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Abstract: From a very modest presentation as an introductory composition of
wavelets by Chui in 1992 to a very specialist and advanced monographs by Meyer
in 1990, and by Daubechies in 1992, one will certainly experience the beauty of this
subject, which in the recent time has attracted both the pure and applied mathe-
maticians. Wawvelet transform, more correctly called the integral wavelet transform,
is one of the two entities of the wavelet analysis. Possibly the window Fourier trans-
form, also called the Gabor transform (first introduced by Gabor in 1946), is the
initiation for wavelet transform. In this brief note we attempt to discuss some of
its aspects.
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1. Introduction

Wavelets stand at the intersection of the frontiers of mathematics, scientific
computing and signal and image processing. It has been one of the major research
direction in science in the last decade and is still undergoing rapid growth. Wavelet
is a versatile tool in very aspect of mathematical context and possesses great poten-
tial for applications owing to viewing it as a new basis for representing functions.
Some consider it as a technique for time frequency analysis and others think of it as
a new mathematical subject. Wavelet analysis provides another fascinating inter-
face between physics and mathematics. It were more instrumental in the explosive
growth of the subject than were mathematical physicist.
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In this paper, the brief historical survey about this branch of analysis is intro-
duced through some monographs and articles, which raises the awareness among
researchers in this field to make others feel involved. The paper concludes with
an application, which involves wavelet transform, fractional calculus and a special
function space.

2. Historical Overview

Fourier analysis is an established subject in the core of pure and applied math-
ematical analysis. Not only the techniques in this subject are of fundamental impor-
tance in all areas of science and technology, but both integral Fourier transform
and Fourier series also have significant physical interpretations . In addition, the
computational aspects of Fourier series are especially attractive, mainly because of
the orthogonality property of the series and owing to its simple expression in terms
of only two functions sinz and cosz. It is asserted that any 27 periodic function
f(z) is the sum

ag + Z(ak cos kx + by sin kx)
k=1

of its Fourier series, ag, ay, by, being its coefficients.

Given a signal, say a sound or an image, Fourier analysis easily calculates the
frequencies and the amplitudes of those frequencies, which make up a the signal.
This provides a broad overview of the characteristics of the signal, which is impor-
tant for theoretical considerations. Although Fourier inversion is possible under
certain circumstances, Fourier methods are not always a good tool to recapture
the signal, particularly if it is highly non-smooth : too much Fourier information
is needed to reconstruct the signal locally. In such cases, wavelet analysis is of-
ten very effective, because it provides a simple approach for dealing with the local
aspects of a signal. Wavelet analysis provides new methods for removing noise
from signals, that complement the classical methods of Fourier analysis.

Wavelets, developed mostly during the last 25 years, is connected to older ideas
in many others fields, including pure and applied mathematics and engineering.
The concept of wavelets or ondelettes started to appear in the literature only
in 1980’s. This new concept can be viewed as a syntheses of various ideas which
originated from different disciplines, including mathematics (Calderén Zygmund
operators and Littlewood - Paley theory), physics (coherent states formalism in
quantum mechanics and in renormalization group) and engineering (quadratic mir-
ror filters, side band coding is signal processing and pyramidal algorithm in image
processing).

In early forties, those who used the Fourier approach in order to analyze natural
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behaviours, were frustrated with the limitations of Fourier transform and Fourier
series in the investigation of physical phenomena with non-periodic behaviour and
local variations, which possibly raised the need for simultaneous time frequency
of Gabor’s short time Fourier transform in 1946, and so called Wigner-
Ville transform in 1947. But the common ingredient of these two transforms
is the sinusoidal kernel in the core of their definitions, so that both high and low
frequency behaviours are investigated in the same manner and any signal under
investigations is matched by the same rigid sinusoidal waveform. In place of the
sinusoidal kernel as modulation (for phase shift), a French geophysicist, Morlet [30,
31], introduced the operation of dilation, while keeping the translation operations,
developed an algorithm for the recovery of the signals under investigation from
this wavelet transform. Then, a French theoretical physicists, Alex Grossman,
who quickly recognized the importance of the Morlet wavelet transform, which is
something similar to coherent states formalism in quantum mechanics, developed
an exact inversion formula for the wavelet transform. Then, by the joint venture
of mathematical physics group in Marseille, led by Grossman, in collaboration
with Daubechies, Paul and others, extended Morlet’s discrete version of wavelet
transform to the continuous version, by relating it to the theory of coherent states
in quantum physics. This was the notion of the integral (or continuous) wavelet
transform.

In order to eliminate the above said weakness of the Fourier analysis, Dennis
Gabor [14], a Hungarian British physicist and engineer, first introduced the Win-
dowed Fourier transform (or the short-time Fourier transform, or more
appropriately the Gabor transform) by using a Gaussian distribution function as
the window function. The idea of using a window function lies in order to localize
the Fourier transform and then shift the window to another position, and so on.

The remarkable feature of the Gabor transform is the local aspect of the Fourier
analysis, with the time resolution equal to the size of the window. In fact, it deals
with discrete set of coefficients which allows efficient numerical computation of
those coefficients. However, the Gabor wavelets suffers from some serious algorith-
mic handicaps and shortcomings which have, successfully, been solved by Henrique
Malvar [23, 24]. Malvar wavelets are much more effective and superior to other
wavelets, including Gabor wavelets and Morlet-Grossman wavelets.

The development of the wavelet transform and mathematical analysis of the
wavelet transform had really not begun, until a year later in 1985, when Meyer,
learnt about the work of Morlet and the Marseille group, recongnized immediately
the deep connection of Morlet’s algorithm to the notion of resolution of identity in
harmonic analysis due to Calderén in 1964. He then applied the Littlewood-Paley
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theory to the study of wavelet decomposition. In this regard, Yves Meyer may be
considered as the founder of this mathematical subject, which we call wavelet
analysis.

Since wavelet analysis is built on Fourier analysis, Meyer’s book [26] devotes a
brief discussion on distributions, the Poisson summation formula, Shannon’s sam-
pling theorem and the Littlewood-Paley theory. He also explains the construction
of wavelets and the application of wavelet series representations to the analysis of
the most important function spaces, such as Holder, Hardy, Block and Besov and
also the notion of holomorphic wavelets.

The next great achievement of wavelet analysis was due to Daubechies et al. [10]
which suggests a new construction of painless non -orthogonal wavelet expansion.
During 1985-86, further work of Lemarié and Meyer [18] on the first construction of
a smooth orthonormal basis on R and RY |, marked the beginning of their famous
contributions to the wavelet theory. The collaborations of Meyer and Mallat, cul-
minated with the remarkable discovery by Mallat of new formalism [21, 22], came
to be known as multiresolution analysis.

Inspired by the work of Meyer and Daubechies [9] made a remarkable con-
tribution to wavelet theory by constructing families of compactly supported
orthonormal wavelets with some degree of smoothness. But after a great suc-
cess, she reconginzed that it is difficult to construct wavelets that are symmetric,
orthogonal and compactly supported. Chui and Wang [5, 6] introduced compactly
spline wavelets, and semi-orthogonal wavelet analysis. As a natural exten-
sion of wavelet analysis, Coifman et al. [7, 8] discovered wavelet packets which
can be used to design efficient schemes for the representation and compression of
acoustic signals and images.

3. From Fourier Analysis to Wavelet Analysis

Fourier analysis usually refers to (integral) Fourier transform and Fourier
series. A Fourier transform is the Fourier integral of some function f defined on the
real line R . When f is thought of as an analog signal, then its domain of definition
R is called continuous time domain. In this case, the Fourier transform f of f
describes the spectral behaviour of the signal f . Since the spectral information is
given in terms of frequency, the domain of definition of Fourier transform f , which
is again R , is called the frequency domain. On the other hand, a Fourier series
is a transformation of bi-infinite sequences to periodic functions. Hence, when a
bi-infinite sequence is thought of as a digital signal, its domain of definition, which
is the set Z of integers, is called the discrete time domain. In case of its Fourier
series, again describes the spectral behaviour of digital signal, and the domain of
a Fourier series is again the real line R which is the frequency domain. However,
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since Fourier series are 27 periodic, the frequency domain R in this situation, is
usually identified with the unit circle.

The importance of both the Fourier transform and the Fourier series not only
form the significance of their physical interpretations such as frequency analysis
of signals, but also claim the fact, that Fourier analysis techniques are extremely
powerful, for instance, in the study of wavelets analysis, the Poisson summation
functions, and Parseval identities for both series and the integrals; Fourier trans-
forms of the Gaussian, convolution of functions and delta distributions etceteras
are often encountered.

Analogous to Fourier analysis, there are two important mathematical entities
in wavelet analysis, the integral wavelet transform and wavelet series. The
integral wavelet transform is defined to be the convolution with respect to the dila-
tion of the reflection of some function v called a basic wavelet, while the wavelet
series is expressed in terms of a single function v, called an R-wavelet (or simply a
wavelet) by means of two very simple operations : binary dilations and integral
translations. But unlike, Fourier analysis, since both are continuous and discrete
and wavelet transform are defined on the real line group, these two components
are intimately related. For instance, two functions ¢) and 1 in L?(—00, 00) consti-
tute a pair of dual wavelets, if two families {¢;} and {i/;]k} where j and k run
over the set of all integers, are biorthogonal Riesz bases of L?(—o0,00). Here for
every function f defined on the real line, the notation f;; = 27/2f(27 — k) has been
used. Hence, the relation between the continuous and discrete wavelet transform
is evident from the observation that, any f in L?(—o0,00) the coefficients (which
constitute the discrete wavelet transform of f ) of the series expansion of f in terms
of the Riesz basis {1;} are the values of the continuous wavelet transform of f

with the dual wavelet ¢ as the convolution kernel (or analyzing wavelets) evaluated
at the time scale positions (k277,277) . When some appropriate frequency wy of
a single function f has been identified, the change of scales (say by 27/ for some
integer j ) reveals the frequency context at 27wy of the signal, with known location
near k27 in time (or spatial) axis. Furthermore, since the width of zzjyk Narrows or
widens as j increases or decreases, the wavelet transform has the so called zoom
in and zoom out capabilities. This is one of the main reason that wavelet analysis
is very useful for time frequency analysis.

4. Gabor transform and their basic properties

Time frequency analysis has always been challenging in signal processing. In
the study of signals, represented by a function f(t) in the multidimensional case,
f(t) represents an image or a video signal , the idea of frequency analysis can only
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be local in time.
The Fourier transform of a signal of a function fis usually defined by[9]

~ 1 o0 )
=— t)e "dt 1
flu) = <= [ fe (1)
One of the remarkable features of this transform is, that the integration of the
signal is performed over the whole real line R so that every point of R contributes

~

to the analysis of f(w) . The inversion (or reconstruction) formula is given by

== [ " Flw)eidw )

In case of the frequency-modulated signals, the idea of local frequency plays
an important role and hence, the study of local Fourier transforms becomes
important.

In order to determine the local information in the Fourier transform analysis, it
is necessary to use an analyzing function 1) which has localization properties, both
in frequency (around some mean frequency (wy)) and in time (around some mean
time t,) domains. Such a function ¢ is called a wavelet which must be wave of
finite duration. In view of the Parseval relation for the Fourier transform

~

(f )= (f, ) (3)

where f,1) € L*(R) and (f,) is the inner product in L*(R), physically, (f,) can
be treated as the average information of f in the vicinity of ¢, and (]?, 12) as the
average information of fin the neighbourhood of wy; .

In order to incorporate both time and frequency localization properties in one
single transform function, Dennis Gabor introduced the windowed Fourier trans-
form (or the Gabor transform) by using a Gaussian distribution function as a
window function g, (¢t — b), where a measures the width of the window, and the pa-
rameter b is used to translate the window in order to cover the whole time domain.
The remarkable property of the Gabor transform is the local aspect of Fourier
transform with time resolution equal to the size of the window. Using the canoni-
cal coherent state, the continuous Gabor transform (Windowed Fourier transform)
of f with respect to ¢ , denoted by fg(v,t) , is defined by

GU1\0.t) = Ffo.0) = <= [ st = near

- ©
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where f,g € L*(R) with the inner product (f,g). Clearly, the Gabor transform
]79(1), t), of a given signal f , depends on both , the frequency v and time ¢.

In practical applications, f and g represent signals with finite energy. In quan-
tum mechanics, f,(w,t) is referred to as the canonical coherent state representation
of f and used by Glauber in quantum optics. The continuous Gabor transform de-
fines the properties as linearity, translation, modulation, conjugation, and Parseval
formula. Considering the Paresval identity, the Gabor transformation is an isome-
try from L?(R) into L?(R) . The discrete Gabor transform is defined by

F(m,n) = / Ot = (fr guun) (5)

the double series > F(m,n)gmn(t) is called the Gabor series of f(t).

m,n=—o00

In many applications, it is more convenient to learn from a numerical point of
view, to deal with the discrete transforms rather than continuous ones. The theory
of Gabor transform has been generalized by Janseen [15, 16] for tempered distribu-
tions. Among many important results, he proved that any tempered distribution

can be written as
Z Cm,n gm,n (t) )
m,n

where g is not necessarily a Gaussian function, but a function g € S, where S is the
Schwartz space of generalized function .The n-dimensional Gabor transform
can also be defined as

GU1\0.t) = Fo.t) = s [+ [ f@lata =0 0in (o)

where v, t,2 € R",x = (21, ...,2,) and = - v = 2101 + ToUy + -+ - + 2pv,. The
Gabor transformation provides a representation of n-variables by a function 2n
variables.The Gabor transform has been found to be very useful in many physical
and engineering applications, including signal processing and quantum optics.

5. Continuous Wavelet Transforms and their Basic Properties

Morlet [30, 31] modified the Gabor wavelets to study the layering of sediments in
a geophysical problem of oil exploration, which led to the discovery of the wavelet
transform, seems to be an efficient and effective time frequency representation
algorithm. The major difference between the Morlet wavelet representation and
the Gabor wavelet, is that the former has a more and more acute spatial resolution
as the frequency gets higher and higher.
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Based on the idea of wavelets as a family of functions, constructed from trans-
lation and dilation of a single function v, called the mother wavelet, is define by

1 t—20
wa,b(t) = mw (T) , @, be R, a # 0 (7)
where a is called the scaling parameter, which measures the degree of compres-
sion or scale, and b as translation parameter, which determines the time location
of the wavelet. If |a|] < 1, the above equation is the compressed version of the
mother wavelet and corresponds to mainly higher frequencies.
The success of Morlet numerical algorithms prompted Grossman to make a
more extensive study of the Morlet wavelet transform which led to the recognition,
that wavelets 1),,(t) corresponds to a square integrable representations of the affine

group.
Definition 1 (Wavelet ) : A wavelet is a function ¢ € L*(R) which satisfies the
condition

/OO de<oo (8)

o W]
where QZ(w) is the Fourier transform of ¢(¢) .

Definition 2 : (Continuous Wavelet Transform) : If ¢ € L*(R), and ,,(?)
is given by (7), then the integral transformation Wy, defined on L*(R), given by

Wolf1(ab) = (f,thas) = / o (9)

is called a continuous wavelet transform of f(t) . The continuous wavelet transform
also have basic properties as linearity, translation, dilation, symmetry , parity,
antilinearity and Parseval relation.

6. Multiresolutiuon Analysis and Construction of Wavelets
There arise some difficulties in dealing with frames due to lack of orthogonality.
Haar wavelet, which is defined by

1, 0<t<1/2
ety=1{ -1 ,1/2<t<1
0 , otherwise

forms an orthogonal system of wavelets based on the so called, multiresolution
analysis. This is the formal approach to construct orthonormal wavelet bases,
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using a definite set of rules and procedures. In application, it is an effective math-
ematical framework for hierarchical decomposition of a signal or an image into
components of different scales.

7. Recent Developments

The recent developments and outcomes are exponential. Walter defines wavelets
and generalized functions [35] and in another publication [36], he introduces wavelets
on R and analytic and harmonic wavelets in half planes; where he proves that the
series of the said nomenclatures can be used to define the analytic representa-
tion of some tempered distributions. Debnath [12], introduces the wavelet trans-
form and Gabor transform and described their application. This paper deals with
brief historical introduction about wavelets and is self explanatory. Debnath and
Mikusiniski [13], introduced the Hilbert space and their application to wavelets.
Pathak [33] investigated a self adjoint method and a complex inversion formula for
the wavelet transform and further, the wavelet transform of generalized function
is also discussed. Chui and Li [4] defines the notion of functional wavelet trans-
form using the duals as analyzing wavelets, which retains some of the properties
of the integral wavelet transform of Grossman and Morlet, such as the property
of vanishing moments. Jiang [17], considered the wavelet transform associated
to the Weyl-Poincare group and its quotient group, and then gave an orthogonal
decomposition of L?- space on the cartan domain. Using the concept of Fréchet
space of distribution, Pandey [32] defines weighted modulation spaces on a locally
compact abelian group, and proves a theorem on their wavelet representation. In
[25] the wavelet series characterization of various classes of tempered distributions
is presented which consists of derivatives of L,,p > 1 functions. Bielecki et al. [2]
considered the signals as tempered distribution which is used for deriving a mul-
tiresolution analysis of spaces of signals. They also introduce Wavelet-Stieltjes
transforms and prove uniqueness theorem for it and compare wavelet transform
with them.

8. Wavelet Transform of Fractional Integrals for Integrable Boehmians
[20]

In what follow is an excellent combination of three most powerful entity of ap-
plicable analysis, which is not found to have appeared before. This deals with the
wavelet transform of fractional integral operator (the Riemann-Liouville operators)
on Boehmian spaces [20] . By wvirtue of the existing relation between the wavelet
transform and the Fourier transform, we obtained integrable Boehmians defined on
the Boehmian space for the wavelet transform of fractional integrals.

8.1 Brief Description
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Definition 3 [34, p.33] : Let ¢(z) € Li(a,b). Then the integrals

(29)(o) o= s [ o =0 (0t w0, (10)
(I o) (x) == ﬁ/ (t —2)*p(t)dt , x < b, (11)

where a > 0, are Riemann-Liouville fractional integrals of order o« . They are
also known as left-sided and right-sided fractional integrals, respectively. Indeed,
these integrals are extensions from the case of a finite interval [a, ] to the case of
a half-axis, given by

(5.0)(0) = e [ =00t 0<a <o (12)

while for the whole axis, it is given, respectively, by [34, p. 94]

(ITp)(z) = ﬁ /_I (x—t)* Tpt)dt , —co< <00 (13)
and . -
(I%p)(x) = m/ (t—2)* Tpt)dt , —co< 1< o0 (14)

The Fourier transform of the fractional integrals I$p are [34, p. 147]
F(ILp) = (Fi2)"@(z) , ¢ € Li(a,b) . (15)

Study of regular operators of Mikusinski by Boehme [3] resulted into the theory
of Boehmians, the generalization of Schwartz distribution theory. These regular
operators form a subalgebra of Mikusinski operators such that they include only
such functions whose support is bounded from the left, and at the same time do
not have any restriction on the support. The general construction of Boehmians
gives rise to various function spaces, which are known as Boehmian spaces |cf.
Mikusinski and Mikusinski [27] and Mikusiriski [28, 29]]. It is observed that these
spaces contain all Schwartz distributions, Roumieu ultradistributions and tempered
distributions.

The name Boehmian is used for all objects by an algebraic construction, which
is similar to the construction of the field of quotients. Suppose G is an additive
commutative semigroup, S be a subset of group G such that S C G is a sub
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semigroup, for which we define a mapping * from G x S to G such that following
conditions are satisfied (these condition are for the mapping *) :

(i) if 0,n € S, then (6 xn) € Sand xn=n*0

(i) if « € G, 0, € S, then (a* ) *xn=ax(J*n)

(iii) if a, B € G,0 € S, then (v + ) x 0 = (ax 0) + (5 * ).

The delta sequence, denoted by A | is defined as members of class delta which
are the sequences of subset S, and satisfies the conditions

(i) if o, 5 € G, () € A and (a*d,) = (B *,), ¥V n, then a = § in G.

(i) if (6n), (pn) € A, then (0, * v,) € A.

Then the quotient of sequences is defined as the element of certain class A of
pair of sequences defined by

A= {(fn)7 (@n) : (fn) C GNa (¢n> € A}'

This is denoted f,, /¢, by such that

fn % n = fo*@m, YVmmneN.
Further, the quotients of sequences f, /¢, and g,/v, are called equivalent if

fo *Un = gn * ©n, Vn e N.

The equivalence relation defined on A and the equivalence classes of quotient
of sequence are called Boehmians .

The space of all Boehmians, denoted by B, has the properties addition, multi-
plication and differentiation. The Boehmian space By, will be called the space of
locally integrable Boehmians if the group G be the set of all locally integrable func-
tion on R and possibly two such functions are identified with respect to Lebesgue
measure ( these functions are equal almost everywhere) and the topology of this
space is taken to be the semi-norm topology generated by

pn(f)z/\fydA n=12 ...

where A is the usual Lebesgue measure on R and D(R). In other words, if
f € Ly and (6,) is the delta sequence, then ||(f*d,)— f|| — 0, as n — oo.
A pair of sequences (f,, ) is called a quotient of sequences, and is denoted by
foon it fn € Li(n = 1,2,...) where (¢,) is a delta sequence and f,, * @, =
fa * om,¥Y m,n € N, whereas, two quotients of sequences f,/y, and g,/¢, are
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equivalent if f, * ¢, = g, * v,,V n € N. The equivalence class of quotient of se-
quences will be called an integrable Boehmain, the space of all integrable Boehmian
will be denoted by By, .Convergence of Boehmians is defined in [Mikusiniski [28]].
The terminologies regarding Boehmians and Boehmian spaces can be referred to
in [Mikusiniski and Mikusinski [27]], Mikusiniski [28, 29]. Authors of this paper also
investigate the Gabor transform for integrable Boehmian [1], and applications in
Fourier and Lapalce transform and distribution spaces to fractional calculus in [19].

8.2 Main Results
Using the relation between the Gabor and the Fourier transform,

G (w,1) = folv,t) = F{i(7)} = filv) ,

where F is the Fourier transform and G is the Gabor transform, respectively. The
fractional integrals for the Gabor transform, can be written in the form

F(I$f(7)) = (Fiv) ™ fu(v) , f € La(a,b) . (16)

In other words, (16) can be written as

G(IZf) = (Fiv) " fi(v) (17)

GULf) = (Fiv)(fw)n
= (Fw) *(fi)a(v) . (18)

Theorem 1 [20] : If [f,/d,] € Br,, then the sequence
G(I f2) = (Fiv) ™ (f)a(v) (19)

converges uniformly on each compact set in R.
Proof : If (4,) is a delta sequence, then (d;), converges uniformly on each compact
set to the constant function unity. Therefore, (gk) > 0 on K (the compact set)
and, thus, the left hand side of (19) gives
oy - UEE6) U3k 8 (2R
(0x) (0r) (k)

_ () () [cf. BEqn.(18)]

(6%)

on K
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This shows that the Gabor transform of fractional integrals for an integrable
Boehmian F' = [f,/0,] can be expressed as the limit of the sequence G(I¢f,),
which, in fact, is the space of all continuous functions on R. This proves the
theorem completely.

Property 1 [20] : Let [f,/d,] € Br,. Then A — lim F,, = F, G(I}F,) —

n—oo
G(I¢F)uniformly on each compact set .

Proof : We have § — lim F,, — F = G(F,) — G(F) , uniformly on each compact
n—r00

set. The sequence can be expressed as F), * 0y, F'x 0, € L1,V n,k € N which has a
norm
||(F, = F) % 6g|| - 0,as n —oo,Vk € N .

where K is well defined. Since G{d;} is a continuous function, we have G{dx} > 0
on K for k € N . It is, therefore, enough to prove that

G{Fn}-G{or} = G{F} - G{d} ,
uniformly on K. We have,
G{Fn} - G{ok} — G{F} - G{ok} = G{(F — F) * 0k},

such that ||(F, — F) * dx|| — 0, as n — 0.
This justifies the existence and validity of the property.

Conclusions: The present paper focuses on the application of the Riemann Liou-
ville type fractional integral operator to the Gabor transform and the integrable
Boehmians. The fractional integral formula for the Gabor transform is given by
using the relation between the Gabor and the Fourier transforms. The formula and
the property established in this paper are suitable for certain Boehmian space for
an integrable Boehmian. The compact set and the continuity of the function used,
approves the existence of the results given in this paper.
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