OSCILLATION OF NONLINEAR NEUTRAL PARTIAL DIFFERENTIAL EQUATIONS WITH DAMPING TERM

V. Sadhasivam, T. Raja and B. Karthick
Post Graduate and Research Department of Mathematics, Thiruvalluvar Government Arts College, (Affiliated to Periyar University, Salem - 636 011) Rasipuram - 637 401, Namakkal Dt., Tamil Nadu, India.
E-Mail: ovsadha@gmail.com, trmaths19@gmail.com, karthick200vnr@gmail.com

Abstract

In this paper, we consider the oscillation of forced solutions of nonlinear impulsive neutral partial differential equations with damping term. Sufficient conditions are obtained for the oscillation of solutions using impulsive differential inequalities with two boundary conditions. Example is given to illustrate our main result.

Keywords and Phrases: Neutral partial differential equations, Oscillation, Impulse, Damping term.
2010 Mathematics Subject Classification: 35B05, 35L70, 35R10, 35R12.

1. Introduction

The theory of partial functional differential equations can be applied to many fields, such as biology, population growth, engineering, control theory, physics and chemistry. Oscillation theory of differential equations originated by C. Sturm [20] in 1836, and for partial differential equations by P. Hartman and A. Wintner [7] in 1955. Pioneer work on oscillation of impulsive delay differential equations [6] was published in 1989 and its results were included in monograph [8]. In 1991, the first work done in [2] on impulsive partial differential equations.

Many authors studied the oscillation of partial differential equations with or without impulsive neutral type, see [1,3-5,9-14,16-19,21,23-25,27] and monographs $[22,26]$. To the best of our knowledge, there is little work reported on the oscillation of second order impulsive partial functional differential equation with damping. Motivated by this observation, in this paper we focus our attention on oscillation
of forced nonlinear impulsive neutral partial differential equations with damping term

$$
\left.\begin{array}{l}
\frac{\partial}{\partial t}\left[r(t) \frac{\partial}{\partial t}(u(x, t)+c(t) u(x, \tau(t)))\right]+p(t) \frac{\partial}{\partial t}(u(x, t)+c(t) u(x, \tau(t))) \\
+q(x, t) f(u(x, t))+\sum_{i=1}^{n} q_{i}(x, t) f_{i}\left(u\left(x, \sigma_{i}(t)\right)\right)=a(t) h(u(x, t)) \Delta u(x, t) \\
+\sum_{j=1}^{m} b_{j}(t) h_{j}\left(u\left(x, \rho_{j}(t)\right)\right) \Delta u\left(x, \rho_{j}(t)\right)+g(x, t), \tag{E}\\
t \neq t_{k},(x, t) \in \Omega \times[0,+\infty) \equiv G \\
u\left(x, t_{k}^{+}\right)=\alpha_{k}\left(x, t_{k}, u\left(x, t_{k}\right)\right), \\
u_{t}\left(x, t_{k}^{+}\right)=\beta_{k}\left(x, t_{k}, u_{t}\left(x, t_{k}\right)\right), \quad t=t_{k}, \quad k=1,2, \ldots
\end{array}\right\}
$$

with the boundary conditions

$$
\begin{array}{rlrl}
u & =0, & (x, t) \in \partial \Omega \times[0,+\infty) \\
\frac{\partial u}{\partial \gamma}+\mu(x, t) u & =0, & & (x, t) \in \partial \Omega \times[0,+\infty) \tag{B2}
\end{array}
$$

and the initial condition

$$
u(x, t)=\Phi(x, t), \quad \frac{\partial u(x, t)}{\partial t}=\Psi(x, t), \quad(x, t) \in \Omega \times[-\delta, 0]
$$

Here $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with boundary $\partial \Omega$ smooth, Δ is the Laplacian in the Euclidean N-space \mathbb{R}^{N} and γ is a unit exterior normal vector of $\partial \Omega, \delta=$ $\max \left\{\tau(t), \sigma_{i}(t), \rho_{j}(t)\right\}, \Phi(x, t) \in C^{2}([-\delta, 0] \times \Omega, \mathbb{R}), \Psi(x, t) \in C^{1}([-\delta, 0] \times \Omega, \mathbb{R})$, $\mu(x, t) \in C(\partial \Omega \times[0,+\infty),[0,+\infty))$.

We assume that the following hypotheses (H) hold:
(H1) $r(t) \in C^{1}([0,+\infty),(0,+\infty)), r^{\prime}(t) \geq 0, p(t) \in C([0,+\infty), \mathbb{R}), \int_{t_{0}}^{+\infty} \frac{1}{R(s)} d s=$ $+\infty$, where $R(t)=\exp \left(\int_{t_{0}}^{t} \frac{r^{\prime}(s)+p(s)}{r(s)} d s\right), c(t) \in C^{2}([0,+\infty),[0,+\infty))$, $a(t), b_{j}(t) \in P C([0,+\infty),[0,+\infty)), \tau(t), \sigma_{i}(t), \rho_{j}(t)$ are positive constants, $q(x, t), q_{j}(x, t) \in C(\bar{\Omega} \times[0,+\infty),[0,+\infty)), q(t)=\min _{x \in \bar{\Omega}} q(x, t), q_{i}(t)=\min _{x \in \bar{\Omega}}$ $q_{i}(x, t), i=1,2, \cdots, n$, where PC denote the class of functions which are piecewise continuous in t with discontinuities of first kind only at $t=t_{k}, k=$ $1,2, \cdots$ and left continuous at $t=t_{k}, k=1,2, \cdots$.
(H2) $h(u), h_{j}(u) \in C^{1}(\mathbb{R}, \mathbb{R}), f(u), f_{j}(u) \in C(\mathbb{R}, \mathbb{R})$ is convex in $[0,+\infty), u f(u)>$ 0 and $\frac{f(u)}{u} \geq \epsilon>0, \frac{f_{j}(u)}{u} \geq \epsilon_{j}>0$ are positive constant for $u \neq 0, u h^{\prime}(u) \geq$ $0, u h_{j}^{\prime}(u) \geq 0, h(u) \mu(x, t) \geq 0, h_{j}(u) \mu\left(x, \rho_{j}(t)\right) \geq 0, j=1,2, \cdots, m, 0<$ $t_{1}<\cdots<t_{k}<\cdots, \lim _{t \rightarrow+\infty} t_{k}=+\infty, g(x, t) \in P C(\bar{\Omega} \times[0,+\infty), \mathbb{R})$, $\int_{\Omega} g(x, t) d x \leq 0$.
(H3) $u(x, t)$ and their derivatives $u_{t}(x, t)$ are piecewise continuous in t with discontinuities of first kind only at $t=t_{k}, \quad k=1,2, \cdots$, and left continuous at $t=t_{k}, u\left(x, t_{k}\right)=u\left(x, t_{k}^{-}\right), u_{t}\left(x, t_{k}\right)=u_{t}\left(x, t_{k}^{-}\right), k=1,2, \cdots$.
$(\mathrm{H} 4) \alpha_{k}\left(x, t_{k}, u\left(x, t_{k}\right)\right), \beta_{k}\left(x, t_{k}, u_{t}\left(x, t_{k}\right)\right) \in P C([0,+\infty) \times \bar{\Omega} \times \mathbb{R}, \mathbb{R}), \quad k=$ $1,2, \cdots$, and there exist positive constants $a_{k}, a_{k}^{*}, b_{k}, b_{k}^{*}$ with $b_{k} \leq a_{k}^{*}$ such that for $k=1,2, \cdots$,

$$
\begin{aligned}
& a_{k}^{*} \leq \frac{\alpha_{k}\left(x, t_{k}, u\left(x, t_{k}\right)\right)}{u\left(x, t_{k}\right)} \leq a_{k} \\
& b_{k}^{*} \leq \frac{\beta_{k}\left(x, t_{k}, u_{t}\left(x, t_{k}\right)\right)}{u_{t}\left(x, t_{k}\right)} \leq b_{k}
\end{aligned}
$$

Let us construct the sequence $\left\{\bar{t}_{k}\right\}=\left\{t_{k}\right\} \cup\left\{t_{k \tau}\right\} \cup\left\{t_{k \sigma_{i}}\right\} \cup\left\{t_{k \rho_{j}}\right\}$, where $t_{k \tau}=t_{k}+\tau, t_{k \sigma_{i}}=t_{k}+\sigma_{i}, t_{k \rho_{j}}=t_{k}+\rho_{j}$ and $\bar{t}_{k}<\bar{t}_{k+1}, i=1,2, \cdots, n, j=$ $1,2, \cdots, m, k=1,2, \cdots$.

Definition 1.1. By a solution of problem $(E),(B 1)((E),(B 2))$ with initial condition, we mean that any function $u(x, t)$ for which the following conditions are valid:
(1) If $-\delta \leq t \leq 0$, then $u(x, t)=\Phi(x, t), \frac{\partial u(x, t)}{\partial t}=\Psi(x, t)$.
(2) If $0 \leq t \leq \bar{t}_{1}=t_{1}$, then $u(x, t)$ coincides with the solution of the problem (E) and $(B 1)((B 2))$ with initial condition.
(3) If $\bar{t}_{k}<t \leq \bar{t}_{k+1}, \bar{t}_{k} \in\left\{t_{k}\right\} \backslash\left(\left\{t_{k \tau}\right\} \cup\left\{t_{k \sigma_{i}}\right\} \cup\left\{t_{k \rho_{j}}\right\}\right)$, then $u(x, t)$ coincides with the solution of the problem (E) and $(B 1)((B 2))$.
(4) If $\bar{t}_{k}<t \leq \bar{t}_{k+1}, \bar{t}_{k} \in\left\{t_{k \tau}\right\} \cup\left\{t_{\sigma_{i}}\right\} \cup\left\{t_{k \rho_{j}}\right\}$, then $u(x, t)$ satisfies $(B 1)((B 2))$ and coincides with the solution of the problem.

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[r(t) \frac{\partial}{\partial t}\left(u\left(x, t^{+}\right)+c(t) u\left(x,(\tau(t))^{+}\right)\right)\right]+p(t) \frac{\partial}{\partial t}\left(u\left(x, t^{+}\right)+c(t) u\left(x,(\tau(t))^{+}\right)\right) \\
& +q(x, t) f\left(u\left(x, t^{+}\right)\right)+\sum_{i=1}^{n} q_{i}(x, t) f_{i}\left(u\left(x,\left(\sigma_{i}(t)\right)^{+}\right)\right)=a(t) h\left(u\left(x, t^{+}\right)\right) \Delta u\left(x, t^{+}\right) \\
& +\sum_{j=1}^{m} b_{j}(t) h_{j}\left(u\left(x,\left(\rho_{j}(t)\right)^{+}\right)\right) \Delta u\left(x,\left(\rho_{j}(t)\right)^{+}\right)+g\left(x, t^{+}\right), \quad t \neq t_{k} \\
& (x, t) \in \Omega \times[0,+\infty) \equiv G
\end{aligned}
$$

$$
u\left(x, \bar{t}_{k}^{+}\right)=u\left(x, \bar{t}_{k}\right), u_{t}\left(x, \bar{t}_{k}^{+}\right)=u_{t}\left(x, \bar{t}_{k}\right), \text { for } \bar{t}_{k} \in\left(\left\{t_{k \tau}\right\} \cup\left\{t_{k \sigma_{i}}\right\} \cup\left\{t_{k \rho_{j}}\right\}\right) \cap
$$

$$
\left\{t_{k}\right\}
$$

or
$u\left(x, \bar{t}_{k}^{+}\right)=\alpha_{k_{s}}\left(x, \bar{t}_{k}, u\left(x, \bar{t}_{k}\right)\right), u_{t}\left(x, \bar{t}_{k}^{+}\right)=\beta_{k_{s}}\left(x, \bar{t}_{k}, u_{t}\left(x, \bar{t}_{k}\right)\right)$, for $\bar{t}_{k} \in\left(\left\{t_{k \tau}\right\} \cup\left\{t_{k \sigma_{i}}\right\} \cup\left\{t_{k \rho_{j}}\right\}\right) \cap\left\{t_{k}\right\}$.

Here the number k_{s} is determined by the equality $\bar{t}_{k}=t_{k_{s}}$.
We introduce the notations:

$$
\begin{array}{ll}
\Gamma_{k}=\left\{(x, t): t \in\left(t_{k}, t_{k+1}\right), x \in \Omega\right\} ; & \Gamma=\cup_{k=0}^{\infty} \Gamma_{k} \\
\bar{\Gamma}_{k}=\left\{(x, t): t \in\left(t_{k}, t_{k+1}\right), x \in \bar{\Omega}\right\} ; & \bar{\Gamma}=\cup_{k=0}^{\infty} \bar{\Gamma}_{k}
\end{array}
$$

For each positive solution $u(x, t)$ of $(E),(B 1)((B 2))$, we associate the function $v(t)$ defined by

$$
v(t)=\int_{\Omega} u(x, t) d x, \quad g_{0}=1-c(t), \quad g_{1}=1-c\left(\sigma_{i}(t)\right)
$$

Definition 1.2.The solution $u \in C^{2}(\Gamma) \cap C^{1}(\bar{\Gamma})$ of problem $(E),(B 1)((B 2))$ is called non-oscillatory in the domain G if it is either eventually positive or eventually negative. Otherwise, it is called oscillatory.

This paper is organized as follows: Section 2, deals with the oscillatory properties of solutions for the problem (E) and $(B 1)$. In Section 3, we discuss the oscillatory properties of solutions for the problem (E) and $(B 2)$. Section 4 presents some example to illustrate the main result.

2. Oscillation properties of the problem (E) and $(B 1)$

To prove the main result, we need the following lemmas.
Lemma 2.1. Let $u \in C^{2}(\Gamma) \cap C^{1}(\bar{\Gamma})$ be a positive solution of the problem $(E),(B 1)$
in G, then function $z(t)$ satisfies the impulsive differential inequality

$$
\begin{align*}
{\left[r(t) z^{\prime}(t)\right]^{\prime} \quad } & +p(t) z^{\prime}(t)+\epsilon g_{0} q(t) z(t)+\sum_{i=1}^{n} \epsilon_{i} g_{1} q_{i}(t) z\left(\sigma_{i}(t)\right) \leq 0, t \neq t_{k} \\
& a_{k}^{*} \leq \frac{z\left(t_{k}^{+}\right)}{z\left(t_{k}\right)} \leq a_{k} \tag{2.1}\\
& b_{k}^{*} \leq \frac{z^{\prime}\left(t_{k}^{+}\right)}{z^{\prime}\left(t_{k}\right)} \leq b_{k}, t=t_{k}, \quad k=1,2, \ldots
\end{align*}
$$

where $z(t)=v(t)+c(t) v(\tau(t))$.
Proof Let $u(x, t)$ be a positive solution of the problem $(E),(B 1)$ in G. Without loss of generality, we may assume that there exists a $T>0, t_{0}>T$ such that $u(x, t)>0, u(x, \tau(t))>0, u\left(x, \sigma_{i}(t)\right)>0, i=1,2, \cdots, n, u\left(x, \rho_{j}(t)\right)>0, j=$ $1,2, \cdots, m$ for any $(x, t) \in \Omega \times\left[t_{0},+\infty\right)$.

For $t \geq t_{0}, t \neq t_{k}, k=1,2, \cdots$, integrating (E) with respect to x over the domain Ω yields

$$
\begin{align*}
& \frac{d}{d t}\left[r(t) \frac{d}{d t}\left(\int_{\Omega} u(x, t) d x+\int_{\Omega} c(t) u(x, \tau(t)) d x\right)\right] \\
& +p(t) \frac{d}{d t}\left(\int_{\Omega} u(x, t) d x+\int_{\Omega} c(t) u(x, \tau(t)) d x\right) \\
& +\int_{\Omega} q(x, t) f(u(x, t)) d x+\sum_{i=1}^{n} \int_{\Omega} q_{i}(x, t) f_{i}\left(u\left(x, \sigma_{i}(t)\right)\right) d x \\
& =\int_{\Omega} a(t) h(u(x, t)) \Delta u(x, t) d x+\sum_{j=1}^{m} \int_{\Omega} b_{j}(t) h_{j}\left(u\left(x, \rho_{j}(t)\right)\right) \Delta u\left(x, \rho_{j}(t)\right) d x \\
& \quad+\int_{\Omega} g(x, t) d x \tag{2.2}
\end{align*}
$$

By Green's formula, and the boundary condition $(B 1)$, we have

$$
\begin{align*}
\int_{\Omega} h(u(x, t)) \Delta u(x, t) d x & =\int_{\partial \Omega} h(u(x, t)) \frac{\partial u(x, t)}{\partial \gamma} d S-\int_{\Omega} h^{\prime}(u(x, t))|\operatorname{grad} u|^{2} d x \\
& =-\int_{\Omega} h^{\prime}(u(x, t))|g r a d u|^{2} d x \leq 0 \tag{2.3}
\end{align*}
$$

and for $j=1,2, \cdots, m$

$$
\begin{align*}
\int_{\Omega} h_{j}\left(u\left(x, \rho_{j}(t)\right)\right) \Delta u\left(x, \rho_{j}(t)\right) d x & =\int_{\partial \Omega} h_{j}\left(u\left(x, \rho_{j}(t)\right)\right) \frac{\partial u\left(x, \rho_{j}(t)\right)}{\partial \gamma} d S \\
& -\int_{\Omega} h_{j}^{\prime}\left(u\left(x, \rho_{j}(t)\right)\right)|\operatorname{grad} u|^{2} d x \\
& =-\int_{\Omega} h_{j}^{\prime}\left(u\left(x, \rho_{j}(t)\right)\right)|\operatorname{grad} u|^{2} d x \leq 0 \tag{2.4}
\end{align*}
$$

where $d S$ is the surface element on $\partial \Omega$. Moreover using Jensen's inequality, from $(H 2)$ and assumptions it follows that

$$
\begin{align*}
\int_{\Omega} q(x, t) f(u(x, t)) d x & \geq q(t) \int_{\Omega} f(u(x, t)) d x \\
& \geq \epsilon q(t) \int_{\Omega} u(x, t) d x \\
& \geq \epsilon q(t) v(t) \tag{2.5}
\end{align*}
$$

and for $i=1,2, \cdots, n$

$$
\begin{equation*}
\int_{\Omega} q_{i}(x, t) f_{i}\left(u\left(x, \sigma_{i}(t)\right)\right) d x \geq \epsilon_{i} q_{i}(t) v\left(\sigma_{i}(t)\right) \tag{2.6}
\end{equation*}
$$

In view of (2.2)-(2.6), we obtain

$$
\begin{aligned}
\frac{d}{d t}\left[r(t) \frac{d}{d t}(v(t)+c(t) v(\tau(t)))\right] & +p(t) \frac{d}{d t}(v(t)+c(t) v(\tau(t)))+\epsilon q(t) v(t)+ \\
& \sum_{i=1}^{n} \epsilon_{i} q_{i}(t) v\left(\sigma_{i}(t)\right) \leq 0, \quad t \neq t_{k}
\end{aligned}
$$

Set $z(t)=v(t)+c(t) v(\tau(t))$. Then

$$
\begin{equation*}
\left(r(t) z^{\prime}(t)\right)^{\prime}+p(t) z^{\prime}(t)+\epsilon q(t) v(t)+\sum_{i=1}^{n} \epsilon_{i} q_{i}(t) v\left(\sigma_{i}(t)\right) \leq 0, \quad t \neq t_{k} \tag{2.7}
\end{equation*}
$$

It is easy to obtain that $z(t)>0$ for $t \geq t_{0}$. Next we prove that $z^{\prime}(t)>0$ for $t \geq t_{1}$. In fact assume the contrary, there exists $T \geq t_{1}$ such that $z^{\prime}(T) \leq 0$.

$$
\begin{align*}
\left(r(t) z^{\prime}(t)\right)^{\prime}+p(t) z^{\prime}(t) & \leq 0, \quad t \geq t_{1} \\
r(t) z^{\prime \prime}(t)+\left(r^{\prime}(t)+p(t)\right) z^{\prime}(t) & \leq 0, \quad t \geq t_{1} \tag{2.8}
\end{align*}
$$

From $(H 1)$, we have $R^{\prime}(t)=R(t)\left(\frac{r^{\prime}(t)+p(t)}{r(t)}\right)$ and $R(t)>0, \quad R^{\prime}(t) \geq 0$ for $t \geq t_{1}$. Thus we multiply $\frac{R(t)}{r(t)}$ on both sides of (2.8), we have

$$
\begin{equation*}
R(t) z^{\prime \prime}(t)+R^{\prime}(t) z^{\prime}(t)=\left(R(t) z^{\prime}(t)\right)^{\prime} \leq 0, \quad t \geq t_{1} \tag{2.9}
\end{equation*}
$$

From (2.9), we have $R(t) z^{\prime}(t) \leq R(T) z^{\prime}(T) \leq 0, t \geq T$. Thus

$$
\begin{array}{r}
\int_{T}^{t} z^{\prime}(s) d s \leq \int_{T}^{t} \frac{R(T) z^{\prime}(T)}{R(s)} d s, \quad t \geq T \\
z(t) \leq z(T)+R(T) z^{\prime}(T) \int_{T}^{t} \frac{d s}{R(s)}, \quad t \geq T
\end{array}
$$

From the hypotheses $(H 1)$, we have $\lim _{t \rightarrow+\infty} z(t)=-\infty$. This contradicts that $z(t)>$ 0 for $t \geq 0$. Thus $z^{\prime}(t)>0$ and $\tau(t) \leq t$ for $t \geq t_{1}$, we have

$$
\begin{aligned}
v(t) & =z(t)-c(t) v(\tau(t)) \\
v(\tau(t)) & =z(\tau(t))-c(\tau(t)) v(\tau(\tau(t))) \\
v(t) & =z(t)-c(t) z(\tau(t))-c(t) c(\tau(t)) v(\tau(\tau(t))) \\
& \geq z(t)(1-c(t)) \\
v(t) & \geq g_{0} z(t)
\end{aligned}
$$

and

$$
\begin{aligned}
& v\left(\sigma_{i}(t)\right) \geq z\left(\sigma_{i}(t)\right)\left(1-c\left(\sigma_{i}(t)\right)\right) \\
& v\left(\sigma_{i}(t)\right) \geq g_{1} z\left(\sigma_{i}(t)\right)
\end{aligned}
$$

Therefore from (2.7), we have

$$
\left(r(t) z^{\prime}(t)\right)^{\prime}+p(t) z^{\prime}(t)+g_{0} \epsilon q(t) z(t)+\sum_{i=1}^{n} g_{1} \epsilon_{i} q_{i}(t) z\left(\sigma_{i}(t)\right) \leq 0, \quad t \geq t_{1}, \quad t \neq t_{k}
$$

For $t \geq t_{0}, t=t_{k}, k=1,2, \cdots$, integrating (E) with respect to x over the domain Ω from (H4), we obtain

$$
a_{k}^{*} \leq \frac{u\left(x, t_{k}^{+}\right)}{u\left(x, t_{k}^{+}\right)} \leq a_{k}, \quad b_{k}^{*} \leq \frac{u_{t}\left(x, t_{k}^{+}\right)}{u_{t}\left(x, t_{k}\right)} \leq b_{k}
$$

According to $v(t)=\int_{\Omega} u(x, t) d x$, we have

$$
a_{k}^{*} \leq \frac{v\left(t_{k}^{+}\right)}{v\left(t_{k}\right)} \leq a_{k}, \quad b_{k}^{*} \leq \frac{v^{\prime}\left(t_{k}^{+}\right)}{v^{\prime}\left(t_{k}\right)} \leq b_{k}
$$

Because $z(t)=v(t)+c(t) v(\tau(t))$, we obtain

$$
a_{k}^{*} \leq \frac{z\left(t_{k}^{+}\right)}{z\left(t_{k}\right)} \leq a_{k}, \quad b_{k}^{*} \leq \frac{z^{\prime}\left(t_{k}^{+}\right)}{z^{\prime}\left(t_{k}\right)} \leq b_{k}
$$

Therefore $z(t)$ is an eventually positive solution of (2.1). This contradicts the hypothesis and completes the proof.

Lemma 2.1. Assume that
(A1) the sequence $\left\{t_{k}\right\}$ satisfies $0<t_{0}<t_{1}<\ldots, \lim _{k \rightarrow+\infty} t_{k}=+\infty$;
(A2) $m(t) \in P C^{1}[[0,+\infty), \mathbb{R}]$ is left continuous at t_{k} for $k=1,2, \cdots$;
(A3) for $k=1,2, \cdots$, and $t \geq t_{0}$,

$$
\begin{aligned}
m^{\prime}(t) & \leq l(t) m(t)+q(t), \quad t \neq t_{k}, \\
m\left(t_{k}^{+}\right) & \leq d_{k} m\left(t_{k}\right)+e_{k},
\end{aligned}
$$

where $l(t), q(t) \in C([0,+\infty), \mathbb{R}), d_{k} \geq 0$ and e_{k} are constants. PC denote the class of piecewise continuous function from $[0,+\infty)$ to \mathbb{R}, with discontinuities of the first kind only at $t=t_{k}, \quad k=1,2, \cdots$.

Then

$$
\begin{aligned}
m(t) & \leq m\left(t_{0}\right) \prod_{t_{0}<t_{k}<t} d_{k} \exp \left(\int_{t_{0}}^{t} l(s) d s\right)+\int_{t_{0}}^{t} \prod_{s<t_{k}<t} d_{k} \exp \left(\int_{s}^{t} l(r) d r\right) q(s) d s \\
& +\sum_{t_{0}<t_{k}<t t_{k}<t_{j}<t} d_{j} \exp \left(\int_{t_{k}}^{t} l(s) d s\right) e_{k} .
\end{aligned}
$$

Proof The proof of the lemma can be found in [8].
Lemma 2.3. Let $z(t)$ be an eventually positive (negative) solution of the differential inequality (2.1). Assume that there exists $T \geq t_{0}$ such that $z(t)>0(z(t)<0)$ for $t \geq T$. If

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{t_{0}}^{t} \prod_{t_{0}<t_{k}<s} \frac{b_{k}^{*}}{a_{k}} d s=+\infty \tag{2.10}
\end{equation*}
$$

hold, then $z^{\prime}(t) \geq 0\left(z^{\prime}(t) \leq 0\right)$ for $t \in\left[T, t_{\ell}\right] \cup\left(\cup_{k=\ell}^{+\infty}\left(t_{k}, t_{k+1}\right]\right)$, where $\ell=$ $\min \left\{k: t_{k} \geq T\right\}$.
Proof The proof of the lemma can be found in [15].

The following theorem is the main result of this paper.
Theorem 2.1. If condition (2.10), and the following condition holds,

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{t_{0}}^{t} \prod_{t_{0}<t_{k}<l} \frac{a_{k}^{*}}{b_{k}} r\left(t_{k}\right) \exp \left(\int_{l}^{t} \frac{p(s)}{r(s)} d s\right) F(l) d l=+\infty \tag{2.11}
\end{equation*}
$$

where

$$
F(l)=\frac{\epsilon g_{0} q(t)+\sum_{i=1}^{n} \exp \left(-\delta w\left(t_{1}\right)\right) g_{1} \epsilon_{i} q_{i}(t)}{r(t)}
$$

then every solution of the problem $(E),(B 1)$ oscillates in G.
Proof Let $u(x, t)$ be a non-oscillatory solution of (E), (B1). Without loss of generality, we can assume that there exists $T>0, t_{0} \geq T$, such that $u(x, t)>0$, $u\left(x, \sigma_{i}(t)\right)>0, i=1,2, \cdots, n, u\left(x, \rho_{j}(t)\right)>0, j=1,2, \cdots, m$ for any $(x, t) \in$ $\Omega \times\left[t_{0}, \infty\right)$. From Lemma (2.1), we know that $z(t)$ is a positive solution of (2.1).

For $t \geq t_{0}, t \neq t_{k}, k=1,2, \ldots$, define

$$
\begin{equation*}
w(t)=r(t) \frac{z^{\prime}(t)}{z(t)}, \quad t \geq t_{0} \tag{2.12}
\end{equation*}
$$

From Lemma (2.3), we have $w(t) \geq 0, t \geq t_{0}, r(t) z^{\prime}(t)-w(t) z(t)=0$. We may assume that $z\left(t_{0}\right)=1$, thus in view of (2.1) we have that for $t \geq t_{0}$,

$$
\begin{gather*}
z(t)=\exp \left(\int_{t_{0}}^{t} w(s) d s\right) \tag{2.13}\\
z^{\prime}(t)=w(t) \exp \left(\int_{t_{0}}^{t} w(s) d s\right) \tag{2.14}
\end{gather*}
$$

we substitute (2.13)-(2.14) into (2.1) and obtain,

$$
\begin{aligned}
r^{\prime}(t) w(t) \exp \left(\int_{t_{0}}^{t} w(s) d s\right) & +r(t)\left[w^{2}(t) \exp \left(\int_{t_{0}}^{t} w(s) d s\right)+w^{\prime}(t) \exp \left(\int_{t_{0}}^{t} w(s) d s\right)\right] \\
& +p(t) w(t) \exp \left(\int_{t_{0}}^{t} w(s) d s\right)+g_{0} \epsilon q(t) \exp \left(\int_{t_{0}}^{t} w(s) d s\right) \\
& +\sum_{i=1}^{n} g_{1} \epsilon_{i} q_{i}(t) \exp \left(\int_{t_{0}}^{\sigma_{i}(t)} w(s) d s\right) \leq 0
\end{aligned}
$$

Hence we have

$$
r(t) w^{2}(t)+r(t) w^{\prime}(t)+p(t) w(t)+g_{0} \epsilon q(t)+\sum_{i=1}^{n} g_{1} \epsilon_{i} q_{i}(t) \exp \left(-\int_{\sigma_{i}(t)}^{t} w(s) d s\right) \leq 0
$$

$t \neq t_{k}$, or

$$
r(t) w^{\prime}(t)+p(t) w(t)+g_{0} \epsilon q(t)+\sum_{i=1}^{n} g_{1} \epsilon_{i} q_{i}(t) \exp \left(-\int_{\sigma_{i}(t)}^{t} w(s) d s\right) \leq 0, t \neq t_{k}
$$

From above inequality and condition $b_{k} \leq a_{k}^{*}$, it is easy to see that the function $w(t)$ is non-increasing for $t \geq t_{1} \geq \delta+t_{0}$. Thus $w(t) \leq w\left(t_{1}\right)$ for $t \geq t_{1}$ which implies that

$$
r(t) w^{\prime}(t)+p(t) w(t)+g_{0} \epsilon q(t)+\exp \left(-\delta w\left(t_{1}\right)\right) \sum_{i=1}^{n} g_{1} \epsilon_{i} q_{i}(t) \leq 0, \quad t \neq t_{k}
$$

From (2.1), we obtain

$$
w\left(t_{k}^{+}\right)=r\left(t_{k}^{+}\right) \frac{z^{\prime}\left(t_{k}^{+}\right)}{z\left(t_{k}^{+}\right)} \leq r\left(t_{k}^{+}\right) \frac{b_{k} z^{\prime}\left(t_{k}\right)}{a_{k}^{*} z\left(t_{k}\right)}=r\left(t_{k}\right) \frac{b_{k}}{a_{k}^{*}} w\left(t_{k}\right)
$$

and

$$
\begin{aligned}
r(t) w^{\prime}(t) & \leq-p(t) w(t)-g_{0} \epsilon q(t)-\exp \left(-\delta w\left(t_{1}\right)\right) \sum_{i=1}^{n} g_{1} \epsilon_{i} q_{i}(t), \quad t \neq t_{k} \\
w\left(t_{k}^{+}\right) & \leq r\left(t_{k}\right) \frac{b_{k}}{a_{k}^{*}} w\left(t_{k}\right), \quad k=1,2, \ldots
\end{aligned}
$$

Let

$$
-F(l)=\frac{-g_{0} \epsilon q(t)-\exp \left(-\delta w\left(t_{1}\right)\right) \sum_{i=1}^{n} g_{1} \epsilon_{i} q_{i}(t)}{r(t)}
$$

Then according to Lemma (2.2), we have

$$
\begin{aligned}
w(t) & \leq w\left(t_{0}\right) \prod_{t_{0}<t_{k}<t} r\left(t_{k}\right) \frac{b_{k}}{a_{k}^{*}} \exp \left(\int_{t_{0}}^{t} \frac{p(s)}{r(s)} d s\right) \\
& +\int_{t_{0}}^{t} \prod_{l<t_{k}<t} r\left(t_{k}\right) \frac{b_{k}}{a_{k}^{*}} \exp \left(\int_{l}^{t} \frac{p(s)}{r(s)} d s\right) F(l) d l \\
& =\prod_{t_{0}<t_{t_{k}}<t} \frac{b_{k}}{a_{k}^{*}}\left[w\left(t_{0}\right) r\left(t_{k}\right) \exp \left(\int_{t_{0}}^{t} \frac{p(s)}{r(s)} d s\right)\right. \\
& \left.-\int_{t_{0}}^{t} \prod_{t_{0}<t_{k}<l} r\left(t_{k}\right) \frac{a_{k}^{*}}{b_{k}} \exp \left(\int_{l}^{t} \frac{p(s)}{r(s)} d s\right) F(l) d l\right]<0 .
\end{aligned}
$$

Since $w(t) \geq 0$, the last inequality contradicts condition (2.11). This completes the proof.

3. Oscillation properties of the problem (E) and (B2)

Next we consider the problem (E) and ($B 2$). To prove our main result we need the following lemma.
Lemma 3.1. Let $u(x, t) \in C^{2}(\Gamma) \cap C^{1}(\bar{\Gamma})$ be a positive solution of the problem $(E),(B 2)$ in G. Then the function $z(t)$ satisfies the impulsive differential inequality

$$
\begin{align*}
{\left[r(t) z^{\prime}(t)\right]^{\prime} } & +p(t) z^{\prime}(t)+\epsilon g_{0} q(t) z(t)+\sum_{i=1}^{n} \epsilon_{i} g_{1} q_{i}(t) z\left(\sigma_{i}(t)\right) \leq 0, \quad t \neq t_{k} \\
& a_{k}^{*} \leq \frac{z\left(t_{k}^{+}\right)}{z\left(t_{k}\right)} \leq a_{k} \\
& b_{k}^{*} \leq \frac{z^{\prime}\left(t_{k}^{+}\right)}{z^{\prime}\left(t_{k}\right)} \leq b_{k}, \quad t=t_{k}, \quad k=1,2, \ldots \tag{3.1}
\end{align*}
$$

where $z(t)=v(t)+c(t) v(\tau(t))$.
Proof Let $u(x, t)$ be a positive solution of the problem $(E),(B 2)$ in G . Without loss of generality, we may assume that there exists a $T>0, t_{0}>T$ such that $u(x, t)>0, u(x, \tau(t))>0, u\left(x, \sigma_{i}(t)\right)>0, i=1,2, \cdots, n, u\left(x, \rho_{j}(t)\right)>0, j=$ $1,2, \cdots, m$ for any $(x, t) \in \Omega \times\left[t_{0},+\infty\right)$.

For $t \geq t_{0}, t \neq t_{k}, k=1,2, \cdots$, integrating (E) with respect to x over the
domain Ω yields

$$
\begin{align*}
& \frac{d}{d t}\left[r(t) \frac{d}{d t}\left(\int_{\Omega} u(x, t) d x+\int_{\Omega} c(t) u(x, \tau(t)) d x\right)\right] \\
& +p(t) \frac{d}{d t}\left(\int_{\Omega} u(x, t) d x+\int_{\Omega} c(t) u(x, \tau(t)) d x\right) \\
& +\int_{\Omega} q(x, t) f(u(x, t)) d x+\sum_{i=1}^{n} \int_{\Omega} q_{i}(x, t) f_{i}\left(u\left(x, \sigma_{i}(t)\right)\right) d x \\
& =\int_{\Omega} a(t) h(u(x, t)) \Delta u(x, t) d x+\sum_{j=1}^{m} \int_{\Omega} b_{j}(t) h_{j}\left(u\left(x, \rho_{j}(t)\right)\right) \Delta u\left(x, \rho_{j}(t)\right) d x \\
& \quad+\int_{\Omega} g(x, t) d x \tag{3.2}
\end{align*}
$$

By Green's formula, and the boundary condition ($B 2$), we have

$$
\begin{align*}
\int_{\Omega} h(u(x, t)) \Delta u(x, t) d x & =\int_{\partial \Omega} h(u(x, t)) \frac{\partial u(x, t)}{\partial \gamma} d S-\int_{\Omega} h^{\prime}(u(x, t))|\operatorname{grad} u|^{2} d x \\
& =-\int_{\partial \Omega} h(u(x, t)) \mu(x, t) u d S-\int_{\Omega} h^{\prime}(u(x, t))|\operatorname{grad} u|^{2} d x \\
& =-\int_{\Omega} h^{\prime}(u(x, t))|\operatorname{grad} u|^{2} d x \leq 0 \tag{3.3}
\end{align*}
$$

and for $j=1,2, \cdots, m$

$$
\begin{align*}
\int_{\Omega} h_{j}\left(u\left(x, \rho_{j}(t)\right)\right) \Delta u\left(x, \rho_{j}(t)\right) d x & =\int_{\partial \Omega} h_{j}\left(u\left(x, \rho_{j}(t)\right)\right) \frac{\partial u\left(x, \rho_{j}(t)\right)}{\partial \gamma} d S \\
& -\int_{\Omega} h_{j}^{\prime}\left(u\left(x, \rho_{j}(t)\right)\right)|\operatorname{grad} u|^{2} d x \\
& =-\int_{\partial \Omega} h_{j}\left(u\left(x, \rho_{j}(t)\right)\right) \mu\left(x, \rho_{j}(t)\right) u\left(x, \rho_{j}(t)\right) d x \\
& -\int_{\Omega} h_{j}^{\prime}\left(u\left(x, \rho_{j}(t)\right)\right)|\operatorname{grad} u|^{2} d x \\
& =-\int_{\Omega} h_{j}^{\prime}\left(u\left(x, \rho_{j}(t)\right)\right)|\operatorname{grad} u|^{2} d x \leq 0 \tag{3.4}
\end{align*}
$$

where $d S$ is the surface element on $\partial \Omega$.
The proof is similar to that of Lemma (2.1) and therefore the details are omitted. Using the above lemma, we prove the following oscillation result.

Theorem 3.2. If condition (2.10) and (2.11) hold. Then each solution of (E), (B2)
oscillatory in G.
Proof The proof is similar to that of Theorem (2.1), and therefore the details are omitted.

4. Example

In this section, we present an example to illustrate the main result.
Example 4.1. Consider the impulsive differential equation

$$
\left.\begin{array}{c}
\frac{\partial}{\partial t}\left(2 t \frac{\partial}{\partial t}\left(u(x, t)+\frac{1}{2} u\left(x, t-\frac{\pi}{2}\right)\right)\right)+(-2) \frac{\partial}{\partial t}\left(u(x, t)+\frac{1}{2} u\left(x, t-\frac{\pi}{2}\right)\right) \\
+\frac{3}{2} u(x, t)+\frac{9 \pi}{2} u\left(x, t-\frac{5 \pi}{2}\right)=2 t \Delta u(x, t)+\left(t-\frac{9 \pi}{2}\right) \Delta u\left(x, t-\frac{9 \pi}{2}\right) \tag{4.1}\\
+g(x, t), \quad t \neq t_{k}, \quad k=1,2,3, \ldots \\
u\left(x, t_{k}^{+}\right)=\frac{k+1}{k} u\left(x, t_{k}\right) \\
u_{t}\left(x, t_{k}^{+}\right)=u_{t}\left(x, t_{k}\right), \quad k=1,2, \ldots
\end{array}\right)
$$

for $(x, t) \in(0, \pi) \times[0,+\infty)$, with the boundary condition

$$
\begin{equation*}
u(0, t)=u(\pi, t)=0, \quad t \neq t_{k}, \quad k=1,2, \ldots \tag{4.2}
\end{equation*}
$$

Here $\Omega=(0, \pi), a_{k}=a_{k}^{*}=\frac{k+1}{k}, b_{k}=b_{k}^{*}=1, k=1,2, \ldots r(t)=2 t, c(t)=\frac{1}{2}$, $\tau(t)=t-\frac{\pi}{2}, p(t)=-2, q(t)=\frac{3}{2}, q_{1}(t)=\frac{9 \pi}{2}, f(u)=u, f_{1}(u)=u, \epsilon=1$, $\sigma_{1}(t)=t-\frac{5 \pi}{2}, i=1, a(t)=2, b_{1}(t)=1, h(u)=t, h_{1}(u)=t-\frac{9 \pi}{2}, j=1$, $\rho_{1}(t)=t-\frac{9 \pi}{2}, g(x, t)=\frac{3}{2} \sin x \cos t$, and taking $t_{0}=1, t_{k}=2^{k}, \delta=\frac{9 \pi}{2}, w\left(t_{1}\right)=\frac{2}{9 \pi}$. Also $g_{0}=\frac{1}{2}, g_{1}=\frac{1}{2}, F(l)=\frac{1}{2 l}\left(\frac{3}{2}+\frac{9 \pi}{4 e}\right)$, we see from the above assumption that the $(H 1)-(H 4)$ hold, moreover

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \int_{t_{0}}^{t} \prod_{t_{0}<t_{k}<s} \frac{b_{k}^{*}}{a_{k}} d s= & \int_{1}^{+\infty} \prod_{1<t_{k}<s} \frac{k}{k+1} d s \\
= & \int_{1}^{t_{1}} \prod_{1<t_{k}<s} \frac{k}{k+1} d s+\int_{t_{1}^{+}}^{t_{2}} \prod_{1<t_{k}<s} \frac{k}{k+1} d s \\
& +\int_{t_{2}^{+}}^{t_{3}} \prod_{1<t_{k}<s} \frac{k}{k+1} d s+\int_{t_{3}^{+}}^{t_{4}} \prod_{1<t_{k}<s} \frac{k}{k+1} d s+\ldots \\
= & 1+\frac{1}{2} \times 2+\frac{1}{2} \times \frac{2}{3} \times 2^{2}+\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times 2^{3}+\ldots \\
= & \sum_{n=0}^{+\infty} \frac{2^{n}}{n+1}=+\infty
\end{aligned}
$$

so (2.10) holds. Thus

$$
\lim _{t \rightarrow+\infty} \int_{1}^{t} \prod_{1<t_{k}<l} \frac{k+1}{k}\left(2 t^{k}\right) \exp \left(-\int_{l}^{t} \frac{1}{s} d s\right)\left\{\frac{1}{2 l}\left(\frac{3}{2}+\frac{9 \pi}{4 e}\right)\right\} d l=+\infty
$$

Hence (2.11) holds. Therefore all conditions of Theorem (2.1) are satisfied. Hence every solution of the problem (4.1), (4.2) oscillates in $(0, \pi) \times[0,+\infty)$. In fact $u(x, t)=\sin x \cos t$ is one such solution of the problem (4.1) and (4.2).

References

[1] L.H. Deng, Y.M. Tan and Y.H. Yu, Oscillation criteria of solutions for a class of impulsive parabolic differential equation, Indian J. Pure Appl. Math., 33(2002), 1147-1153.
[2] L. Erbe, H. Freedman, X.Z. Liu and J.H. Wu, Comparison principles for impulsive parabolic equations with application to models of single species growth, J. Aust. Math. Soc., 32(1991), 382-400.
[3] X. Fu, X. Liu and S. Sivaloganathan, Oscillation criteria for impulsive parabolic differential equations with delay, J. Math. Anal. Appl., 268(2002), 647-664.
[4] X. Fu and L.J. Shiau, Oscillation criteria for impulsive parabolic boundary value problem with delay, Appl. Math. Comput., 153(2004), 587-599.
[5] X. Fu and L. Zhang, Forced oscillation for impulsive hyperbolic boundary value problems with delay, Appl. Math. Comput., 158(2004), 761-780.
[6] K. Gopalsamy and B.G. Zhang, On delay differential equations with impulses, J. Math. Anal. Appl., 139(1989), 110-122.
[7] P. Hartman and A. Wintner, On a comparison theorem for self-adjoint partial differential equations of elliptic type, Proc. Amer. Math. Soc., 6(1955), 862865.
[8] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Publishers, Singapore, 1989.
[9] A.P. Liu, Oscillation of the solutions of parabolic partial differential equations of neutral type, Acta Analysis Functionalis Applicate, 2(4)(2000), 376-381.
[10] A.P. Liu and S. Cao, Oscillation of the solutions of hyperbolic partial differential equations of neutral type, Chinese Quart. J. Math., $\mathbf{1 7}(2)(2002)$, 7-13.
[11] A.P. Liu and M.X. He, Oscillations of the solutions of nonlinear delay hyperbolic partial differential equations of neutral type, Appl. Math. Mech., 23(6)(2002), 678-685.
[12] A.P. Liu, T. Liu and M. Zou, Oscillation of nonlinear impulsive parabolic differential equations of neutral type, Rocky Mountain J. Math., 41(3)(2011), 833-850.
[13] A.P. Liu, L. Xiao and T. Liu, Oscillations of the solutions of hyperbolic partial functional differential equations of neutral type, Acta Analysis Functionalis Applicate, 4(1)(2002), 69-74.
[14] A.P. Liu, L. Xiao, T. Liu and M. Zou, Oscillation of nonlinear impulsive hyperbolic equation with several delays, Rocky Mountain J. Math., 37(5)(2007), 1669-1684.
[15] J.W. Luo, Oscillation of hyperbolic partial differential equations with impulses, Appl. Math. Comput, 133(2/3)(2002), 309-318.
[16] Q.X. Ma and A.P. Liu, Oscillation criteria of neutral type impulsive hyperbolic equations, Acta Math. Sci., 34B(6)(2014), 1845-1853.
[17] V. Sadhasivam, J. Kavitha and T. Raja, Forced oscillation of nonlinear impulsive hyperbolic partial differential equation with several delays, Journal of Applied Mathematics and Physics, 3(2015), 1491-1505.
[18] V. Sadhasivam, J. Kavitha and T. Raja, Forced oscillation of impulsive neutral hyperbolic differential equations, International Journal of Applied Engineering Research, 11(1)(2016), 58-63.
[19] V. Sadhasivam, T. Raja and T. Kalaimani, Oscillations of nonlinear impulsive neutral functional hyperbolic equations with damping, International Journal of Pure and Applied Mathematics, 106(8)(2016), 187-197.
[20] C. Sturm, Sur les équations différentielles linéaires du second ordre, J. Math. Pure Appl., 1(1836), 106-186.
[21] P.G. Wang, Y. Wu and L. Caccetta, Forced oscillation of a class of neutral hyperbolic differential equations, J. Comput. Appl. Math., 177(2005), 301308.
[22] J.H. Wu, Theory of Partial Functional Differential Equations and Applications, Springer, New York, 1996.
[23] J.R. Yan, Oscillation properties of solutions for impulsive delay parabolic equations, Acta Math. Sinica, 47(2004), 579-586 (in Chinese).
[24] J.R. Yan and C.H. Kou, Oscillation of solutions of impulsive delay differential equations, J. Math. Anal. Appl., 254(2001), 358-370.
[25] J. Yang, A.P. Liu and G. Liu, Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with several delays, Elect. J. Differ. Equ., 2013(27)(2013), 1-10.
[26] N. Yoshida, Oscillation Theory of Partial Differential Equations, World Scientific, Singapore, 2008.
[27] Q. Zhao and W.A. Liu, Oscillation of solution of a class of impulsive delay neutral hyperbolic equation, Journal of Mathematics, 26(5)(2006), 563-568.

