South East Asian J. Math. & Math. Sc. Vol.6 No.2(2008), pp.37–43

SOME COMBINATORIAL PROPERTIES OF *n*-COLOUR COMPOSITIONS

Geetika Narang¹ and A.K. Agarwal²

Centre for Advanced Studies in Mathematics Panjab University, Chandigarh-160 014, India

E-mail: geetika2narang@yahoo.com; aka@pu.ac.in

(Received: January 08, 2008)

Dedicated to Prof. George E. Andrews on his 70th Birthday

Abstract: A connection between a special kind of walks in the XY-plane studied by J.H. van Lint and R.M. Wilson [7] and *n*-colour compositions introduced recently by A.K. Agarwal [1] is shown. This leads to several new combinatorial properties of the walks and also gives a new binomial identity with its combinatorial interpretation.

Keywords and Phrases: Walks, Fibonacci numbers, *n*-colour compositions, self-conjugate partitions, odd-even partitions, generating function, recurrence formula, binomial identity, combinatorial properties **2000 AMS Subject Classification:** 05A15, 05A17, 11P81

1. Introduction

A partition of a positive integer n is a finite non-increasing sequence of positive integers whose sum is n. The Ferrers graph of a partition t_1, \dots, t_i of n is a set of i rows of equi-spaced dots aligned on the left where the j^{th} row has t_j dots. For example, the Ferrers graph of the partition 4+4+3+2+1 of 14 is

·	•	•	•
•	•	•	•
•		•	
•	•		

If the graph is read vertically by columns then this represents the partition 5+4+3+2 of 14. This new partition is called the conjugate of the given partition.

¹Supported by CSIR Award No.F.No.9/135(468)/2k3-EMR-I

²Supported by CSIR Research Grant No.25(0158)/07/EMR-II

Definition 1.1. A partition is said to be self-conjugate if it is identical with its conjugate. For example, 3+2+1 and 3+3+3 are self conjugate partitions.

Definition 1.2(Andrews [4]). An "odd-even" partition of a positive integer ν is a partition in which the parts (arranged in ascending order) alternate in parity starting with the smallest part odd. Thus for example, the "odd-even" partitions of 7 are: 7, 1+6, 3+4.

Definition 1.3(MacMahon [6]). Ordered partitions are called compositions. For example, there are 8 compositions of 4, viz., 4, 31, 13, 22, 211, 121, 112, 1111. In the sequel we shall denote the number of compositions of n by c(n).

Definition 1.4(Frobenius [5]). A two-rowed array of nonnegative integers

$$\left(\begin{array}{rrrr}a_1 & a_2 & \cdots & a_r\\b_1 & b_2 & \cdots & b_r\end{array}\right),$$

where $a_1 > a_2 > \cdots > a_r \ge 0$, $b_1 > b_2 > \cdots > b_r \ge 0$ and $\nu = r + \sum_{i=1}^r a_i + \sum_{i=1}^r b_i$ is called a Frobenius partition of ν .

Definition 1.5(Agarwal and Andrews [3]). An *n*-colour partition (or, a partition with "*n* copies of *n*") is a partition in which a part of size $n \ge 1$ can come in *n* different colours denoted by subscripts : n_1, n_2, \dots, n_n and parts satisfy the order $1_1 < 2_1 < 2_2 < 3_1 < 3_2 < 3_3 < 4_1 < 4_2 < 4_3 < 4_4 < 5_1 < 5_2 \cdots$ For example, there are six *n*-colour partitions of 3, viz., $3_1, 3_2, 3_3, 2_1 + 1_1, 2_2 + 1_1, 1_1 + 1_1 + 1_1$.

Definition 1.6(Agarwal[1]). An *n*-colour ordered partition is called an *n*-colour composition. For example, there are eight *n*-colour compositions of 3, viz., $3_1, 3_2, 3_3, 2_2 + 1_1, 1_1 + 2_2, 2_1 + 1_1, 1_1 + 2_1, 1_1 + 1_1 + 1_1$. In the sequel we shall denote the number of *n*-colour compositions of ν by $C(\nu)$.

Definition 1.7. The Fibonacci sequence $\{F_n\}_{n=0}^{\infty}$ is defined as $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$, $n \ge 2$.

Definition 1.8(Van Lint and Wilson [7]). Consider walks in the XY-plane where each step is $S : (x, y) \to (x + 1, y)$ or $T_a : (x, y) \to (x, y + a)$ with 'a' a positive integer. For $\nu \geq 1$, let A_{ν} denote the number of walks from (0,0) that contain a point on the line $x + y = \nu$.

Example 1.1. For $\nu = 3$, there are 13 relevant walks viz., SSS, ST_2 , T_2S , ST_1T_1 , T_1T_1S , T_1ST_1 , SST_1 , ST_1S , T_1SS , T_3 , T_2T_1 , T_1T_2 , $T_1T_1T_1$.

2. Explicit Formula

In this section we shall prove an explicit formula for A_{ν} .

Some Combinatorial Properties of *n*-Colour Compositions

Theorem 2.1. For $\nu \ge 1$, $A_{\nu} = 1 + \sum_{l=0}^{\nu-1} \sum_{m=1}^{\nu-l} {\nu-l-1 \choose m-1} {l+m \choose l}$. (2.1)

Proof of Theorem 2.1. We split the walks enumerated by A_{ν} into three classes:

- (i) which contain S steps only,
- (ii) which contain T steps only, and
- (iii) which contain both S steps as well as T steps.

In the first class there is only one relevant walk, viz., the walk which contains ν number of S steps and in the second class the number of relevant walks is the number of compositions of ν , that is, $c(\nu)$. In the third class, let the number of S steps be $l, 1 \leq l \leq \nu - 1$ and the number of T steps be $m, 1 \leq m \leq \nu - l$. Since the number of T steps can be m in $c(\nu - l, m)$ ways, where $c(\nu - l, m)$ is the number of compositions of $\nu - l$ into m parts which is equal to $\begin{pmatrix} \nu - l - 1 \\ m - 1 \end{pmatrix}$ (cf, MacMahon [6],Vol.1, p.151). We see that the number of relevant walks in the third case is $c(\nu - l, m) \begin{pmatrix} l+m \\ l \end{pmatrix}, 1 \leq l \leq \nu - 1, 1 \leq m \leq \nu - l$.

Combining all the cases, we get

$$A_{\nu} = 1 + c(\nu) + \sum_{l=1}^{\nu-1} \sum_{m=1}^{\nu-l} c(\nu-l,m) \begin{pmatrix} l+m \\ l \end{pmatrix}$$

= $1 + \sum_{m=1}^{\nu} \begin{pmatrix} \nu-1 \\ m-1 \end{pmatrix} + \sum_{l=1}^{\nu-l} \sum_{m=1}^{\nu-l} \begin{pmatrix} \nu-l-1 \\ m-1 \end{pmatrix} \begin{pmatrix} l+m \\ l \end{pmatrix}$
= $1 + \sum_{l=0}^{\nu-1} \sum_{m=1}^{\nu-l} \begin{pmatrix} \nu-l-1 \\ m-1 \end{pmatrix} \begin{pmatrix} l+m \\ l \end{pmatrix}$.

3. Recurrence Formula

Theorem 3.1. $A_1 = 2$, $A_2 = 5$, and $A_{\nu} = 3A_{\nu-1} - A_{\nu-2}$ for $\nu > 2$. **Proof of Theorem 3.1.** We have

PDF Created with deskPDF PDF Writer - Trial :: http://www.docudesk.com

4. Generating Function

Theorem 4.1. Let M(q) be the enumerative generating function for A_{ν} . Then

$$M(q) = \frac{q(2-q)}{q^2 - 3q + 1}.$$

Proof of Theorem 4.1.

$$M(q) = \sum_{\nu=1}^{\infty} A_{\nu} q^{\nu}$$

= $A_1 q + A_2 q^2 + \sum_{\nu=3}^{\infty} A_{\nu} q^{\nu}$
= $2q + 5q^2 + \sum_{\nu=3}^{\infty} (3A_{\nu-1} - A_{\nu-2})q^{\nu}$
= $2q + 5q^2 + 3\sum_{\nu=3}^{\infty} A_{\nu-1}q^{\nu} - \sum_{\nu=3}^{\infty} A_{\nu-2}q^{\nu}$
= $2q + 5q^2 + 3\sum_{\nu=2}^{\infty} A_{\nu}q^{\nu+1} - \sum_{\nu=1}^{\infty} A_{\nu}q^{\nu+2}$
= $2q + 5q^2 + 3M(q)q - 6q^2 - M(q)q^2$

$$(q^2 - 3q + 1)M(q) = 2q - q^2$$

 $M(q) = \frac{q(2-q)}{q^2 - 3q + 1}.$

5. Connection of A_{ν} with *n*-Colour Compositions

From Theorem 2, we have $A_1 = 2$, $A_2 = 5$, and $A_{\nu} = 3A_{\nu-1} - A_{\nu-2}$ for $\nu > 2$. But $F_{2\nu+1}$ also satisfies the same initial conditions and the same recurrence relation. $\Rightarrow A_{\nu} = F_{2\nu+1}$.

Also $F_{2\nu+1} = F_{2\nu+2} - F_{2\nu}$ and $F_{2\nu} = C(\nu)$, (cf. Agarwal [1]).

Therefore,

$$A_{\nu} = C(\nu+1) - C(\nu). \tag{5.1}$$

6. New Combinatorial Properties of A_{ν}

In this section we give six new combinatorial properties of A_{ν} without proofs as they follow easily by using the methods of proofs of Section 3 of [2] for the first five properties and using the fact that the number of compositions of n into parts ≤ 2 equals F_{n+1} for the sixth. **Theorem 6.1.** A_{ν} is equal to the number of "odd-even" partitions with largest part $2\nu + 1$.

Example 6.1. For $\nu = 2$, there are five relevant "odd-even" partitions, viz., 5, 5+4+3+2+1, 5+4+3, 5+4+1, 5+2+1. We have earlier seen that $A_2 = 5$.

Theorem 6.2. A_{ν} is equal to the number of compositions of $2\nu + 1$ into odd parts.

Example 6.2. For $\nu = 2$, there are five relevant compositions of 5, viz., 5, 3+1+1, 1+3+1, 1+1+3, 1+1+1+1+1.

Theorem 6.3. A_{ν} equals the number of "odd-even" partitions with largest part 1 or even and $\leq 2\nu$.

Example 6.3. For $\nu = 2$, there are five relevant "odd-even" partitions, viz., 1, 4+3+2+1, 4+3, 4+1, 2+1.

Theorem 6.4. A_{ν} is equal to the number of self-conjugate partitions with largest part $2\nu + 1$ such that in the Frobenius notation $\begin{pmatrix} a_1 & a_2 & \cdots & a_r \\ a_1 & a_2 & \cdots & a_r \end{pmatrix}$, r is odd and a_i alternate in parity.

Example 6.4. For $\nu = 2$, there are five relevant self-conjugate partitions, viz., 5^5 , 5^33^2 , 5^232^2 , $53^{2}1^2$, 51^4 .

Theorem 6.5. A_{ν} equals the number of partitions into an odd number of odd parts with largest part $4\nu + 1$ such that the parts are alternately $\equiv 1$ and 3 (mod 4).

Example 6.5. For $\nu = 2$, there are five relevant partitions, viz., 9, 9+3+1, 9+7+1, 9+7+5, 9+7+5+3+1.

Theorem 6.6. A_{ν} equals the number of compositions of 2ν where each part is less than or equal to 2.

Example 6.6. For $\nu = 2$, there are five relevant compositions, viz., 2+2, 2+1+1, 1+2+1, 1+1+2, 1+1+1+1.

7. A New Binomial Identity With its Combinatorial Interpretation

It is known that

$$C(\nu) = \sum_{m=1}^{\nu} \left(\begin{array}{c} \nu + m - 1 \\ 2m - 1 \end{array} \right) \text{ (cf. Agarwal [1]).}$$
(7.1)

Therefore, (2.1),(5.1) and (7.1) give rise to a new binomial identity stated in the following theorem.

Theorem 7.1. For $\nu \geq 1$,

$$1 + \sum_{l=0}^{\nu-1} \sum_{m=1}^{\nu-l} \left(\begin{array}{c} \nu-l-1\\ m-1 \end{array} \right) \left(\begin{array}{c} l+m\\ l \end{array} \right) = \sum_{m=1}^{\nu+1} \left(\begin{array}{c} \nu+m-1\\ 2m-2 \end{array} \right).$$

The following theorem provides a combinatorial interpretation of Theorem 7.1.

Theorem 7.2. For $\nu \ge 1$, the number of walks in the XY-plane starting from (0,0) that contain a point on the line $x + y = \nu$ taking S or T_a steps is equal to the number of n-colour compositions of $\nu + 1$ without 1_1 on left(right) extreme.

Proof of Theorem 7.2. It is an immediate consequence of (2.1), (5.1) and the fact that the *n*-colour compositions of ν are in 1-1 correspondence with the *n*-colour compositions of $\nu + 1$ with 1_1 on left(right) extreme.

References

- Agarwal, A.K., n-colour compositions, Indian J. Pure Appl. Math. 31(11) (2000), 1421–1427.
- [2] Agarwal, A.K., An analogue of Euler's identity and new combinatorial properties of n-colour compositions, Journal of Computational and Applied Mathematics 160 (2003), 9–15.
- [3] Agarwal, A.K. and Andrews, G.E., Rogers-Ramanujan identities for partitions with "N copies of N", J. Combin. Theory Ser. A 45(1) (1987), 40-49.
- [4] Andrews, G.E., Ramanujan's "lost" notebook IV: stacks and alternating parity in partitions, Adv. in Math 53 (1984), 55–74.
- [5] Frobenius, G., Uber die Charaktere der symmetrischen Gruppe, Sitzber. Preuss. Akad., Berlin, (1900), 516–534.
- [6] MacMahon, P.A., Combinatory Analysis, Vol. I, II, AMS Chelsea Publishing, New York, (2001).
- [7] Lint, J.H. van and Wilson, R.M., A Course in Combinatorics, Cambridge University Press, (Second Edition), (2001).