South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 3 (2020), pp. 27-38

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

THE ADMISSIBLE MONOMIAL BASIS FOR THE POLYNOMIAL ALGEBRA OF FIVE VARIABLES IN DEGREE FOURTEEN

H. N. Ly and N. K. Tin

Faculty of Applied Sciences, HCMC University of Technology and Education, VIETNAM

E-mail : lyhn@hcmute.edu.vn, tinnk@hcmute.edu.vn

(Received: Apr. 27, 2020 Accepted: Sep. 13, 2020 Published: Dec. 30, 2020)

Abstract: Let P_k be the graded polynomial algebra $\mathbb{F}_2[x_1, x_2, \ldots, x_k]$ with the degree of each generator x_i being 1, where \mathbb{F}_2 denote the prime field of two elements. We study the *hit problem*, set up by Frank Peterson, of finding a minimal set of generators for the polynomial algebra P_k as a module over the mod-2 Steenrod algebra, \mathcal{A} . In this paper, we explicitly determine all admissible monomials for the case k = 5 in degree fourteen.

Keywords and Phrases: Steenrod squares, hit problem, algebraic transfer.

2010 Mathematics Subject Classification: Primary 55S10, 55S05, 55T15.

1. Introduction and Statement of Results

Denote by $P_k = H^*((\mathbb{R}P^{\infty})^k)$ the modulo-2 cohomology algebra of the direct product of k copies of infinite dimensional real projective spaces $\mathbb{R}P^{\infty}$. Then, P_k is isomorphic to the graded polynomial algebra $\mathbb{F}_2[x_1, x_2, \ldots, x_k]$ of k variables, in which each x_j is of degree 1. Here the cohomology is taken with coefficients in the prime field \mathbb{F}_2 of two elements.

The \mathcal{A} -module structure of P_k is explicitly determined by the formula

$$Sq^{i}(x_{j}) = \begin{cases} x_{j}, & i = 0, \\ x_{j}^{2}, & i = 1, \\ 0, & i > 1, \end{cases}$$

¹This work was financially supported by HCMC University of Technology and Education under Grant No. **T2020-70TD**.