m}} \\ -1, & \text { if } \phi^{k-1}(n)=\beta_{n_{m}} \\ 0, & \text { otherwise }\end{cases}
$$

This implies that $\left(u C_{\phi}\right)^{k-1}\left(h_{m}\right)=f_{m}$. Therefore $\left\{f_{m}\right\}_{m=1}^{\infty} \in R\left(\left(u C_{\phi}\right)^{k-1}\right)$. We claim that $\left\{f_{m}\right\}_{m=1}^{\infty} \notin R\left(\left(u C_{\phi}\right)^{k}\right)$. If possible, assume that $\left\{f_{m_{0}}\right\}_{m_{0}=1}^{\infty} \in R\left(\left(u C_{\phi}\right)^{k}\right)$, for some $m_{0} \geq 1$. This implies that $f_{m_{0}}=\left(u C_{\phi}\right)^{k}\left(h_{0}\right)$, for some $h_{0} \in l^{p}$. Let $n_{m}^{(1)}$ and $n_{m}^{(2)}$ be such that $\phi^{k-1}\left(n_{m}^{(1)}\right)=\alpha_{n_{m}}$ and $\phi^{k-1}\left(n_{m}^{(2)}\right)=\beta_{n_{m}}$, where $\phi\left(\alpha_{n_{m}}\right)=$ $\phi\left(\beta_{n_{m}}\right)=n_{m}$. A simple computation shows that $\left\{f_{m}\right\}_{m=1}^{\infty} \notin R\left(\left(u C_{\phi}\right)^{k}\right)$. Thus sequence $\left\{f_{m} / R\left(\left(u C_{\phi}\right)^{k}\right)\right\}_{m=1}^{\infty}$ are linearly independent in $R\left(\left(u C_{\phi}\right)^{k-1}\right) / R\left(\left(u C_{\phi}\right)^{k}\right)$. Therefore $\operatorname{dim}\left(R\left(\left(u C_{\phi}\right)^{k-1}\right) / R\left(\left(u C_{\phi}\right)^{k}\right)\right)$ is not finite. Since $k \geq 1$ is arbitrary it follows that $d_{e}\left(u C_{\phi}\right)=\infty$
Remark 2.2. From Example (2.1) it follows that for each $n \in \mathbb{N}$ there exist a weighted composition operator $u C_{\phi}$ on l^{p} such that $d_{e}\left(u C_{\phi}\right)=n-1$.

3. Example

Note that a linear operator T belongs to exactly one of the following cases:

1. $a_{e}(T)=d_{e}(T)=$ finite.
2. $a_{e}(T)=\infty$ but $d_{e}(T)$ is finite.
3. $d_{e}(T)=\infty$ but $a_{e}(T)$ is finite.
4. $a_{e}(T)=\infty$ and $d_{e}(T)=\infty$.

We give examples of weighted composition operators, exactly one for each of the above type, as follows:
Example 3.1. Let ϕ be a self-map on \mathbb{N} defined as:

$$
\phi(n)= \begin{cases}\mathrm{n}, & \text { if } n \text { is odd } \\ \mathrm{n}-1, & \text { if } n \text { is even }\end{cases}
$$

and

$$
u=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}
$$

Then $a_{e}\left(u C_{\phi}\right)=1$ and $d_{e}\left(u C_{\phi}\right)=1$.
Example 3.2. Let ϕ be the self-map on \mathbb{N} defined as:

$$
\phi\left(p_{k}^{n}\right)=p_{k+1}^{n} \text { for all } k \in \mathbb{N}
$$

Where $\left\{p_{k}: k \in \mathbb{N}\right\}$ denote the enumeration of primes.

$$
\begin{aligned}
& \text { and } \phi(n)=n \text { when } n \in\left(\mathbb{N}-\bigcup_{k \in \mathbb{N}} E_{k}\right) \\
& \text { where } E_{k}=\left\{p_{k}^{n}: n \geq 1\right\} \text { for each } k \in \mathbb{N} .
\end{aligned}
$$

also

$$
u=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}
$$

Then $a_{e}\left(u C_{\phi}\right)=\infty$ and $d_{e}\left(u C_{\phi}\right)=0$.
Example 3.3. Let ϕ be the self-map on \mathbb{N} defined as:

$$
\phi(n)=n+2, \text { if } n \text { is odd }
$$

and

$$
\phi(2 n-2)=\phi(2 n)=n, \text { if } n \text { is even. }
$$

also

$$
u(n)= \begin{cases}1, & \text { if } n \text { is odd } \\ -1, & \text { if } n \text { is even }\end{cases}
$$

Then $a_{e}\left(u C_{\phi}\right)=0$ and $d_{e}\left(u C_{\phi}\right)=\infty$.
Example 3.4. Let $P=\bigcup_{k \in \mathbb{N}}\left\{p_{k}^{n}: n \in \mathbb{N}\right\}$ where p_{k} denote the k -th prime and $\mathbb{N}-P=\left\{q_{k}: k \geq 1\right\}=\{1,6,10,12, \ldots \ldots\}$. Clearly $\mathbb{N}-P$ is an infinite subset of \mathbb{N} and ϕ be the self-map on \mathbb{N} defined as :

$$
\begin{gathered}
\phi\left(p_{k}^{n}\right)=p_{k+1}^{n} \text { for all } k \in \mathbb{N} . \\
\phi\left(q_{1}\right)=\phi\left(q_{2}\right)=q_{1}
\end{gathered}
$$

and

$$
\phi\left(q_{2 k-1}\right)=\phi\left(q_{2 k}\right)=q_{2 k-2} \text { for each } k \geq 2
$$

also

$$
u=\left\{\frac{1}{n}\right\}_{n=1}^{\infty}
$$

Then it is easy to show that $a_{e}\left(u C_{\phi}\right)=\infty$ and $d_{e}\left(u C_{\phi}\right)=\infty$.

References

[1] Aupetit, B., Primer on Spectral Theory, Springer-Verlag, New York, 1991.
[2] Burgos, M., Kaidi, A., Mbekhta, M., Oudghiri, M., The Descent Spectrum and Perturbations, J. Operator Theory, 56 (2006), 259-271.
[3] Carlson, J. W., The Spectra and Commutants of Some Weighted Composition Operators, Trans. Amer. Math. Soc., 317 (1990), 631-654.
[4] Carlson, J. W., Hyponormal and Quasinormal Weighted Composition Operators on l^{2}, Rocky Mountain J. Math., 20 (1990), 399-407.
[5] Chandra, H., Kumar, P., Ascent and Descent of Composition Operators On l^{p} Spaces, Demonstratio Mathematica, XLIII, No. 1 (2010), 161-165.
[6] Chandra, H., Kumar, P., Essential Ascent and Essential Descent of Linear Operators and Composition Operators, South East Asian Journal of Mathematics and Mathematical Sciences, Vol. 16, Issue-2, (August 2020), 13-22.
[7] Chandra, H., Kumar, P., Ascent and Descent of Product and Sum of two Composition Operators On l^{p} Spaces, Journal of Scientific Research, 54(1\&2) (2010), 223-231.
[8] Grabiner, S., Uniform Ascent and Descent of Bounded Operators, J. Math. Soc. Japan, 34 (1982), 317-337.
[9] Halmos, P. R., A Hilbert Space Problem Book, Van Nostrand, Princeton, N. J., 1967.
[10] Komal, B. S. and Singh, R. K., Composition Operators on l^{p} and its Adjoint, Proc. Amer. Math. Soc., 70 (1978), 21-25.
[11] Kelley, R. L., Weighted Shifts on Hilbert Space, Dissertation, University of Michigan, Ann Arbor, 1966.
[12] Kumar, A., Singh, R. K., Multiplication Operators and Composition Operators with Closed Ranges Bull. Austral. Math. Soc., 16 (1977), 247-252.
[13] Kumar, D. C., Weighted Composition Operators, Thesis University of Jammu, 1985.
[14] Kumar, R., Ascent and Descent of Weighted Composition Operators On L^{p} spaces, Matmatick Vesnik, 60 (2008), 47-51.
[15] Kaashoek, M. A., Ascent, Descent, Nullity and Defect: A Note On a Paper by A. E. Taylor Math. Ann, 172 (1967), 105-115.
[16] Kaashoek, M. A., Lay D. C., Ascent, Descent, and Commuting Perturbations, Trans. Amer. Math. Soc., 169 (1972), 35-47.
[17] Lay, D. C., Spectral Analysis Using Ascent, Descent, Nullity and Defect, Math. Ann., 184 (1970), 197-214.
[18] Lal, N., Tripathi, G. P., Composition Operators on l^{2} of the form Normal Plus Compact, J. Indian. Math. Soc., 72 (2005), 221-226.
[19] Mbekhta, M., Ascent, Descent et Spectre Essential Quasi-Fredholm, Rend. Circ. Math. Palermo, (1997), 175-196.
[20] Mbekhta, M., Muller, V., On the Axiomatic Theory of Spectrum II, Studia Math., (1996), 129-147.
[21] Nordgren, E. A., Composition Operators on Hilbert Spaces, J. Math. Soc. Japan, 34 (1982), 317-337.
[22] Nordgren, E. A., Composition Operators, Canada. J. Math., 20 (1968), 442449.
[23] Parrott, S. K., Weighted Translation Operators, Thesis, University of Michigan, Ann Arbor, 1965.
[24] Shields, A. L., Weighted Shift Operators and Analytic Function Theory, Topics in Operator Theory (C. Pearcy, ed.), Math. Surveys, no.(13), Amer. Math. Soc., Providence, R. I., (1974), 49-128.
[25] Singh, L., A Study of Composition Operators on l^{2}, Thesis, Banaras Hindu University, 1987.
[26] Tripathi, G. P., A Study of Composition Operators and Elementary Operators, Thesis, Banaras Hindu University, 2004.
[27] Taylor, A. E., Lay, D. C., Introduction to Functional Analysis, John- Wiley, New York Chichester Brisbane, 1980.
[28] Whitley, R., Normal and Quasinormal Composition Operators, Proc. Amer. Math. Soc., 70 (1978), 114-118.

