ON NON-HOMOGENEOUS QUINARY QUINTIC EQUATION

$$
\left(x^{4}-y^{4}\right)=125\left(z^{2}-w^{2}\right) p^{3}
$$

Vijayasankar A., Sharadha Kumar and Gopalan M. A.*
Department of Mathematics, National College (Autonomous), Tiruchirappalli - 620001, Tamil Nadu, INDIA
E-mail : avsankar@yahoo.com, sharadhak12@gmail.com
*Department of Mathematics, Shrimati Indira Gandhi College, Tiruchirappalli - 620002, Tamil Nadu, INDIA E-mail : mayilgopalan@gmail.com

(Received: Mar. 13, 2021 Accepted: Mar. 27, 2022 Published: Apr. 30, 2022)
Abstract: The quinary quintic non-homogeneous diophantine equation represented by $\left(x^{4}-y^{4}\right)=125\left(z^{2}-w^{2}\right) p^{3}$ is analyzed for its patterns of non-zero distinct integral solutions and some properties among the solutions are also illustrated.

Keywords and Phrases: Non-homogeneous quintic equation, quintic equation with five unknowns, integral solutions.

2020 Mathematics Subject Classification: 11D41.

1. Introduction

The theory of Diophantine equations offers a rich variety of fascinating problems $[1,2,8,9]$. Particularly,in [3, 4] quintic equations with three unknowns are studied for their integral solutions. In [5] quintic equations with four unknowns for their non-zero integer solutions. [6, 7] analyze quintic equations with five unknowns for their non-zero integer solutions. This communication concerns with yet another interesting non-homogeneous quintic equation with five unknowns given by $\left(x^{4}-y^{4}\right)=125\left(z^{2}-w^{2}\right) p^{3}$ for finding its infinitely many non-zero distinct integer solutions and some properties among the solutions are also illustrated.

