ON SUBMANIFOLDS OF A MANIFOLD ADMITTING $f_{a}(2 \nu+3,-1)$ - STRUCTURE

Jai Pratap Singh and Kripa Sindhu Prasad*
B. S. N. V. P. G. College, Lucknow, INDIA
E-mail : jaisinghjs@gmail.com
*Department of Mathematics, Thakur Ram Multiple Campus, Birgunj, Tribhuvan University, NEPAL
E-mail : kripasindhuchaudhary@gmail.com

(Received: Jun. 27, 2022 Accepted: Nov. 10, 2022 Published: Dec. 30, 2022)

Abstract: Psomopoulou defined and studied the Invariant submanifolds of a manifold with $f(2 \nu+3,-1)$-structure. In this paper $f_{a}(2 \nu+3,-1)$ structure has been defined and submanifolds, of a manifold with such a structure have been studied. Some interesting results have been stated and proved in this paper.

Keywords and Phrases: Riemannian Manifold, projection operator, invariant submanifold, integrability conditions.

2020 Mathematics Subject Classification: 53C15, 53C40, 53D10.

1. Introduction and Preliminaries

Let V_{n} be an n-dimensional C^{∞} manifold imbedded differentiabily in an mdimensional C^{∞} Riemannian manifold $W_{m}(m>n)$ by an imbedding map b : $V_{n} \rightarrow W_{m}$. If $\mathrm{B}=\mathrm{db}, \mathrm{B}$ is a mapping $T\left(V_{n}\right) \rightarrow T\left(W_{m}\right)$ such that a vector field X of $T\left(V_{n}\right)$ correspond to a vector field $B X \in T\left(W_{m}\right) ; T\left(V_{n}\right) ; T\left(W_{m}\right)$ denote the tangent bundles of V_{n} and W_{m} respectively. If $T\left(b\left(V_{n}\right)\right)$ is the set of all vectors tangent to the submanifold $b\left(V_{n}\right)$ then $B: T\left(V_{n}\right) \rightarrow T\left(b\left(V_{n}\right)\right)$ is an isomorphism. Let \tilde{X}, \tilde{Y} be C^{∞} vector fields, defined along $b\left(V_{n}\right)$ tangent to $b\left(V_{n}\right)$ and let \tilde{X} and \tilde{Y}

