South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 2 (2021), pp. 215-224

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

OUTER CONNECTED EQUITABLE DOMINATING SETS IN A GRAPH

P. Nataraj, A. Wilson Baskar* and V. Swaminathan*

The Madura College, Madurai, Tamil Nadu - 625011, INDIA

E-mail :natsssac7@yahoo.com

*Ramanujan Research Center in Mathematics, Saraswathi Narayanan College, Madurai, Tamil Nadu - 625022, INDIA

E-mail : arwilvic@yahoo.com, swaminathansulanesri@gmail.com

(Received: Sep. 04, 2020 Accepted: May 09, 2021 Published: Aug. 30, 2021)

Abstract: Let G be a simple graph with vertex set V and edge set E. An equitable dominating set D of V(G) is called an outer connected equitable dominating set of G if $\langle V - D \rangle$ is connected. A study of outer connected equitable dominating sets in a graph is initiated.

Keywords and Phrases: Equitable domination, outer connected domination.

2020 Mathematics Subject Classification: 05C69.

1. Introduction

Graph theoretical terminologies not given here can be founded in [2, 3, 9]. Let G = (V, E) be a simple graph. The neighbourhood of a vertex v, denoted by N(v), is the set of all vertices adjacent to v in G. If v is a vertex of G then the integer deg(v) = |N(v)| is said to be the degree of v in G. The minimum and maximum degree among all vertices of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. A vertex of degree one in a graph is called a pendent vertex or an end vertex. A support is the unique neighbour of an end-vertex.

A set $D \subseteq V(G)$ is a dominating set in G if for every vertex $v \in V(G) - D$, there exists a vertex $u \in D$ such that $uv \in E(G)$. The domination number of a graph G, denoted $\gamma(G)$, is the cardinality of a minimum dominating set of G. The concept of equitability was originally conceived in proper colouring of vertices where the cardinalities of any two colour classes differ by at most one [10]. E. Sampathkumar initiated the concept of degree equitability in the vertex set of a graph. Two vertices are said to be degree equitable if their degrees differ by at most one. A subset D of V(G) is called an equitable dominating set of G if for any v in V - D, there exists u in D such that u and v are adjacent and degree equitable [1, 4, 5].

Two nice papers by Joanna Cyman on Outer connected domination and doubly connected domination [6], [7] motivated us to define outer-connected equitable domination in graphs. An equitable dominating set D is said to be outer connected if $\langle V - D \rangle$ is connected. V(G) is obviously an outer connected equitable dominating set. The minimum(maximum) cardinality of an outer connected equitable dominating set of G is called the outer connected equitable domination number (upper outer connected equitable domination number) of G and is denoted by $\tilde{\gamma}_c^e(G)$ ($\tilde{\Gamma}_c^e(G)$). A study of this new parameter and its relation with other parameters is initiated in this paper.

2. Basic Results

Definition 2.1. Let G be a simple graph with vertex set V and edge set E. A subset D of V(G) is called an outer connected equitable dominating set of G if D is an equitable dominating set with the subgraph induced by its complement is connected. The minimum (maximum) cardinality of a minimal outer connected equitable dominating set of G is called the outer connected equitable domination number of G and is denoted by $\tilde{\gamma}^{e}_{c}(G)$ ($\tilde{\Gamma}^{e}_{c}(G)$).

Observation 2.1. Let K_n , P_n , C_n and W_n denote the complete graph, path, cycle and wheel of order n. Let $K_{1,n}$, $K_{m,n}$, K_{n_1,n_2,\dots,n_r} denote the star, bi-partite graph and multipartite graphs.

- i) $\widetilde{\gamma}_c^e(K_n) = 1$ for all $n \ge 1$.
- ii) $\widetilde{\gamma}_c^e(K_{1,n}) = n+1.$

iii)
$$\widetilde{\gamma}_c^e(K_{m,n}) = \begin{cases} 2 & \text{if } |m-n| \le 1\\ m+n & \text{otherwise} \end{cases}$$

iv)
$$\widetilde{\gamma}_c^e(P_n) = \widetilde{\gamma}_c(P_n) = \begin{cases} n-1 & \text{if } n=2, 3\\ n-2 & \text{if } n \ge 4 \end{cases}$$

v) $\widetilde{\gamma}_c^e(C_n) = \widetilde{\gamma}_c(C_n) = n-2 \text{ for } n \ge 3.$

vi)
$$\widetilde{\gamma}_c^e(W_n) = n - 2$$
 for $n \ge 6$

- vii) $\widetilde{\gamma}_{c}^{e}(K_{n_{1},n_{2},\cdots,n_{r}}) = 2t + \sum_{j=1}^{k} |S_{j}|$, where t is the minimum number of equitable partitions of $n_{1}, n_{2}, \cdots, n_{r}$ and S_{j} are singleton partitions containing $n_{i_{1}}, n_{i_{2}}, \cdots, n_{i_{k}}$ vertices. **Example 2.1.** Consider $G = K_{2,3,5,6,6,8,10,12}$. $\widetilde{\gamma}_{c}^{e}(K_{2,3,5,6,6,8,10,12}) = 2 * 2 + 8 + 10 + 12 = 34$, since there are two equitable partitions namely $\{2,3\}$ and $\{5,6,6\}$ and three singleton sets $\{8\}, \{10\}, \{12\}.$
- viii) $K_m(a_1, a_2, \dots, a_m)$ is the graph obtained from K_m by adding a_1 pendents, a_2 pendents, \dots, a_m pendents at vertices u_1, u_2, \dots, u_m of K_m respectively. Then, $\widetilde{\gamma}^e_c((K_m(a_1, a_2, \dots, a_m)) = a_1 + a_2 + \dots + a_m + t + 1$ where t is the number of equitable isolates among the vertices of K_m in $K_m(a_1, a_2, \dots, a_m)$
 - ix) $\widetilde{\gamma}_c^e(P) = \widetilde{\gamma}_c(P) = 4$, where P is the Petersen graph.

Theorem 2.1. If G_1, G_2, \dots, G_k are the components of G and D_i is a minimum outer connected equitable dominating set of $G_i, 1 \leq i \leq k$, then $\widetilde{\gamma}_c^e(G) = |V(G)| - \max\{|V(G_i)| - \widetilde{\gamma}_c^e(G_i) : 1 \leq i \leq k\}$

Proof follows on the same lines as in Theorem 1 of [6].

Remark 2.1. If G is an equitable graph, then $\widetilde{\gamma}_c^e(G) = \widetilde{\gamma}_c(G)$

3. Bounds

Remark 3.1. For any graph G of order $n, 1 \leq \widetilde{\gamma}_c^e(G) \leq n$

Observation 3.1. Let the order of G be n. Then, $\tilde{\gamma}_c^e(G) = 1$ if and only if either $G = K_n$ or $G = H + K_1$ where H is a connected bi-regular graph of order n - 1 with bi regularity (n - 3, n - 2) or a regular graph with regularity n - 3.

For, suppose $\tilde{\gamma}_c^e(G) = 1$. Then, there exists a vertex u in G such that u equitably dominates all the vertices in $V(G) - \{u\}$ and $V(G) - \{u\}$ is connected. That is, any vertex of G other than u is of degree n - 3 or n - 2 in $\langle V(G) - \{u\} \rangle$. If every vertex of $\langle V(G) - \{u\} \rangle$ is of degree n - 2, then $G = K_n$. Otherwise, there exists a vertex of degree n - 3. If every vertex of $\langle V(G) - \{u\} \rangle$ is of degree n - 3, then $\langle V(G) - \{u\} \rangle$ is regular of regularity n - 3. Otherwise, any vertex of $\langle (V(G) - \{u\} \rangle$ is of degree n - 3 or n - 2. That is, $G = (\langle V(G) - \{u\} \rangle)$ $(N - \{u\}) = H + K_1$, where $H = \langle V(G) - \{u\} \rangle$ and $K_1 = \{u\}$ with H being connected and bi-regular with bi regularity (n - 3, n - 2). The converse is obvious. **Example 3.1.** The fan graph $P_3 + K_1$, $C_4 + K_1$, $(K_n - e) + K_1$ and K_n .

Observation 3.2. $\widetilde{\gamma}_c^e(G) = n$ if and only if every vertex of G is an equitable isolate of G.

For, suppose $\tilde{\gamma}_c^e(G) = n$. If a vertex of u of G is not an equitable isolate of G, then there exists v in V(G) such that u and v are adjacent and degree equitable. Hence $V(G) - \{u\}$ is an outer connected equitable dominating set of G. Therefore, $\tilde{\gamma}_c^e(G) \leq n - 1$, a contradiction. Hence, every vertex of G is an equitable isolate. The converse is obvious.

Example 3.2. $\overline{K_n}$, $K_{1,n}$, $n \ge 3$, $K_m(a_1, a_2, \dots, a_m)$ where a_1, a_2, \dots, a_m form an arithmetic progression with first term $a_1 \ge 1$ and common difference 2.

Observation 3.3. $\widetilde{\gamma}_c^e(G) \leq n-k$ if and only if there exists a connected subgraph H of G of order k such that every vertex of H is equitably adjacent with some vertex of V(G) - V(H)

Observation 3.4. $\tilde{\gamma}_c^e(G) = n-1$ if and only if G contains an induced subgraph H with $\tilde{\gamma}_c^e(H) = n-1$ (that is, every vertex of H is an equitable isolate of H) and a vertex u not in V(H) which is equitably adjacent with a vertex of H or the vertices in H which have equitable neighbour in H are independent and also independent of u except possibly the equitable adjacent vertex of u in H.

Proof. Suppose $\tilde{\gamma}_c^e(G) = n - 1$. Let D be a $\tilde{\gamma}_c^e$ - set of G. Then |D| = n - 1. Therefore, there exists u in V(G) - D and u is equitably dominated by D. Further, if $\tilde{\gamma}_c^e(\langle D \rangle)$ is less than n - 1, then there exists a vertex v in D which is equitably dominated by $D - \{v\}$. If u and v are adjacent, then $D - \{v\}$ is an outer connected equitable dominating set of G and so, $\tilde{\gamma}_c^e(G) \leq n - 2$, a contradiction. Therefore, those vertices in D which have equitable neighbour in $\langle D \rangle$ are independent and also not adjacent with u except possibly the vertex in H which is equitably adjacent with u. If $\tilde{\gamma}_c^e(\langle D \rangle) = n - 1$, then every vertex of $\langle D \rangle$ is an equitable isolate. The converse is obvious.

Example 3.3. $tK_2 \cup sK_1 \cup S$ where S is a set of equitable isolates, $t \ge 1$, $s \ge 0$, $|S| \ge 0$, P_3 , $D_{r,s}$ where $|r - s| \le 1$. Also, when $G = 3K_2$, with vertices u_1 to u_6 where u_1 is adjacent with u_2 , u_3 is adjacent with u_4, u_5 is adjacent with u_6 , $D = V(G) - \{u_1\}$ is an outer connected, equitable dominating set of G and u_3, u_5 are not equitable isolates of < D > but they are independent and also independent of u_1 . Note that $\tilde{\gamma}_c^e(< D >) = 4 < 5 = 6 - 1$.

When $G = 2K_2 \cup K_1 \cup K_{1,3}$, $\widetilde{\gamma}_c^e(G) = 8 = |V(G)| - 1$. $\widetilde{\gamma}_c(G)$ is also 8.

When G is a star $K_{1,n}$, $\tilde{\gamma}_c^e(G) = n + 1$ and $\tilde{\gamma}_c(G) = n$.

Let $G = P_3 \circ K_1$ with vertices $u_1, u_2, u_3, v_1, v_2, v_3$ where u_1, u_2, u_3 are the vertices of

 P_3 and v_i are the pendents adjacent with u_i , $1 \le i \le 3$. The equitable domination number of G is 3, the domination number of G is 3, the outer connected domination number of G is 3 and the outer connected equitable domination number of G is 4. Let $H = P_3 \circ K_1$. Attach one more pendent vertex at the middle vertex of P_3 . Join the pendent vertex at one end of P_3 with one of the pendent vertices of the middle vertex of P_3 . Let G be the resulting graph. The equitable domination number of G is 4 and the outer connected equitable domination number of G is 5. The domination number of G is 3 and the outer connected domination number of G is 4.

Sampathkumar and Walikar [11] have proved that $\frac{n(G)}{\Delta(G)+1} \leq \gamma_c(G) \leq 2m(G) - n(G)$. In Theorem 2 [6], it has been proved that $\frac{n(G)}{(\Delta(G)+1)} \leq \tilde{\gamma}_c(G) \leq 2m(G) - n(G) + 1$.

Theorem 3.1. If G is a connected graph with at least one pair of equitable adjacent vertices, with order of G namely $n(G) \ge 2$, then $\frac{n(G)}{(\Delta(G)+1)} \le \tilde{\gamma}_c^e(G) \le 2m(G) - n(G) + 1$.

Proof. Since, $\tilde{\gamma}_c(G) \leq \tilde{\gamma}_c^e(G)$ and since $\frac{n(G)}{(\Delta(G)+1)} \leq \tilde{\gamma}_c(G)$, we have $\frac{n(G)}{(\Delta(G)+1)} \leq \tilde{\gamma}_c^e(G)$. Since G is connected and $n(G) \geq 2$, $m(G) \geq n(G) - 1$. Since, G has a pair of equitable adjacent vertices, $\tilde{\gamma}_c^e(G) \leq n(G) - 1 \leq 2m(G) - n(G) + 1$.

The bounds are sharp as seen from the following remarks.

Remark 3.2. Let S be the family of graphs G which contain an outer connected equitable dominating set D such that $pne[v, D] = \Delta_e(G) + 1$. For example, in K_n , $n \geq 3$, $D = \{u\}$ for any u in $V(K_n)$ is an outer connected equitable dominating set of K_n . $N_e[u] = V(K_n)$ and $N_e[D - \{u\}] = \varphi$. $|pne[u, D]| = |N_e[u] - N_e[D - \{u\}]| = n - 0 = n$. Also, $\Delta(K_n) = n - 1$. Therefore, $|pne[u, D]| = \Delta_e(G) + 1$. In such graphs, $\frac{n(G)}{(\Delta(G) + 1)} = \widetilde{\gamma}_c^e(G)$. Another example is $K_n - e$. For instance, in C_4 with a diagonal, n = 4, $\Delta_e(G) + 1 = 3 + 1 = 4$, $\frac{n(G)}{(\Delta_e(G) + 1)} = 1 = \widetilde{\gamma}_c^e(G)$.

Remark 3.3. Let $D_{r,s}$ be the double star with centres u, v and r pendants attached to u and s pendants attached at v. Let $r = s \ge 3$. Then, m = number of edges = 2r + 1. n =number of vertices = 2r + 2. $\tilde{\gamma}_c^e(D_{r,r}) = 2r + 1$. 2m - n + 1 = 4r + 2 - 2r - 2 + 1 = 2r + 1. Hence, in $D_{r,r}$ the upper bound is realized.

Theorem 3.2. If G is a graph, then $\widetilde{\gamma}_c^e(G) \ge n(G) - \frac{(m(G)+1)}{2}$. **Proof.** By Theorem 3 of [6], $\widetilde{\gamma}_c(G) \ge n(G) - \frac{(m(G)+1)}{2}$ and since $\widetilde{\gamma}_c^e(G) \ge \widetilde{\gamma}_c(G)$ the result follows.

Remark 3.4. Let $G = P_4$. $\widetilde{\gamma}_c^e(G) = 2, n(G) = 4, m(G) = 3$. $n(G) - \frac{(m(G) + 1)}{2} = (m(G) + 1)$

2. Therefore,
$$\widetilde{\gamma}_c^e(G) = n(G) - \frac{(m(G)+1)}{2}$$
. Thus the upper bound is realized.

Remark 3.5. In a graph G with $\delta_e(G) \geq 2$ there is a cycle of length at least $\delta_e(G) + 1$ whose vertices are degree equitable in G.

Proof. Let (v_0, v_1, \dots, v_k) be a longest equitable path in G. (that is, the degrees of v_0, v_1, \dots, v_k in G are equitable). Then, $N_e(v_0)$ is a subset of $\{v_1, \dots, v_k\}$. Therefore, there exists $v_t \in N_e(v_0) \cap \{v_1, \dots, v_k\}$ for some $t \ge deg_e(v_0) \ge \delta_e(G)$. Consequently, $(v_0, v_1, \dots, v_t, v_0)$ is a required cycle whose vertices are degree equitable in G.

Theorem 3.3. If G is a connected graph of order n without degree equitable isolate, then $\widetilde{\gamma}_c^e(G) \leq n - \delta_e(G)$.

Proof. Suppose $\delta_e(G) \leq 2$. Since G has no degree equitable isolate, $\delta_e(G) \geq 1$. If $\delta_e(G) = 1$, then G has an equitable edge and hence $\widetilde{\gamma}_c^e(G) \leq n-1 = n - \delta_e(G)$. Suppose $\delta_e(G) = 2$. Then there exists a cycle of length at least three whose vertices are degree equitable in G. Therefore, $\widetilde{\gamma}_c^e(G) \leq n-2 = n - \delta_e(G)$. Let $\delta_e(G) \geq 3$. Then, by the remark stated above, there exists a cycle of length at least $\delta_e(G) + 1$ in G whose vertices are degree equitable in G. Let $C = (v_0, v_1, \dots, v_t, v_0)$ be a shortest cycle in G of length at least $\delta_e(G)$ whose vertices are degree equitable in G. Let D = V(G) - V(C). Clearly, D is outer connected. Suppose D is not degree equitable dominating. Then there exists u in V(C) such that $N_e(u) \cap D = \varphi$. Let without loss of generality, $u = v_0$. Let $deg_G(v_0) = k$. Then $N_e(v_0) = \{v_1, v_{i_1}, v_{i_2}, \dots, v_{i_{(k-2)}}, v_t\}$, where $1 < i_1 < i_2 < \dots < i_{(k-2)} < t$. Hence, $(v_0, v_{i_1}, v_{i_1+1}, \dots, v_t, v_0)$ is a cycle of length at least $\delta_e(G)$ whose vertices are degree equitable in G which is shorter than C, a contradiction. Therefore, D is an outer connected equitable in G which is shorter than C, a $\widetilde{\gamma}_e^e(G) \leq |D| = n - \delta_e(G)$.

Theorem 3.4. If T is a tree of order $n \ge 3$, then $\widetilde{\gamma}_c^e(T) \ge \Delta_e(T)$. Equality holds when $T = P_2$ or P_3 or P_4 ($\Delta_e(P_4) = 2$ and $\widetilde{\gamma}_c^e(P_4) = 2$).

Proof. Let T be a tree of order $n \geq 3$. Since T has at least $\Delta(T)$ end vertices and since any end vertex belongs to every outer connected equitable dominating set of T, $\tilde{\gamma}_c^e(G) \geq \Delta(T) \geq \Delta_e(T)$.

Remark 3.6. When T is a star of order $n \ge 4$, $\tilde{\gamma}_c^e(T) = n + 1 > \Delta(T)$ and $\Delta_e(T) = 0$. When T is a wounded spider of order $n \ge 5$, $\tilde{\gamma}_c^e(T) > \Delta_e(T)$. When n = 4, and exactly one leg is subdivided, then $T = P_4$ and $\tilde{\gamma}_c^e(T) = \Delta_e(T)$.

Theorem 3.5. Let D be an outer connected equitable dominating set of G. Then D is minimal if and only if for any u in D, one of the following holds.

- i) u is an equitable isolate of < D >
- ii) there exists v in V D such that v is equitably adjacent with only u in D.
- *iii)* $N(u) \cap (V D) = \varphi$.

Proof. Let D be a minimal outer connected equitable dominating set of G. Then for any u in D, $D - \{u\}$ is not an outer connected equitable dominating set of G. Either $D - \{u\}$ is not an equitable dominating set of G or an equitable dominating set of G but not outer connected. In the former case, u satisfies (i) or (ii) and in the latter case, u satisfies (iii). The converse is obvious.

Remark 3.7. Let $G = P_5$ with vertex set $\{v_1, v_2, v_3, v_4, v_5\}$ where v_1 and v_5 are end vertices. $D = \{v_2, v_3, v_4\}$ is a minimal outer connected equitable dominating set of G. v_2 and v_4 satisfy (i) as well as (ii) and v_3 satisfies (iii).

Proposition 3.1. Let G be a connected graph without equitable isolate. Let $v \in V(G)$ be such that $G - \{v\}$ is also connected. Then $\tilde{\gamma}_c^e(G) \leq \tilde{\gamma}_c^e(G - \{v\}) + 1$. **Proof** Let D be a $\tilde{\gamma}_c^e$ set of G with $\tilde{\gamma}_c^e(G) \leq \tilde{\gamma}_c^e(G - \{v\}) + 1$.

Proof. Let D be a $\tilde{\gamma}_c^e$ - set of $G - \{v\}$. Then $D \cup \{v\}$ is an outer connected dominating set of G. Suppose $D \cup \{v\}$ is not an equitable dominating set of G. Then there exists some vertex u in $(V - \{v\}) - D$ which was equitably dominated by some vertex say w of D which was not equitably dominated by $D \cup \{v\}$. That is, $|deg_{G-\{v\}}(u) - deg_{G-\{v\}}(w)| \leq 1$ and $|deg_G(u) - deg_G(w)| \geq 2$. That is v is adjacent with u and not with w. That is, u is an equitable isolate in G but not an equitable isolate in $G - \{v\}$, a contradiction. Therefore, $D \cup \{v\}$ is an equitable dominating set of G. Therefore, $\tilde{\gamma}_c^e(G) \leq |D \cup \{v\}| = \tilde{\gamma}_c^e(G - \{v\}) + 1$.

Remark 3.8. There is no relation between $\widetilde{\gamma}_c^e(G)$ and $\widetilde{\gamma}_c^e(G - \{v\})$.

For, let $G = P_5$. $\tilde{\gamma}_c^e(G) = 3$. Let v be a pendent vertex. $\tilde{\gamma}_c^e(G - \{v\}) = 2$. Hence, $\tilde{\gamma}_c^e(G) > \tilde{\gamma}_c^e(G - \{v\})$.

Let G be the subdivision of $K_{1,3}$. Let u be the centre of $K_{1,3}$, v_1, v_2, v_3 be the pendents of $K_{1,3}$. Let u_1, u_2, u_3 be the subdividing vertices of uv_1, uv_2, uv_3 . Join v_1 with u_2 and v_2 . Let H be the resulting graph. $\tilde{\gamma}_c^e(H) = 3$ (since $\{v_1, u_3, v_3\}$ is a minimum outer connected equitable dominating set of H). $\tilde{\gamma}_c^e(H - u_1) = 3$ (since $\{v_2, v_3, u_3\}$ is a minimum outer connected equitable dominating set of $H - u_1$). Thus, $\tilde{\gamma}_c^e(H) = \tilde{\gamma}_c^e(H - u_1) = 3.$ Let $G = P_3 + K_1$. Let $V(K_1) = \{u\}$. $\tilde{\gamma}_c^e(G) = 1$. $\tilde{\gamma}_c^e(G - \{u\}) = \tilde{\gamma}_c^e(P_3) = 2$. G has no equitable isolate, G and $G - \{u\}$ are connected. Thus, $\tilde{\gamma}_c^e(G - \{v\}) > \tilde{\gamma}_c^e(G)$.

Remark 3.9. The condition that G has no equitable isolates can not be dropped from Proposition 3.1.

For example, let $G = K_{1,3}$. Let u be the central vertex and v_1, v_2, v_3 be the pendents. $\tilde{\gamma}_c^e(G) = 4$ but $\tilde{\gamma}_c^e(G - v_1) = 2$ and hence $\tilde{\gamma}_c^e(G)$ is not less than or equal to $\tilde{\gamma}_c^e(G - \{v_1\}) + 1$.

Observation 3.5. Given a positive integer k, there exists a connected graph G such that $\widetilde{\gamma}_c^e(G) - \gamma(G) = k$.

Proof. Let k be even. Let $t = \frac{k+2}{2}$. Let n = 3t. Let $G = P_n$. $\tilde{\gamma}_c^e(G) = n-2 = 3t-2$. $\gamma(G) = t$. Therefore, $\tilde{\gamma}_c^e(G) - \gamma(G) = 3t - 2 - t = 2t - 2 = k$. Let k be odd. Let $t = \frac{k+1}{2}$. Let n = 3t + 2. $\tilde{\gamma}_c^e(G) = n - 2 = 3t$ and $\gamma(G) = t + 1$. Therefore, $\tilde{\gamma}_c^e(G) - \gamma(G) = 3t - (t+1) = 2t - 1 = k$.

Observation 3.6. Given a positive integer k, there exists a connected graph G such that $\tilde{\gamma}_c^e(G) - \gamma_e(G) = k$.

The example given above serves the purpose since in P_n , $\gamma_e(G) = \gamma(G)$.

Observation 3.7. Given a positive integer k, there exists a graph G such that $\widetilde{\gamma}_c^e(G) - \widetilde{\gamma}_c(G) = k$.

For example, when $k \geq 4$, consider $G = K_{2,k}$, $\tilde{\gamma}_c^e(G) = k+2$, $\tilde{\gamma}_c(G) = 2$. Therefore, $\tilde{\gamma}_c^e(G) - \tilde{\gamma}_c(G) = k$. When k = 1, $\tilde{\gamma}_c^e(K_{m,1}) - \tilde{\gamma}_c(K_{m,1}) = 1$. Let k = 2. Consider, P_3 with vertices u_1, u_2, u_3 . Attach three pendents each at each of the vertices of P_3 . Let G be the resulting graph. $\tilde{\gamma}_c^e(G) = 11$ and $\tilde{\gamma}_c(G) = 9$. Hence, $\tilde{\gamma}_c^e(G) - \tilde{\gamma}_c(G) = 2$. Let k = 3. Let $G = W_6$. $\tilde{\gamma}_c^e(G) = 4$, $\tilde{\gamma}_c(G) = 1$. Hence $\tilde{\gamma}_c^e(G) - \tilde{\gamma}_c(G) = 3$.

4. Complexity of $\widetilde{\gamma}_c^e(G)$

Proposition 4.1. The decision problem of outer connected equitable dominating set is NP - complete even when restricted to bipartite graphs.

Proof. In Theorem 14 of [6], it is proved that the decision problem of outer connected dominating set is NP - complete. Let G be a bipartite graph with $\tilde{\gamma}_c(G) = k$. Add suitable number of pendent vertices at each vertex of G so that the resulting graph G_1 is equitable bipartite with the degree of every vertex being $\Delta(G) + 1$. Let all the pendent vertices be joined so that the pendent vertices induces a complete subgraph of G_1 . Let G_2 be the resulting graph. Then $\tilde{\gamma}_c^e(G_2) = \tilde{\gamma}_c(G) + 1$. Therefore, by Theorem 14 [6], outer connected equitable domination set is NP - complete even when restricted to bipartite graphs.

References

- Anitha A., Arumugam S., Rao S. B. and Sampathkumar E., Degree equitable chromatic number of a graph, JCMCC, 75 (2010), 187-199.
- [2] Balakrishnan R. and Ranganathan K., A text book of graph theory, Springer, New York, 2nd Edition, 2012.
- [3] Chartrand G. and Lesniak L., Graphs and Digraphs, Wadsworth and Brooks/ Cole, Monterey, CA, 3rd Edition, 1996.
- [4] Dharmalingam K. M. and Swaminathan V., Degree Equitable Domination in Graphs, Kragujevac Journal of Mathematics, 35(1) (2011), 191-197.
- [5] Laksmanaraj D., Equitable domination and irredundance in graphs, Ph.D., Thesis, Madurai Kamaraj University (2011).
- [6] Cyman J., The outer-connected domination in graphs, Australasian Journal of Combinatorics, Vol. 38 (2007), 35-46.
- [7] Cyman J., Lemanska M. and Raczek J., On doubly connected domination of a graph, Central European Journal of Mathematics, 4(1) (2006), 34-45.
- [8] Garey M. R. and Johnson D. S., Computers and interactability, A guide to theory of NP-Completeness, Freeman, New York, 1979.
- [9] Haynes T. W., Hedetniemi S. T. and Slater P. J., Fundamentals of domination in Graphs, Marcel Dekker, New York, 1998.
- [10] Meyer W., Equitable coloring, American Mathematical monthly, 80 (1973), 920-922.
- [11] Sampathkumar E. and Walikar H. B., The connected domination number of a graph, Journal of Math. Phy. Sciences, 13 (1979), 607-613.