ON CERTAIN SUMMATION FORMULAE FOR q-HYPERGEOMETRIC SERIES

Vijay Yadav
Department of Mathematics, SPDT College, Andheri (E) Mumbai-400059, INDIA
E-mail : vijaychottu@yahoo.com

(Received: Feb. 10, 2020 Accepted: Jun. 05, 2020 Published: Aug. 30, 2020)
Abstract: In this paper, making use of a transformation formula of basic bilateral q series due to Bailey, certain summation formulae of basic bilateral series have been established.

Keywords and Phrases: q-hypergeometric series, q-bilateral hypergeometric series, transformation formula, summation formula.
2010 Mathematics Subject Classification: Primary 33C10, Secondary 11M06.

1. Introduction, Notations and Definitions

Let q be a fixed complex parameter with $0<|q|<1$. The $q-$ shifted factorial is defined for any complex parameter ' a ' by

$$
(a ; q)_{\infty}=\prod_{r=0}^{\infty}\left(1-a q^{r}\right), \quad(a ; q)_{k}=\frac{(a ; q)_{\infty}}{\left(a q^{k} ; q\right)_{\infty}}
$$

where k is any integer.
For brevity, we write

$$
\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{r} ; q\right)_{n}
$$

Further, recall the definition of basic hypergeometric series

$$
{ }_{r} \Phi_{r-1}\left[\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{r} ; q ; z \tag{1.1}\\
b_{1}, b_{2}, \ldots, b_{r-1}
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r} ; q\right)_{n} z^{n}}{\left(q, b_{1}, b_{2}, \ldots, b_{r-1} ; q\right)_{n}},
$$

