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1. Introduction

In his “lost” notebook [11] Ramanujan stated several results related to q-
series and one of them is the following beautiful reciprocity theorem:

ρ(a, b)− ρ(b, a) =

(
1

b
−
1

a

)
(aq/b)∞ (bq/a)∞ (q)∞
(−aq)∞ (−bq)∞

(1.1)

where

ρ(a, b) :=

(
1 +

1

b

) ∞∑

n=0

(−1)n qn(n+1)/2 an b−n

(−aq)n
, a �= −q−n and |q| < 1,

(a)0 := (a; q)0 = 1,

(a)∞ := (a; q)∞ =
∞∏

n=0

(1− aqn)

and

(a)n := (a; q)n =
(a; q)∞
(aqn; q)∞

, −∞ < n <∞.

The first proof of (1.1) was given by Andrews [2] using four free-variable
identity and Jacobi’s triple product identity. Further, in his paper [3], Andrews
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proved two nice entries from “lost” notebook of Ramanujan related to Euler’s
partition identity stating that the number of partitions of n into distinct parts is
equal to the number of partitions of n into odd parts, which uses (1.1). Bhargava,
Somashekara and Fathima [7] proved (1.1) using Ramanujan’s 1ψ1 summation for-
mula and Heine’s transformation for 2φ1-series. Using the same above mentioned
two transformations, Berndt, Chan, Yeap and Yee [6] also proved (1.1). In fact,
Berndt et al. [6] in the same paper have given two more proofs of (1.1) one using
an identity of N. J. Fine and the other is purely combinatorial. Also, Adiga and
Anitha [1] proved (1.1) which uses only Heine’s transformation for 2φ1-series and
further, they showed that the reciprocity Theorem 1.1 leads to a q-integral ex-
tension of the classical gamma function. Recently, Guruprasad and Pradeep [8]
proved (1.1) using only q-binomial theorem.

Somashekara and Fathima [12] derived a generalization of Jacobi’s triple
product identity which is equivalent to (1.1) using Ramanujan’s 1ψ1 summation
formula and the same was derived from q-binomial theorem by Kim, Somashekara
and Fathima [10].

In [9], Kang generalized (1.1) as follows:

If |c| < |a| < 1 and |c| < |b| < 1, then

ρ3(a, b, c)− ρ3(b, a, c) =

(
1

b
−
1

a

)
(c)∞ (aq/b)∞ (bq/a)∞ (q)∞

(−c/a)∞ (−c/b)∞ (−aq)∞ (−bq)∞
(1.2)

where

ρ3(a, b, c) :=

(
1 +

1

b

) ∞∑

n=0

(c)n (−1)
n qn(n+1)/2 an b−n

(−aq)n (−c/b)n+1
, a, c/b �= −q−n

for n ∈ Z+ and |q| < 1.

Kang [9] established (1.2) on employing Ramanujan’s 1ψ1 summation for-
mula and Jackson’s transformation of 2φ1 and 2φ2-series [4]. In fact, in the same
paper she also generalized reciprocity theorem (1.1) for four variables.

The main purpose of this paper is to provide a new proof of (1.2) using
q-binomial theorem [4],[5]

∞∑

n=0

(a)n
(q)n

tn =
(at)∞
(t)∞

, |t| < 1, |q| < 1, (1.3)

and the Gauss summation formula [4], [5]

∞∑

n=0

(a)n (b)n
(c)n (q)n

(c/ab)n =
(c/a)∞ (c/b)∞
(c)∞ (c/ab)∞

, |c/ab| < 1, |q| < 1. (1.4)
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Note that Gauss summation formula (1.4) can be easily derived using only
q-binomial theorem (1.3).

Changing a to a/b, t to bt, and letting b→ 0 in (1.3), we obtain

∞∑

n=0

(−1)n an q
n(n−1)

2

(q)n
tn = (at)∞, |q| < 1. (1.5)

Putting a = −1 in the above identity, we deduce

∞∑

n=0

q
n(n−1)

2

(q)n
tn = (−t)∞, |q| < 1. (1.6)

2. Proof of the Three Variable Reciprocity Theorem

Before proving the main result, we prove a lemma.

Lemma 2.1. We have

(i)
∞∑

n=0

(c)n qn(n+1)/2 zn

(dz)n+1 (−c/d)n+1
=

∞∑

n=0

(−q/d)n
(−c/d)n+1

(dz)n, |dz| < 1 and |q| < 1, (2.1)

and

(ii)
∞∑

n=1

(c)n−1 qn(n−1)/2 z−n

(−d)n (c/zd)n
=

1

(1 + c/d)

∞∑

n=1

(−d/c)n
(−d)n

(c/zd)n, (2.2)

|c/zd| < 1 and |q| < 1.

Proof (i). Clearly the left side summation of (2.1) can be written as

(c)∞(q)∞
(dz)∞ (−c/d)∞

∞∑

n=0

qn(n+1)/2 zn

(q)n

(dzqn+1)∞ (−cqn+1/d)∞
qn+1)∞ (cqn)∞

.

Now using q-binomial theorem (1.3) and then changing the order of the
summation in the above identity we obtain

(c)∞ (q)∞
(dz)∞ (−c/d)∞

∞∑

t=0

(−q/d)t
(q)t

ct
∞∑

m=0

(dz)m
(q)m

qm
∞∑

n=0

qn(n−1)/2

(q)n
(zqt+m+1)n.

Employing (1.3), (1.5) and (1.6) in the above identity and after some simple
manipulations, we obtain right side summation of (2.1).

(ii). Proof of (2.2) is similar.
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Now we prove the main result (1.2).

We have

∞∑

n=−m

(−q/d)n(cq
m/dz)n(zd)

n

(q1+m)n (−cq/d)n
=

∞∑

n=0

(−q/d)n−m(cq
m/dz)n−m(zd)

n−m

(q1+m)n−m(−cq/d)n−m

=
(zd)−m (−q/d)−m (cqm/dz)

−m

(q1+m)−m (−cq/d)−m

∞∑

n=0

(
−q1−m/d

)
n
(c/dz)n (zd)

n

(q)n (−cq1−m/d)n

=
(zd)−m (−q/d)−m (cqm/dz)

−m

(q1+m)−m (−cq/d)−m

(c)∞
(
−zq1−m

)
∞

(−cq1−m/d)
∞
(zd)∞

, on using (1.4)

=
qm (1/qm)m (−d/c)m
(−d)m (dz/cqm−1)m

(c)∞
(
−zq1−m

)
∞

(−cq1−m/d)
∞
(zd)∞

=
(q)m (−1/z)m (c)∞ (−zq)∞

(−d)m (c/dz)m (−cq/d)∞ (zd)∞
. (2.3)

Letting m→∞ in (2.3) and then multiplying by 1
(1+c/d) we obtain

∞∑

n=0

(−q/d)n
(−c/d)n+1

(dz)n +
1

(1 + c/d)

∞∑

n=1

(−d/c)n
(−d)n

(c/zd)n

=
(c)∞ (−zq)∞ (−1/z)∞ (q)∞
(c/dz)∞ (−c/d)∞ (zd)∞ (−d)∞

.

Using (2.1) and (2.2) in the above identity we obtain

∞∑

n=0

(c)n qn(n+1)/2 zn

(dz)n+1 (−c/d)n+1
+

∞∑

n=1

(c)n−1 qn(n−1)/2 z−n

(−d)n (c/zd)n

=
(c)∞ (−zq)∞ (−1/z)∞ (q)∞
(c/dz)∞ (−c/d)∞ (zd)∞ (−d)∞

.

Multiplying both sides by z(1− zd)(1 + d) we get

(1 + d)
∞∑

n=0

(c)n qn(n+1)/2 zn+1

(dzq)n (−c/d)n+1
+ (1− zd)

∞∑

n=0

(c)n qn(n+1)/2 z−n

(−dq)n (c/zd)n+1

= (1 + z)
(c)∞ (−zq)∞ (−q/z)∞ (q)∞

(c/dz)∞ (−c/d)∞ (zdq)∞ (−dq)∞
.

Now changing d→ b and z→−a/b; then multiplying the resulting equation
by −1/a we obtain (1.2).
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