SOME REMARKS ON WIENER-HOPF EQUATIONS AND VARIATIONAL INEQUALITIES IN BANACH SPACES

Kaleem Raza Kazmi and Mohd. Iqbal Bhat
Department of Mathematics, Aligarh Muslim University, Aligarh -202 002.

(Received : November 25, 2002)

Abstract

In this paper, we consider a class of implicit variational inequalities in Banach spaces and prove its equivalence with a class of Wiener-Hopf equations. Further, using this equivalence, we suggest and analyze a Mann type iterative algorithm for finding the appropriate solution of the class of Wiener-Hopf equation and discuss its convergence criteria. The theorems in the paper extend and improve many known results in the literature.

Keywords : Implicit variational inequality, Wiener-Hopf equation, Mann type iterative algorithm, sunny retraction, η-strongly accretive mapping.

AMS Subject Classification : 47H04, 49J40.

1. Introduction :

Let B be a real Banach space and let $T, g: B \rightarrow B$ be two nonlinear mappings. Let K be a non-empty closed convex set in B, we consider an implicit variational inequality problem (IVIP) of finding $u \in B$ such that $g(u) \in \mathrm{K}$ and

$$
\begin{equation*}
<T u, J(v-g(u))>\geq 0, \quad \forall v \in K, \tag{1.1}
\end{equation*}
$$

where $J: B \rightarrow B^{*}$ is the normalized duality mapping defined by the condition:

$$
<x, J x>=\|x\|^{2}=\|J x\|^{2}, \forall x \in B
$$

where <.,.> denotes the normalized duality pairing. Some properties and examples of J can be found in [1].

Special Cases: If $B \equiv H$, a Hilbert space and if $g(B) \subseteq K$, for any $v \in B$, $g(v) \in K$, and then IVIP reduces to the general variational inequality of finding $u \in H$ such that $g(u) \in K$.

$$
<T u, g(v)-g(u)>\geq 0, \quad \forall g(v) \in K
$$

This problem represents odd order boundary value problems, see Noor [5].

We note that for suitable choices of the mappings T and g, IVIP (1.1) reduces to the well known forms of variational inequalities studied by various authors in Hilbert spaces, see for example Noor [5, and the references therein].

2. Preliminaries :

We first define the following concepts:
Definition 2.1. Let B be a real Banach space and let $\eta: B \times B \rightarrow B$ be a continuous mapping. A mapping $T: B \rightarrow B$ is said to be
(i) $\square-\eta$-strongly accretive if there exists $\square>0$ such that

$$
<T u-T v, J \eta(u, v)>\geq \square\|u-v\|^{2}, \forall u, v \in B ;
$$

(ii) \square-Lipschitz continuous if there exists a constant $\square>0$ such that

$$
\|T u-T v\| \leq \square\|u-v\|, \forall u, v \in B .
$$

Definition 2.2[2]. Let K be a nonempty closed convex subset of B. A mapping $R_{K}: B \rightarrow K$ is said to be retraction on K, if $R^{2}{ }_{K}=R^{2}{ }_{K}$. The mapping R_{K} is said to be a nonexpansive retraction if, in addition

$$
\left\|R_{K}(u)-R_{K}(v)\right\| \leq\|u-v\|, \quad \forall u, v \in B,
$$

and R_{K} is a sunny retraction if for all $u \in B$,

$$
R_{K}\left(R_{K} u+t\left(u-R_{K}(u)\right)=R_{K}(u), \forall t \in B .\right.
$$

Now, we shall give the following characterization of a sunny nonexpansive retraction mapping which can be found, e.g., in [3].

Lemma 2.1. Let R_{K} be a retraction, then R_{K} is a sunny nonexpansive retraction if and only if for all $u, v \in \mathrm{~B}$,

$$
<u-R_{K} u, J\left(R_{K} u-v\right)>\geq 0 .
$$

We also need the following result.
Lemma 2.2[2]. Let B be a Banach space. Then for all $u, v \in B$, we have

$$
\|u+v\|^{2} \leq\|u\|^{2}+2<v, J(u+v)>.
$$

Let R_{K} be the retraction mapping of B into K and let $Q_{K}=I-R_{K}$ where l is the identity operator. If g^{-1} exists, then we consider the problem of finding $z \in B$ such that

$$
\begin{equation*}
T g^{-1} R_{K} z+\square^{-1} Q_{K} z=0, \tag{2.1}
\end{equation*}
$$

where $\square>0$ is a constant. Equations of the type (2.1) are called implicit Wiener-Hopf equations. For the general treatment of Wiener-Hopf equations, see [6].

3. Main Results :

Firstly, we shall prove the following result.
Theorem 3.1. The IVIP (1.1) has a solution $u \in B$ such that $g(u) \in K$, if and only if the implicit Wiener-Hopf equation (2.1) has a solution $z \in B$, where

$$
\begin{align*}
z & =g(u)-\square T u, \\
g(u) & =R_{K} z, \tag{3.1}
\end{align*}
$$

where R_{K} is the retraction of B onto K and $\square>0$ is a constant.

Proof. Let $u \in B$ be the solution of (1.1). Then by Lemma 2.1, it follows that

$$
\begin{equation*}
g(u)=R_{K}[g(u)-\square T u] . \tag{3.2}
\end{equation*}
$$

Using $Q_{K}=I-R_{K}$ and applying (3.1) repeatedly, we obtain

$$
\begin{aligned}
Q_{K}[g(u)-\square T u] & =g(u)-\square T u-R_{\kappa}[g(u)-\square T u] \\
& =-\square T u \\
& =-\square T g^{-1} R_{\kappa}[g(u)-\square T u],
\end{aligned}
$$

from which it follows that

$$
T g^{-1} R_{K} z+\square^{-1} Q_{K} z=0,
$$

where

$$
z=g(u)-\square T u,
$$

and g^{-1} is the inverse of the operator g.
Conversely, suppose that $z \in B$ is a solution of (2.1). Then we have,

$$
T g^{-1} R_{K} z=-\square^{-1} Q_{K} z
$$

or,

$$
\begin{equation*}
\ldots T g^{-1} R_{K} z=-Q_{K} z=R_{K} z-z \tag{3.3}
\end{equation*}
$$

Now, from (3.3) and Lemma 2.1, for all $g(v) \in K$, we obtain

$$
\left.0 \leq\left\langle R_{K} z-z, J\left(v-R_{K} z\right)\right\rangle=<-\square T g^{-1} R_{K} z, J\left(v-R_{K} z\right)\right\rangle .
$$

Thus, $g(u)=R_{K} z$ is a solution of (1.1), and from (3.3), we have

$$
\begin{aligned}
& \square T u=g(u)-z, \\
& z=g(u)-\square T u .
\end{aligned}
$$

Remark 3.1. It is obvious that IVIP (1.1) and Wiener-Hopf equations are equivalent. Using this equivalence and by some suitable rearrangement, one can suggest a number of new iterative algorithms for solving IVIP (1.1).

The implicit Wiener-Hopf equation (2.1) can be written as

$$
Q_{K} z=-\square T g^{-1} R_{K} z,
$$

which implies by using (3.1),

$$
\begin{align*}
z & =R_{K} z-\square T g^{-1} R_{K} z \\
& =g(u)-\square T u . \tag{3.4}
\end{align*}
$$

On the basis of this formulation, we shall propose the following iterative algorithm for solving IVIP (1.1).

Mann Type Iterative Algorithm (MTIA) 3.1. For a given $z_{0} \in B$, compute z_{n+1} by the iterative scheme

$$
\begin{equation*}
g\left(u_{n}\right) \quad=\quad R_{K} z_{n}, \tag{3.5}
\end{equation*}
$$

$$
\begin{equation*}
z_{n+1}=\left(1-\square_{n}\right) \quad z_{n}+\square_{n}\left[g\left(u_{n}\right)-\square T u_{n}\right] \tag{3.5}
\end{equation*}
$$

for $n=0,1,2, \ldots$, where $\left\{\square_{n}\right\}$ is the sequence in $[0,1]$ satisfying the following conditions:
(i) $\square_{0}=1$,
(ii) $\sum_{\mathrm{n}=0}^{\infty} \alpha_{\mathrm{n}}=\infty$.

We now study those conditions under which the approximate solution z_{n+1} obtained from MTIA 3.1 converges to the exact solution z of implicit Wiener-Hopf equation (2.1).

Theorem 3.2. Let B be a real Banach space. Let $T: B \rightarrow B$ be $\square-\eta$-strongly accretive and \square-Lipschitz continuous; $g: B \rightarrow B$ be
$\square-\eta$-strongly accretive and \square-Lipschitz continuous and let $\eta: B \times B \rightarrow B$ be $\square-$ Lipschitz continuous. If $z_{n+1} \in B$ is the solution obtained from MTIA 3.1 and is the exact solution of the implicit Wiener-Hopf equation (2.1), then $z_{n+1} \rightarrow z$, strongly in B, for $\square>0$ such that

$$
\begin{align*}
& \left|\rho-\frac{\alpha-\beta(\delta+\lambda)}{2 \beta^{2}}\right|<\frac{\sqrt{l^{2}[\alpha-\beta(\delta+\lambda)]^{2}-2 \beta^{2}\left(l^{2} \delta^{2}-1\right)}}{2 \beta^{2} l}, \tag{3.7}\\
& l \alpha>l \beta(\delta+\lambda)+\beta \sqrt{2\left(l^{2} \delta^{2}-1\right)}, \quad l \delta>1,
\end{align*}
$$

where $\quad l=\frac{\lambda}{v}$.
Proof. Let $z \in B$ satisfy the implicit Wiener-Hopf equation. Now, equation (2.1) can be written as (3.1) and (3.4). Hence, from (3.4) and (3.6), we have

$$
\begin{align*}
\left\|z_{n+1}-z\right\| & =\left\|\left(1-\square_{n}\right) z_{n}+\square_{n}\left[g\left(u_{n}\right)-\square T\left(u_{n}\right)\right]-\left(1-\square_{n}\right) z-\square_{n}[g(u)-\square T u]\right\| \\
& \left.\leq\left(1-\square_{n}\right)\left\|z_{n}-z\right\|+\square_{n} \| g\left(u_{n}\right)-g(u)-\square T u_{n}-T u\right) \| . \tag{3.8}
\end{align*}
$$

Now, using Lemma 2.2, we have

$$
\begin{aligned}
& \left.\| g\left(u_{n}\right)-g(u)-\square T u_{n}-T u\right) \|^{2} \\
& \left.\leq\left\|g\left(u_{n}\right)-g(u)\right\|^{2}-2 \square<T u_{n}-T u, J\left(g\left(u_{n}\right)-g(u)-\square T u_{n}-T u\right)\right)> \\
& \leq \square^{2}\left\|u_{n}-u\right\|^{2}-2 \square<T u_{n}-T u, J \eta\left(u_{n}, u\right)> \\
& -2 \square<T u_{n}-T u, J\left(g\left(u_{n}\right)-g(u)-\square\left(T u_{n}-T u\right)\right)-J \eta\left(u_{n}, u\right)> \\
& \leq\left(\square^{2}-2 \square \square\right)\left\|u_{n}-u\right\|^{2}+2 \square\left\|T u_{n}-T u\right\| \\
& \times\left[\left\|g\left(u_{n}\right)-g(u)\right\|+\square\left\|T u_{n}-T u\right\|+\lambda\left\|u_{n}-u\right\|\right] \\
& \leq\left[\square^{2}-2 \square \square+2 \square \square(\square+\square \square+\square)\right]\left\|u_{n}-u\right\|^{2} .
\end{aligned}
$$

Hence, (3.8) becomes

$$
\begin{equation*}
\left\|z_{n+1}-z\right\| \leq\left(1-\square_{n}\right)\left\|z_{n}-z\right\|+\square_{n} \square_{1}\left\|u_{n}-u\right\| \tag{3.9}
\end{equation*}
$$

where $\quad \square_{1}:=\left[\square^{2}-2 \square(\square-\square(\square+\square \square+\square))\right]^{1 / 2}$.
Now, since g is $\square-\eta$-strongly accretive mapping and η is \square-Lipschitz continuous mapping, the we have
$\square\left\|u_{n}-u\right\|\left\|g\left(u_{n}\right)-g(u)\right\|><g\left(u_{n}\right)-g(u), \eta\left(u_{n}, u\right)>\geq v\left\|u_{n}-u\right\|^{2}$
i.e.,

$$
\begin{aligned}
& \left\|u_{n}-u\right\| \leq \frac{\lambda}{v}\left\|g\left(u_{n}\right)-g(u)\right\| \\
& =\frac{\lambda}{v}\left\|R_{K} z_{n}-R_{K} z\right\| \leq \frac{\lambda}{v}\left\|z_{n}-z\right\|,
\end{aligned}
$$

where we have used (3.1).
Using (3.9), we get

$$
\begin{aligned}
\left\|z_{n+1}-z\right\| & \leq\left(1-\square_{n}\right)\left\|z_{n}-z\right\| \mid+\square_{n} \square\left\|z_{n}-z\right\| \\
& =\left[\left(1-\square_{\mathrm{n}}(1-\square)\right]| | z_{n}-z \|,\right.
\end{aligned}
$$

where $\quad \square:=\frac{\lambda}{v} \square_{1}$.
Now, by condition (3.7), it follows that $0<\square<1$, and hence by iteration, we have

$$
\begin{equation*}
\left\|z_{n+1}-z\right\| \leq \prod_{i=0}^{n}\left(1-\square_{i}(1-\square)\right)\left\|z_{0}-z\right\| . \tag{3.10}
\end{equation*}
$$

Since $\sum_{n=0}^{\infty} \square_{n}=\infty, \square_{0}=1, \square_{n} \leq 1$ and $0 \leq \square<1$, then $\lim _{\mathrm{n} \rightarrow \infty} \prod_{\mathrm{i}=0}^{\mathrm{n}}\left(1-\square_{\mathrm{i}}(1-\square)\right)=0$, see Kazmi [4], and hence (3.10) implies that $z_{n+1} \rightarrow z$ strongly in B that completes the proof.

Remark 3.2. It is clear that $\square \leq \square$ and $\square \leq \square$. Further, condition (3.7) is true for suitable values of constants, for example $\square=\square=1$; $\square=\square=0.1 ; \square=0.01 ; \square=1$.

References:

1 Alber, Ya. I., Metric and generalized projection operators in Banach spaces: Properties and applications, In Theory and Applications of Nonlinear Operators of Monotone and Accretive Type, (Edited by A. Kartsatos), pp. 15-50, Marcel Dekker, New York, 1996.

2 Chen, J.Y., Wong, N.C. and Yao, J.C., Algorithms for generalized co-complementarity problems in Banach spaces, Comput. Math. Appl., 43 (2002), 49-54.

3 Goebel, K. and Reich, S., "Uniform Convexity, Hyperbolic Geometry and Nonexpensive Mappings", Marcel Dekker, New York, 1984.

Kazmi, K.R., Mann and Ishikawa type perturbed iterative algorithms for generalized quasi-variational inclusions, J. Math. Anal. Appl. 209 (1997), 572-584.

5 Noor, M.A., Wiener-Hopf equations and variational inequalities, J. Optim. Theory Appl. 79 (1), 189-206 (1993).

6 Speck, F.O., "General Wiener-Hopf Factorization Methods", Pitman Advanced Publishing Program, London, 1985.

