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Abstract :
In this paper, we provide hypergeometric proof of certain results and deduce a number of new

and known results. This result is equivalent to Entry 12 of Chapter XVI of Ramanujan’s second
Notebook.
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1. INTRODUCTION, NOTATION AND DEFINITION

Ramanujan’s contribution to continued fractions associated with analytic functions is remark-
able. His Notebooks contain a large number of beautiful results associated with hypergeometric
functions (both, basic and ordinary) and continued fractions. Many of his continued fraction
results can be provided with hypergeometric proof. In a recent publication Denis and Singh [2,
3] provided hypergeometric proof of Entries 25 and 33 of Chapter XII of Ramanujan’s [5] Second
Notebook, and also provided their basic analogues.

Motivated by the above results, we propose to provide hypergeometric proof of the
following results.

[a2q3, b2q3; q4]∞
[a2q, b2q; q4]∞

=
1

1− a2q −
q(b2 − a2q2]

1 + q2 +

q(a2 − b2q2)

(1− a2q)(1 + q4) −
(q5(b2 − a2q6)

1 + q6 +

q(a2 − b2q6)

+(1− a2q)(1 + q8)
− q9(b2 − a2q10)

1 + q10 + .......
(1.1)
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where

[α, β; p]∞ = [α; p]∞[β; p]∞

and [α; p]∞ =

∞∏
r=0

(1− αpr), | p |< 1.

Entry 12 of Chapter XVI of Ramanujan’s second Notebook [5] mentions a different continued
fraction representation for the left side of (1.1).The present result provides an equivalent repre-
sentation for the infinite product on the left.

Before we proceed further, we introduce a basic hypergeometric function:
For any numbers a and q, real or complex and | q |< 1,let

[α; q]n ≡ [α]n =

{
(1− α)(1− αq)(1− αq2).........(1− αqn−1);n > 0
1 ;n = 0

}
(1.2)

Accordingly, we have

[α; q]−n =
(−)nqn(n+1)/2

αn[q/α; q]n
.

Also,

[a1, a2, ..., ar; q]n ≡ [a1; q]n[a2; q]n...[ar; q]n.

Now, we define a basic hypergeometric series,

rφs

[
a1, a2, ..., ar; q; z
b1, b2, ..., bs

]

=

∞∑
n=0

[a1, a2, ..., ar; q]nz
n{(−)nqn(n−1)/2}1+s−r

[q, b1, b2, ..., bs; q]n
, (1.3)

where 0 <| q |< 1 and r < s+ 1.

We define a basic bilateral hypergeometric function as,

rψs

[
a1, a2, ..., ar; q; z
b1, b2, ..., bs

]

=

∞∑
n=−∞

[a1, a2, ..., ar; q]nz
n{(−)nqn(n−1)/2}s−r

[b1, b2, ..., bs; q]n
, (1.4)
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where | b1.b2....bs/a1.a2....ar |<| z |< 1 .

2. Proof of (1.1).

In a publication Singh [4] established the following result,

3φ2

[
a, b, c; qde/abc
d, e

]
3φ2

[
aq, b, c; q; de/abc
dq, e

] =

= 1− (de/abc)(a− d)(1− b)(1− c)/(1− e)(1− d)(1− dq)
(1− e/aq/(1− e)+

(e/aq)(1− aq)(1− dq/b)(1− dq/c)/(1− e)(1− dq)(1− aq2)

1 −+

(deq/abc)(a− dq)(1− bq)(1− cq)/(1− eq)(1− dq2)(1− dq3)

(1− e/aq)/(1− eq) +

(e/aq)(1− aq2)(1− dq2/b)(1− dq2/c)/(1− eq)(1− dq3)(1− dq4)

1 −

deq2/abc)(a− dq2)(1− bq2)(1− cq2)/(1− eq2)(1− dq4)(1− dq5)

(1− eaq)/(1− eq2) + .........
(2.1)

Now, setting a = 1 in (2.1) and then taking d = 1 in it we get,

[e/b, e/c; q]∞
[e, e/bc]∞

=

=
1

1 −
(e/bc)(1− b)(1− c)/(1− q)

(1− e/q) +

(e/q)(1− q)(1− q/b)(1− q/c)/(1− q)(1− q2)

1−

(eq/bc)(1− q)(1− bq)(1− cq)/(1− q2)(1− q3)

(1− e/q) +

(e/q)(1− q2)(1− q2/b)(1− q2/c)/(1− q3)(1− q4)

1 −
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(eq2/bc)(1− q2)(1− bq2)(1− cq2)/(1− q4)(1− q5)

(1− e/q) + ........
(2.2)

The above can be simplified to

[e/b, e/c; q]∞
[e, e/bc]∞

=

1

(1− e/q))−
(e/bc)(1− b)(1− c)/(1− q)

1 +

(e/q)(1− q/b)(1− q/c)/(1− q2)

(1− e/q) −

(eq/bc)(1− q)(1− bq)(1− cq)/(1− q2)(1− q3)

1 +

(e/q)(1− q2)(1− q2/b)(1− q2/c)/(1− q3)(1− q4)

(1− e/q) −

(eq2/bc)(1− q2)(1− bq2)(1− cq2)/(1− q4)(1− q5)

1 + .........
(2.3)

Now, replacing q by q4 and then replacing e, b and c by qx+n+5, q2n+2 and q2, respectively, in
(2.3),we get,

[qx−n+3, qx+n+3; q4]∞
[qx+n+1, qx−n+1; q4]∞

=

1

(1− qx+n+1)
− qx−n+1(1− q2n+2)(1− q2)/(1− q4)

1 +

qx+n+1(1− q2−2n)(1− q2)/(1− q8)

(1− qx+n+1) −

qx−n+5(1− q4)(1− q2n+6(1− q6)/(1− q8)(1− q12)

1 +

qx+n+1(1− q8)(1− q6−2n)(1− q6)/(1− q12)(1− q16)

(1− qx+n+1) − .........
(2.4)

Now , setting qn+x = a2,qx−n = b2 and q2n = a2/b2 in (2.4), we get

[a2q3, b2q3; q4]∞
[a2q, b2q; q4]∞

=
1

(1− a2q) −
q(b2 − a2q2)/(1 + q2)

1 +

q(a2 − b2q2)/(1 + q2)(1 + q4)

(1− a2q) −
q5(b2 − a2q6)/(1 + q4)(1 + q6)

1 +
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q(a2 − b2q6)/(1 + q6)(1 + q8)

(1− a2q) − ............
(2.5)

which can be put in the form,

[a2q3, b2q3; q4]∞
[a2q, b2q; q4]∞

=
1

(1− a2q) −
q(b2 − a2q2)

(1 + q2) +

q(a2 − b2q2)

(1− a2q)(1 + q4) −

q5(b2 − a2q6)

(1 + q6) +

q(a2 − b2q6)

(1− a2q)(1 + q8) − .....
(2.6)

By an appeal to analytic continuation the result holds for general values of the parameters.
This proves (1.1)

In Chapter 16 of the second notebook of Ramanujan [5], entry 12 states that,

[a2q3, b2q3; q4]∞
[a2q, b2q; q4]∞

=
1

(1− ab) +

(a− bq)(b− aq)
(1− ab)(1 + q2) +

(a− bq3)(b− aq3)

(1− ab)(1 + q4) +

(a− bq5)(b− aq5)

(1− ab)(1 + q6) + .....
(2.7)

The result (2.6) provides an equivalent continued fraction representation for the function on
the left.

3. Special cases
In this section we shall discuss certain interesting special cases of our result (1.1).

Taking a → 0 and b → 1 in (1.1),we get the following known result (cf.Andrews and Berndt
[1;p.156]),

[q3; q4]∞
[q; q4]∞

=
1

1 −
q

1 + q2 −
q3

1 + q4 −
q5

1 + q6 −
q7

1 + q8 − ......
(3.1)

Also, a→ 1 and b→ 0 in (1.1) leads to

[q3; q4]∞
[q; q4]∞

=
1

1− q +

q3

1 + q2 +

q

(1− q)(1 + q4) +

q11

1 + q6 +

q

+(1− q)(1 + q8) +

q19

1 + q10 +

q

(1− q)(1 + q12 + .....
(3.2)

Next, if we take a = 0 and b = i and also a = i and b = 0 in (1.1), we get the following two
equivalent continued fractions,
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[−q3; q4]∞
[−q; q4]∞

=
1

1 +

q

1 + q +

q3

1 + q4 +

q5

1 + q6 + .....
(3.3)

(a = 0, b = i)

=
1

1 + q −
q3

1 + q2 −
q

(1 + q)(1 + q4)
− q11

1 + q6 −

q

−(1 + q)(1 + q8) −
q19

1 + q10 − .....
(3.4)

(a = i, b = 0)

Next, with a = b = i, (1.1) yields,

[−q3; q4]2∞
[−q; q4]2∞

=
1

1 + q +

q(1− q2)

1 + q2 −
q(1− q2)

(1 + q)(1 + q4) +

q5(1− q6)

1 + q6 −

q(1− q6)

−(1 + q)(1 + q8) +

q9(1− q10)

1 + q10 − ......
(3.5).

Further, setting a = b =
√
q in n(1.1),we get the following interesting result involving Ra-

manujan’s ψ- theta function,

ψ2(q2) =
[q4; q4]2∞
[q2; q4]2∞

=
1

1− q2 −
q2(1− q2)

1 + q2 +

q2(1− q2)

(1− q2)(1 + q4) −
q6(1− q6)

1 + q6 +

q2(1− q6)

+ (1− q2)(1 + q8) +

q10(1− q10)

1 + q10 − .......
(3.6)

where

ψ(q) =

∞∑
n=0

qn(n+1)/2 =
[q2; q2]∞
[q; q2]∞

Again, taking a = ωi and b = ω2i (ω = e2πi/3) in (1.1),we get the following interesting result

∞∏
n=1

(1− q4n−1 + q8n−2)

(1− q4n−3 + q8n−6)
=

1

1 + ω2q +

ωq(1− ωq2)

1 + q4) −
ω2q(1− ω2q2)

(1 + ω2q)(1 + q4) +

ωq5(1− ωq6)

+ 1 + q6 −
ω2q(1− ω2q6)

(1 + ω2q)(1 + q8) +

ωq9(1− ωq10)

1 + q10 −
ωq2(1− ω2q10)

(1 + ω2q)(1 + q12) + ....
(3.7)
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If we put a = b = q in (1.1), we get

[q; q4]2∞
[q3; q4]2∞

=
(1− q2)2

1− q3 −
q3(1− q2)

1 + q2 +

q3(1− q2)

(1− q3)(1 + q4) −
q7(1− q6)

1 + q6 +

q3(1− q6)

+(1− q3)(1 + q8) −
q11(1− q10)

1 + q10 + .....
(3.8)

Further,for a = 0 and b = q in (2.1),we get,

[q; q4]∞
[q3; q4]∞

=
1− q
1 −

q3

1 + q2 −
q5

1 + q4 −
q7

1 + q6 − ...
(3.9)

Lastly, if we replace q by q2 in (1.1) and then set a = q3/2 and b =
√
q in it,we get

[q, q7; q8]∞
[q3, q5; q8]∞

=
1− q

1− q5 −
q3(1− q6)

1 + q4 +

q5(1− q2)

(1− q5)(1 + q8) −
q11(1− q14)

1 + q12 +

q5(1− q10)

+ (1− q2)(1 + q16) − ...
(3.10)

A number of other special cases could easily be deduced.
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