SOME DEFINITE INTEGRAL FORMULAE INVOLVING BESSEL FUNCTION, LOG FUNCTION AND HYPERGEOMETRIC FUNCTION

Salahuddin and Vinti
Department of Mathematics, PDM University, Bahadurgarh - 124507, Haryana, INDIA
E-mail : vsludn@gmail.com

(Received: Feb. 23, 2021 Accepted: May 12, 2021 Published: Jun. 30, 2021)
Abstract: In this paper, we aim to evaluate some definite integrals involving Bessel function and log function in terms of generalized hypergeometric functions.

Keywords and Phrases: Bessel Function, Hypergeometric Function, Pochhammer symbol.
2020 Mathematics Subject Classification: 33B30, 33C10,33C20.

1. Introduction

The following definite integral formulas are recalled (see, e.g., [3, p. 204, Entries 4.7.7-20 and 21]):

$$
\begin{gather*}
\int_{0}^{1} x \log x J_{0}^{2}(a x) d x=-\frac{1}{2}\left[J_{0}^{2}(a)+J_{1}^{2}(a)-\frac{1}{a} J_{0}(a) J_{1}(a)\right] . \tag{1.1}\\
\int_{0}^{1} x \log x J_{1}^{2}(a x) d x=\frac{1}{2 a^{2}}\left[1-\left(a^{2}+1\right) J_{0}^{2}(a)+a J_{0}(a) J_{1}(a)-a^{2} J_{1}^{2}(a)\right] . \tag{1.2}
\end{gather*}
$$

Bessel functions of the first kind, denoted as $J_{\alpha}(x)$, are solutions of Bessel's differential equation that are finite at the origin $(x=0)$ for integer or positive α, and diverge as x approaches zero for negative non-integer α (See[11]). It is possible to define the function by its Taylor series expansion around $x=0$.

$$
\begin{equation*}
J_{\alpha}(x)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\alpha+1)}\left(\frac{x}{2}\right)^{2 m+\alpha} \tag{1.3}
\end{equation*}
$$

