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1. Introduction

The theory of partial functional differential equations can be applied to many fields,
such as biology, population growth, engineering, control theory, physics and chem-
istry. Oscillation theory of differential equations originated by C. Sturm [20] in
1836, and for partial differential equations by P. Hartman and A. Wintner [7] in
1955. Pioneer work on oscillation of impulsive delay differential equations [6] was
published in 1989 and its results were included in monograph [8]. In 1991, the first
work done in [2] on impulsive partial differential equations.

Many authors studied the oscillation of partial differential equations with or
without impulsive neutral type, see [1,3-5,9-14,16-19,21,23-25,27] and monographs
[22,26]. To the best of our knowledge, there is little work reported on the oscillation
of second order impulsive partial functional differential equation with damping.
Motivated by this observation, in this paper we focus our attention on oscillation
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of forced nonlinear impulsive neutral partial differential equations with damping
term

∂

∂t

[
r(t)

∂

∂t
(u(x, t) + c(t)u(x, τ(t)))

]
+ p(t)

∂

∂t
(u(x, t) + c(t)u(x, τ(t)))

+q(x, t)f(u(x, t)) +
n∑
i=1

qi(x, t)fi(u(x, σi(t))) = a(t)h(u(x, t))∆u(x, t)

+
m∑
j=1

bj(t)hj(u(x, ρj(t)))∆u(x, ρj(t)) + g(x, t),

t 6= tk, (x, t) ∈ Ω× [0,+∞) ≡ G
u(x, t+k ) = αk (x, tk, u(x, tk)) ,
ut(x, t

+
k ) = βk (x, tk, ut(x, tk)) , t = tk, k = 1, 2, ....



(E)

with the boundary conditions

u = 0, (x, t) ∈ ∂Ω× [0,+∞) (B1)

∂u

∂γ
+ µ(x, t)u = 0, (x, t) ∈ ∂Ω× [0,+∞) (B2)

and the initial condition

u(x, t) = Φ(x, t),
∂u(x, t)

∂t
= Ψ(x, t), (x, t) ∈ Ω× [−δ, 0].

Here Ω ⊂ RN is a bounded domain with boundary ∂Ω smooth, ∆ is the Laplacian
in the Euclidean N -space RN and γ is a unit exterior normal vector of ∂Ω, δ =
max {τ(t), σi(t), ρj(t)}, Φ(x, t) ∈ C2 ([−δ, 0]× Ω,R), Ψ(x, t) ∈ C1 ([−δ, 0]× Ω,R),
µ(x, t) ∈ C (∂Ω× [0,+∞), [0,+∞)).

We assume that the following hypotheses (H) hold:

(H1) r(t) ∈ C1 ([0,+∞), (0,+∞)) , r′(t) ≥ 0, p(t) ∈ C([0,+∞),R),
∫ +∞
t0

1

R(s)
ds =

+∞, where R(t) = exp

(∫ t
t0

r′(s) + p(s)

r(s)
ds

)
, c(t) ∈ C2([0,+∞), [0,+∞)),

a(t), bj(t) ∈ PC([0,+∞), [0,+∞)), τ(t), σi(t), ρj(t) are positive constants,
q(x, t), qj(x, t) ∈ C

(
Ω̄× [0,+∞), [0,+∞)

)
, q(t) = min

x∈Ω̄
q(x, t), qi(t) = min

x∈Ω̄

qi(x, t), i = 1, 2, · · · , n, where PC denote the class of functions which are
piecewise continuous in t with discontinuities of first kind only at t = tk, k =
1, 2, · · · and left continuous at t = tk, k = 1, 2, · · · .
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(H2) h(u), hj(u) ∈ C1(R,R), f(u), fj(u) ∈ C(R,R) is convex in [0,+∞), uf(u) >

0 and f(u)
u
≥ ε > 0,

fj(u)

u
≥ εj > 0 are positive constant for u 6= 0, uh′(u) ≥

0, uh′j(u) ≥ 0, h(u)µ(x, t) ≥ 0, hj(u)µ(x, ρj(t)) ≥ 0, j = 1, 2, · · · ,m, 0 <

t1 < · · · < tk < · · · , lim
t→+∞

tk = +∞, g(x, t) ∈ PC
(
Ω̄× [0,+∞),R

)
,∫

Ω
g(x, t)dx ≤ 0.

(H3) u(x, t) and their derivatives ut(x, t) are piecewise continuous in t with dis-
continuities of first kind only at t = tk, k = 1, 2, · · · , and left continuous at
t = tk, u(x, tk) = u(x, t−k ), ut(x, tk) = ut(x, t

−
k ), k = 1, 2, · · · .

(H4) αk (x, tk, u(x, tk)) , βk (x, tk, ut(x, tk)) ∈ PC
(
[0,+∞)× Ω̄× R, R

)
, k =

1, 2, · · · , and there exist positive constants ak, a
∗
k, bk, b

∗
k with bk ≤ a∗k such

that for k = 1, 2, · · · ,

a∗k ≤
αk (x, tk, u(x, tk))

u(x, tk)
≤ ak,

b∗k ≤
βk (x, tk, ut(x, tk))

ut(x, tk)
≤ bk.

Let us construct the sequence {t̄k} = {tk} ∪ {tkτ} ∪ {tkσi} ∪
{
tkρj
}
, where

tkτ = tk + τ , tkσi = tk + σi, tkρj = tk + ρj and t̄k < t̄k+1, i = 1, 2, · · · , n, j =
1, 2, · · · ,m, k = 1, 2, · · · .

Definition 1.1. By a solution of problem (E), (B1) ((E), (B2)) with initial con-
dition, we mean that any function u(x, t) for which the following conditions are
valid:

(1) If −δ ≤ t ≤ 0, then u(x, t) = Φ(x, t),
∂u(x, t)

∂t
= Ψ(x, t).

(2) If 0 ≤ t ≤ t̄1 = t1, then u(x, t) coincides with the solution of the problem (E)
and (B1) ((B2)) with initial condition.

(3) If t̄k < t ≤ t̄k+1, t̄k ∈ {tk} \
(
{tkτ} ∪ {tkσi} ∪

{
tkρj
})

, then u(x, t) coincides
with the solution of the problem (E) and (B1) ((B2)).

(4) If t̄k < t ≤ t̄k+1, t̄k ∈ {tkτ}∪{tσi}∪
{
tkρj
}

, then u(x, t) satisfies (B1) ((B2))
and coincides with the solution of the problem.
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∂

∂t

[
r(t)

∂

∂t

(
u(x, t+) + c(t)u(x, (τ(t))+)

)]
+ p(t)

∂

∂t

(
u(x, t+) + c(t)u(x, (τ(t))+)

)
+ q(x, t)f(u(x, t+)) +

n∑
i=1

qi(x, t)fi(u(x, (σi(t))
+)) = a(t)h(u(x, t+))∆u(x, t+)

+
m∑
j=1

bj(t)hj(u(x, (ρj(t))
+))∆u(x, (ρj(t))

+) + g(x, t+), t 6= tk,

(x, t) ∈ Ω× [0,+∞) ≡ G

u(x, t̄+k ) = u(x, t̄k), ut(x, t̄
+
k ) = ut(x, t̄k), for t̄k ∈

(
{tkτ} ∪ {tkσi} ∪

{
tkρj
})
∩

{tk} ,
or
u(x, t̄+k ) = αks (x, t̄k, u(x, t̄k)) , ut(x, t̄

+
k ) = βks (x, t̄k, ut(x, t̄k)) ,

for t̄k ∈
(
{tkτ} ∪ {tkσi} ∪

{
tkρj
})
∩ {tk} .

Here the number ks is determined by the equality t̄k = tks .

We introduce the notations:

Γk = {(x, t) : t ∈ (tk, tk+1), x ∈ Ω} ; Γ = ∪∞k=0Γk,

Γ̄k =
{

(x, t) : t ∈ (tk, tk+1), x ∈ Ω̄
}

; Γ̄ = ∪∞k=0Γ̄k.

For each positive solution u(x, t) of (E), (B1) ((B2)), we associate the function
v(t) defined by

v(t) =

∫
Ω

u(x, t)dx, g0 = 1− c(t), g1 = 1− c(σi(t)).

Definition 1.2.The solution u ∈ C2(Γ) ∩ C1(Γ̄) of problem (E), (B1) ((B2)) is
called non-oscillatory in the domain G if it is either eventually positive or eventually
negative. Otherwise, it is called oscillatory.

This paper is organized as follows: Section 2, deals with the oscillatory prop-
erties of solutions for the problem (E) and (B1). In Section 3, we discuss the os-
cillatory properties of solutions for the problem (E) and (B2). Section 4 presents
some example to illustrate the main result.

2. Oscillation properties of the problem (E) and (B1)

To prove the main result, we need the following lemmas.
Lemma 2.1. Let u ∈ C2(Γ)∩C1(Γ̄) be a positive solution of the problem (E), (B1)
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in G, then function z(t) satisfies the impulsive differential inequality

[r(t)z′(t)]′ + p(t)z′(t) + εg0q(t)z(t) +
n∑
i=1

εig1qi(t)z(σi(t)) ≤ 0, t 6= tk

a∗k ≤
z(t+k )

z(tk)
≤ ak

b∗k ≤
z′(t+k )

z′(tk)
≤ bk, t = tk, k = 1, 2, ...


(2.1)

where z(t) = v(t) + c(t)v(τ(t)).
Proof Let u(x, t) be a positive solution of the problem (E), (B1) in G. Without
loss of generality, we may assume that there exists a T > 0, t0 > T such that
u(x, t) > 0, u(x, τ(t)) > 0, u(x, σi(t)) > 0, i = 1, 2, · · · , n, u(x, ρj(t)) > 0, j =
1, 2, · · · ,m for any (x, t) ∈ Ω× [t0,+∞).

For t ≥ t0, t 6= tk, k = 1, 2, · · · , integrating (E) with respect to x over the
domain Ω yields

d

dt

[
r(t)

d

dt

(∫
Ω
u(x, t)dx+

∫
Ω
c(t)u(x, τ(t))dx

)]
+p(t)

d

dt

(∫
Ω
u(x, t)dx+

∫
Ω
c(t)u(x, τ(t))dx

)
+
∫

Ω
q(x, t)f(u(x, t))dx+

n∑
i=1

∫
Ω
qi(x, t)fi(u(x, σi(t)))dx

=
∫

Ω
a(t)h(u(x, t))∆u(x, t)dx+

m∑
j=1

∫
Ω
bj(t)hj(u(x, ρj(t)))∆u(x, ρj(t))dx

+
∫

Ω
g(x, t)dx


(2.2)

By Green’s formula, and the boundary condition (B1), we have∫
Ω

h(u(x, t))∆u(x, t)dx =

∫
∂Ω

h(u(x, t))
∂u(x, t)

∂γ
dS −

∫
Ω

h′(u(x, t)) |grad u|2 dx

= −
∫

Ω

h′(u(x, t)) |grad u|2 dx ≤ 0, (2.3)

and for j = 1, 2, · · · ,m∫
Ω

hj(u(x, ρj(t)))∆u(x, ρj(t))dx =

∫
∂Ω

hj(u(x, ρj(t)))
∂u(x, ρj(t))

∂γ
dS

−
∫

Ω

h′j(u(x, ρj(t))) |grad u|2 dx

= −
∫

Ω

h′j(u(x, ρj(t))) |grad u|2 dx ≤ 0, (2.4)
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where dS is the surface element on ∂Ω. Moreover using Jensen’s inequality, from
(H2) and assumptions it follows that∫

Ω

q(x, t)f(u(x, t))dx ≥ q(t)

∫
Ω

f(u(x, t))dx

≥ εq(t)

∫
Ω

u(x, t)dx

≥ εq(t)v(t) (2.5)

and for i = 1, 2, · · · , n∫
Ω

qi(x, t)fi(u(x, σi(t)))dx ≥ εiqi(t)v(σi(t)). (2.6)

In view of (2.2)-(2.6), we obtain

d

dt

[
r(t)

d

dt
(v(t) + c(t)v(τ(t)))

]
+ p(t)

d

dt
(v(t) + c(t)v(τ(t))) + εq(t)v(t)+

n∑
i=1

εiqi(t)v(σi(t)) ≤ 0, t 6= tk.

Set z(t) = v(t) + c(t)v(τ(t)). Then

(r(t)z′(t))
′
+ p(t)z′(t) + εq(t)v(t) +

n∑
i=1

εiqi(t)v(σi(t)) ≤ 0, t 6= tk. (2.7)

It is easy to obtain that z(t) > 0 for t ≥ t0. Next we prove that z′(t) > 0 for t ≥ t1.
In fact assume the contrary, there exists T ≥ t1 such that z′(T ) ≤ 0.

(r(t)z′(t))
′
+ p(t)z′(t) ≤ 0, t ≥ t1

r(t)z′′(t) + (r′(t) + p(t)) z′(t) ≤ 0, t ≥ t1. (2.8)

From (H1), we have R′(t) = R(t)

(
r′(t) + p(t)

r(t)

)
and R(t) > 0, R′(t) ≥ 0 for

t ≥ t1. Thus we multiply
R(t)

r(t)
on both sides of (2.8), we have

R(t)z′′(t) +R′(t)z′(t) = (R(t)z′(t))
′ ≤ 0, t ≥ t1. (2.9)
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From (2.9), we have R(t)z′(t) ≤ R(T )z′(T ) ≤ 0, t ≥ T . Thus∫ t

T

z′(s)ds ≤
∫ t

T

R(T )z′(T )

R(s)
ds, t ≥ T

z(t) ≤ z(T ) +R(T )z′(T )

∫ t

T

ds

R(s)
, t ≥ T.

From the hypotheses (H1), we have lim
t→+∞

z(t) = −∞. This contradicts that z(t) >

0 for t ≥ 0. Thus z′(t) > 0 and τ(t) ≤ t for t ≥ t1, we have

v(t) = z(t)− c(t)v(τ(t))

v(τ(t)) = z(τ(t))− c(τ(t))v(τ(τ(t)))

v(t) = z(t)− c(t)z(τ(t))− c(t)c(τ(t))v(τ(τ(t)))

≥ z(t)(1− c(t))
v(t) ≥ g0z(t)

and

v(σi(t)) ≥ z(σi(t))(1− c(σi(t)))
v(σi(t)) ≥ g1z(σi(t)).

Therefore from (2.7), we have

(r(t)z′(t))
′
+ p(t)z′(t) + g0εq(t)z(t) +

n∑
i=1

g1εiqi(t)z(σi(t)) ≤ 0, t ≥ t1, t 6= tk.

For t ≥ t0, t = tk, k = 1, 2, · · · , integrating (E) with respect to x over the domain
Ω from (H4), we obtain

a∗k ≤
u(x, t+k )

u(x, t+k )
≤ ak, b∗k ≤

ut(x, t
+
k )

ut(x, tk)
≤ bk.

According to v(t) =
∫

Ω
u(x, t)dx, we have

a∗k ≤
v(t+k )

v(tk)
≤ ak, b∗k ≤

v′(t+k )

v′(tk)
≤ bk.

Because z(t) = v(t) + c(t)v(τ(t)), we obtain

a∗k ≤
z(t+k )

z(tk)
≤ ak, b∗k ≤

z′(t+k )

z′(tk)
≤ bk.
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Therefore z(t) is an eventually positive solution of (2.1). This contradicts the
hypothesis and completes the proof.

Lemma 2.1. Assume that

(A1) the sequence {tk} satisfies 0 < t0 < t1 < ..., lim
k→+∞

tk = +∞;

(A2) m(t) ∈ PC1[[0,+∞),R] is left continuous at tk for k = 1, 2, · · · ;

(A3) for k = 1, 2, · · · , and t ≥ t0,

m′(t) ≤ l(t)m(t) + q(t), t 6= tk,

m(t+k ) ≤ dkm(tk) + ek,

where l(t), q(t) ∈ C([0,+∞),R), dk ≥ 0 and ek are constants. PC denote the
class of piecewise continuous function from [0,+∞) to R, with discontinuities
of the first kind only at t = tk, k = 1, 2, · · · .

Then

m(t) ≤ m(t0)
∏

t0<tk<t

dkexp

(∫ t

t0

l(s)ds

)
+

∫ t

t0

∏
s<tk<t

dkexp

(∫ t

s

l(r)dr

)
q(s)ds

+
∑

t0<tk<t

∏
tk<tj<t

djexp

(∫ t

tk

l(s)ds

)
ek.

Proof The proof of the lemma can be found in [8].

Lemma 2.3. Let z(t) be an eventually positive (negative) solution of the differential
inequality (2.1). Assume that there exists T ≥ t0 such that z(t) > 0 (z(t) < 0) for
t ≥ T. If

lim
t→+∞

∫ t

t0

∏
t0<tk<s

b∗k
ak
ds = +∞ (2.10)

hold, then z′(t) ≥ 0 (z′(t) ≤ 0) for t ∈ [T, t`] ∪
(
∪+∞
k=`(tk, tk+1]

)
, where ` =

min {k : tk ≥ T} .
Proof The proof of the lemma can be found in [15].
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The following theorem is the main result of this paper.
Theorem 2.1. If condition (2.10), and the following condition holds,

lim
t→+∞

∫ t

t0

∏
t0<tk<l

a∗k
bk
r(tk) exp

(∫ t

l

p(s)

r(s)
ds

)
F (l)dl = +∞, (2.11)

where

F (l) =

εg0q(t) +
n∑
i=1

exp(−δw(t1))g1 εiqi(t)

r(t)
,

then every solution of the problem (E), (B1) oscillates in G.

Proof Let u(x, t) be a non-oscillatory solution of (E), (B1). Without loss of
generality, we can assume that there exists T > 0, t0 ≥ T, such that u(x, t) > 0,
u(x, σi(t)) > 0, i = 1, 2, · · · , n, u(x, ρj(t)) > 0, j = 1, 2, · · · ,m for any (x, t) ∈
Ω× [t0,∞). From Lemma (2.1), we know that z(t) is a positive solution of (2.1).

For t ≥ t0, t 6= tk, k = 1, 2, ..., define

w(t) = r(t)
z′(t)

z(t)
, t ≥ t0. (2.12)

From Lemma (2.3), we have w(t) ≥ 0, t ≥ t0, r(t)z′(t)−w(t)z(t) = 0. We may
assume that z(t0) = 1, thus in view of (2.1) we have that for t ≥ t0,

z(t) = exp

(∫ t

t0

w(s)ds

)
, (2.13)

z′(t) = w(t)exp

(∫ t

t0

w(s)ds

)
, (2.14)

we substitute (2.13)-(2.14) into (2.1) and obtain,

r′(t)w(t)exp

(∫ t

t0

w(s)ds

)
+ r(t)

[
w2(t)exp

(∫ t

t0

w(s)ds

)
+ w′(t)exp

(∫ t

t0

w(s)ds

)]
+ p(t)w(t)exp

(∫ t

t0

w(s)ds

)
+ g0εq(t)exp

(∫ t

t0

w(s)ds

)
+

n∑
i=1

g1εiqi(t)exp

(∫ σi(t)

t0

w(s)ds

)
≤ 0.
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Hence we have

r(t)w2(t) + r(t)w′(t) + p(t)w(t) + g0εq(t) +
n∑
i=1

g1εiqi(t)exp

(
−
∫ t

σi(t)

w(s)ds

)
≤ 0,

t 6= tk, or

r(t)w′(t) + p(t)w(t) + g0εq(t) +
n∑
i=1

g1εiqi(t)exp

(
−
∫ t

σi(t)

w(s)ds

)
≤ 0, t 6= tk.

From above inequality and condition bk ≤ a∗k, it is easy to see that the function
w(t) is non-increasing for t ≥ t1 ≥ δ + t0. Thus w(t) ≤ w(t1) for t ≥ t1 which
implies that

r(t)w′(t) + p(t)w(t) + g0εq(t) + exp (−δw(t1))
n∑
i=1

g1εiqi(t) ≤ 0, t 6= tk.

From (2.1), we obtain

w(t+k ) = r(t+k )
z′(t+k )

z(t+k )
≤ r(t+k )

bkz
′(tk)

a∗kz(tk)
= r(tk)

bk
a∗k
w(tk),

and

r(t)w′(t) ≤ −p(t)w(t)− g0εq(t)− exp (−δw(t1))
n∑
i=1

g1εiqi(t), t 6= tk.

w(t+k ) ≤ r(tk)
bk
a∗k
w(tk), k = 1, 2, ...

Let

−F (l) =

−g0εq(t)− exp (−δw(t1))
n∑
i=1

g1εiqi(t)

r(t)
.
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Then according to Lemma (2.2), we have

w(t) ≤ w(t0)
∏

t0<tk<t

r(tk)
bk
a∗k

exp

(∫ t

t0

p(s)

r(s)
ds

)
+

∫ t

t0

∏
l<tk<t

r(tk)
bk
a∗k

exp

(∫ t

l

p(s)

r(s)
ds

)
F (l)dl

=
∏

t0<tk<t

bk
a∗k

[
w(t0)r(tk) exp

(∫ t

t0

p(s)

r(s)
ds

)

−
∫ t

t0

∏
t0<tk<l

r(tk)
a∗k
bk

exp

(∫ t

l

p(s)

r(s)
ds

)
F (l)dl

]
< 0.

Since w(t) ≥ 0, the last inequality contradicts condition (2.11). This completes the
proof.

3. Oscillation properties of the problem (E) and (B2)

Next we consider the problem (E) and (B2). To prove our main result we need
the following lemma.

Lemma 3.1. Let u(x, t) ∈ C2(Γ) ∩ C1(Γ̄) be a positive solution of the problem
(E), (B2) in G. Then the function z(t) satisfies the impulsive differential inequality

[r(t)z′(t)]′ + p(t)z′(t) + εg0q(t)z(t) +
n∑
i=1

εig1qi(t)z(σi(t)) ≤ 0, t 6= tk

a∗k ≤
z(t+k )

z(tk)
≤ ak

b∗k ≤
z′(t+k )

z′(tk)
≤ bk, t = tk, k = 1, 2, ...


(3.1)

where z(t) = v(t) + c(t)v(τ(t)).

Proof Let u(x, t) be a positive solution of the problem (E), (B2) in G. Without
loss of generality, we may assume that there exists a T > 0, t0 > T such that
u(x, t) > 0, u(x, τ(t)) > 0, u(x, σi(t)) > 0, i = 1, 2, · · · , n, u(x, ρj(t)) > 0, j =
1, 2, · · · ,m for any (x, t) ∈ Ω× [t0,+∞).

For t ≥ t0, t 6= tk, k = 1, 2, · · · , integrating (E) with respect to x over the
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domain Ω yields

d

dt

[
r(t)

d

dt

(∫
Ω
u(x, t)dx+

∫
Ω
c(t)u(x, τ(t))dx

)]
+p(t)

d

dt

(∫
Ω
u(x, t)dx+

∫
Ω
c(t)u(x, τ(t))dx

)
+
∫

Ω
q(x, t)f(u(x, t))dx+

n∑
i=1

∫
Ω
qi(x, t)fi(u(x, σi(t)))dx

=
∫

Ω
a(t)h(u(x, t))∆u(x, t)dx+

m∑
j=1

∫
Ω
bj(t)hj(u(x, ρj(t)))∆u(x, ρj(t))dx

+
∫

Ω
g(x, t)dx.


(3.2)

By Green’s formula, and the boundary condition (B2), we have∫
Ω

h(u(x, t))∆u(x, t)dx =

∫
∂Ω

h(u(x, t))
∂u(x, t)

∂γ
dS −

∫
Ω

h′(u(x, t)) |grad u|2 dx

= −
∫
∂Ω

h(u(x, t))µ(x, t)udS −
∫

Ω

h′(u(x, t)) |grad u|2 dx

= −
∫

Ω

h′(u(x, t)) |grad u|2 dx ≤ 0, (3.3)

and for j = 1, 2, · · · ,m∫
Ω

hj(u(x, ρj(t)))∆u(x, ρj(t))dx =

∫
∂Ω

hj(u(x, ρj(t)))
∂u(x, ρj(t))

∂γ
dS

−
∫

Ω

h′j(u(x, ρj(t))) |grad u|2 dx

= −
∫
∂Ω

hj(u(x, ρj(t)))µ(x, ρj(t))u(x, ρj(t))dx

−
∫

Ω

h′j(u(x, ρj(t))) |grad u|2 dx

= −
∫

Ω

h′j(u(x, ρj(t))) |grad u|2 dx ≤ 0, (3.4)

where dS is the surface element on ∂Ω.
The proof is similar to that of Lemma (2.1) and therefore the details are omitted.
Using the above lemma, we prove the following oscillation result.

Theorem 3.2. If condition (2.10) and (2.11) hold. Then each solution of (E), (B2)
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oscillatory in G.

Proof The proof is similar to that of Theorem (2.1), and therefore the details are
omitted.

4. Example
In this section, we present an example to illustrate the main result.

Example 4.1. Consider the impulsive differential equation

∂

∂t

(
2t
∂

∂t

(
u(x, t) + 1

2
u(x, t− π

2
)
))

+ (−2)
∂

∂t

(
u(x, t) + 1

2
u(x, t− π

2
)
)

+
3

2
u(x, t) +

9π

2
u(x, t− 5π

2
) = 2t∆u(x, t) +

(
t− 9π

2

)
∆u(x, t− 9π

2
)

+ g(x, t), t 6= tk, k = 1, 2, 3, ....
u(x, t+k ) = k+1

k
u(x, tk)

ut(x, t
+
k ) = ut(x, tk), k = 1, 2, ....


(4.1)

for (x, t) ∈ (0, π)× [0,+∞), with the boundary condition

u(0, t) = u(π, t) = 0, t 6= tk, k = 1, 2, .... (4.2)

Here Ω = (0, π), ak = a∗k = k+1
k

, bk = b∗k = 1, k = 1, 2, .... r(t) = 2t, c(t) = 1
2
,

τ(t) = t − π
2
, p(t) = −2, q(t) = 3

2
, q1(t) = 9π

2
, f(u) = u, f1(u) = u, ε = 1,

σ1(t) = t − 5π
2

, i = 1, a(t) = 2, b1(t) = 1, h(u) = t, h1(u) = t − 9π
2

, j = 1,
ρ1(t) = t− 9π

2
, g(x, t) = 3

2
sinx cos t, and taking t0 = 1, tk = 2k, δ = 9π

2
, w(t1) = 2

9π
.

Also g0 = 1
2
, g1 = 1

2
, F (l) =

1

2l

(
3

2
+

9π

4e

)
, we see from the above assumption that

the (H1)− (H4) hold, moreover

lim
t→+∞

∫ t

t0

∏
t0<tk<s

b∗k
ak
ds =

∫ +∞

1

∏
1<tk<s

k

k + 1
ds

=

∫ t1

1

∏
1<tk<s

k

k + 1
ds+

∫ t2

t+1

∏
1<tk<s

k

k + 1
ds

+

∫ t3

t+2

∏
1<tk<s

k

k + 1
ds+

∫ t4

t+3

∏
1<tk<s

k

k + 1
ds+ ...

= 1 +
1

2
× 2 +

1

2
× 2

3
× 22 +

1

2
× 2

3
× 3

4
× 23 + ....

=
+∞∑
n=0

2n

n+ 1
= +∞
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so (2.10) holds. Thus

lim
t→+∞

∫ t

1

∏
1<tk<l

k + 1

k
(2tk) exp

(
−
∫ t

l

1

s
ds

){
1

2l

(
3

2
+

9π

4e

)}
dl = +∞.

Hence (2.11) holds. Therefore all conditions of Theorem (2.1) are satisfied. Hence
every solution of the problem (4.1), (4.2) oscillates in (0, π) × [0,+∞). In fact
u(x, t) = sin x cos t is one such solution of the problem (4.1) and (4.2).
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