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Abstract: The efficiency of the pathway idea in modeling heterogeneous real-life data
is illustrated in this paper. Usually mixture models are used for modeling heterogeneous
data. Here we introduce a finite mixture of two pathway Weibull models, denoted by
WM, (or ;WM or W,M). Properties of this new model are examined and identifiability
is proved. Some important special cases of WM, are given. Stress-strength reliability is
found by using the Mellin convolution technique. With the help of a real heterogeneous
data set, it is shown that the proposed model fits the data better than all other popular
modecls in the literature.
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1- Introduction :

Mixed failure populations are commonly encountered in life testing, reliability and qual-
ity control problems. A mixture model is a compounding of statistical distributions,
which arise when sampling is done from heterogeneous populations with a different
probability density function in each component. It has been considered for long-time as
a flexible and powerful statistical modeling technique, especially to account for unob-
served heterogencity. Applications of mixture models arc common in physics, biology,
medicine, economics, finance and insurance among others. These models provide a
framework not only for heterogeneous population but also a rationale for some thick-
tailed distributions.

Mixture models received considerable attention in the area of survival analysis and
reliability. In many real-life applications, the use of mixture models becomes inevitable
when the data are not available for each component of the mixture rather for the
overall mixture as described in Everitt and Hand (1981). In life-testing and reliability
cstimation problems, the underlying failure time distribution need not be homogencous
but can be a mixture of several distinct lifetime distributions. Each of these distinct
lifetime distributions can represent a different type of cause of failure for the population.
For instance, we assume that the survival function of treated cancer patients is a mixture
of two sub populations; one which die due to their disease with a given proportion and
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the rest die of other reasons with a complementary proportion. For a recent review
on finite mixtures and their applications, see Al-Hussaini and Sultan (2001) and the
references therein.

Finite mixture distributions have provided a mathematically based approach to the
statistical modeling of a wide variety of random phenomena. They consist of a weighted
sum of standard distributions and are useful tools for reliability analysis of a heteroge-
neous population. They provide the necessary flexibility to model failure distributions
of components with multiple failure modes. Mixture distributions are mostly used to
model heterogeneous survival data sets (Aalen, (1992) Angelis et al., (1999) Al-Hussaini
et al., (2000)) and have been successfully applied in the field of astronomy, biology, ge-
netics, medicine, economics, engineering etc. These distributions provide the basis for
models in which a random variable has a distribution of a particular form, but one
or more of the parameters therein may be random. Mixture distributions have been
extensively considered by many authors (Titterington et al., (1985), Maclachlan and
Peel, (2000), Sultan ct al., (2007)).

The pathway Weibull model which is a special case of Mathai’s pathway model
(Mathai, (2005)), has wide range of applications in modeling of survival and life-time
data. It smoothly interpolates the Weibull and g-exponential densities which makes
the pathway Weibull model more fat-tailed than the Weibull distribution. Costa et al.
(2006) show that in the study of dielectric breakdown in oxides of electronic devices,
a pathway Weibull model gives a good fit for the data. The various properties and
applications of the pathway Weibull model are discussed in Naik (2008). When obser-
vations arc taken from a possibly heterogencous population, a simple Weibull model
or a pathway Weibull model may not always be appropriate and in that situation we
need to consider the mixture models. The motivation for a mixture of pathway Weibull
model is that this model can move from one functional form to another through the
pathway parameter q. The density function of a pathway Weibull random variable is
given by L
aX*(2 — @)z L+ (¢ — D)(Ax)e] 7T
0, otherwise

fi(zahg) = { 1)

forx >0, a>0,A>0,1<¢g<2.
For g < 1, fi(z; a, A, ¢) reduces to the following density function of the pathway Weibull
random variable:

folzia, N q) = { ax¥(2 - Q)xail[l —(1— Q)(/\:C)O‘}%q )

0, otherwise

for0 <z < 0 L T a >0, A>0. Clearly when ¢ — 1. fi(x;, A, q), fa2(z;a, A, q) tend
e

to the usual Weibull density with two parameters a and A. In this paper we consider
the case 1 < ¢ < 2.

In the remainder of this paper we introduce a finite mixture of two pathway Weibull
models denoted by WM, and discuss its statistical properties. Some special cases and
an application in the area of stress-strength analysis is given in this chapter. Finally,
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we apply the WM, to a heterogeneous survival real data set and compare it with the
modecls that arc commonly used for survival analysis.

2- Mixture model and its properties :

In this section, we introduce the density function of a finite mixture of two pathway
Weibull models (WM,) and discuss some of its properties:
The mixture of two pathway Weibull models has its pdf given by

mfi(x; ) + (1 —m)faa;9), 0<m <1, 22>0
0, otherwise

o) = { 3
where ©; = {1,992} = {ay, N, ¢}, 1=1,2, and f;(x;1);) is the density function of the
1th component given by:

QX (2~ a1+ (g~ ()] T
0, otherwise

filzy i, iy q) = { (4)

forx >0,0;, >0, \; >0,1<g<2andi=1,2.
For ¢ < 1, the mixture model has the density

g (z; ) + (1 —m)ga(x5909), 0 <m <1, 0<a < (—r + —2—+
g(z31) = M(1-)3T  da(l1—q)32

0, otherwisc

where ¥; = {1, ¥} = {ai, i, ¢}, 1=1,2 and g;(x; ;) is the density function of the ith
component given by:

1

QA (2= a1 = (1 = ¢)(Niw) ™|
0, otherwise

gi(z; 04, Niyq) = { (5)

for0<oz<—— 0;>0,\,>0,g<landi=12.

/\i(l—q) &
The graphs of f(x; 1) along with their components for different values of the parameters
are given in the following Figure 1:

—

i
1
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Figure 1 - Density functions: components and their mixture with parameters = =
0.5, a1 = 15, Oy = 3, /\1 = 3, /\2 = 35 q = 1.5.

Figure 2 - Graph of f(z) for (i): m = 0.5, a; =2, ap = 2.5, \y = 1, Ay = 1.5, (ii):
™ = 05, Q= 7, Qg — 75, )\1 — 03, )\2 = 0.9.

Figure 2 (i) and (ii) show the density curves of f(z;1)) for selected values of the
paramcters «;, A;, ©« = 1,2 and for sclected values of the pathway paramcter ¢. From
the graphs it is clear that we can model both thicker and thinner tailed curves and
bimodal densities by simply varying the pathway parameter g.

The cumulative distribution function of the WM, is given by

Fa;¢) = aFy(ws 1) + (1 = m) Fa(asy), 0 <m <1 (6)
where
Filw) =1—[1+(g— 1)) 5, i=1,2, 2>0, a, >0, \; >0, L < g < 2. (7)

2.1 Moments

The s*" moment of the WM, is given by

) q _
Bl (M)s(g — 1) *! I'(=)
o G-g  TEAIEGE-2-1)
o >(A2)s(q — 1)t NG ’ ®)

O<m<l,op>0,X>0,¢>1,1=12 min{—a} < R(s) < min{%} where
R(.) denotes the real part of (.).

From (8), the explicit expressions for the mean and variance of the WM, can easily be
derived.
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2.2 Reliability and failure rate functions

The reliability function (survival function) of the WM, is given by

R(z) = Pr{system survives beyond a time x}
= 1—F(x) =a[(1+ (g = DA2)™)]&= + (1) x
(14 (g = D (pz)*)]er (9)

forx >0, a; >0, \; >0, 1<¢g<2, 0<nm<1,i=1,2.
By using (3) and (9), the failure rate (hazard rate) function of the WM, is given by the
following relation:

2
3 mah® (2 - g)a ML+ (g — D))
- . (10)

zfmu+<q—1X&m%ﬁ%

where m; >0, m +m =1, a;,\; >0, 1 <g<2,1=1,2.
The hazard function, for different values of the parameter is given in the following
figures.

T
0 10 20 30 40 50 60 70 80 90 100

(i)
Figure 3 - Hazard function of the WM, with parameters m = m, = 0.5,0q4 = 3,0 =
4,0 = 4.5, )y = 5.5.
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From Al-Hussaini and Sultan (2001) we have

H(x) = h(z)Hy(x) + (1 — h(z))Hs(x) (11)
where h(z) = W, Hi(z) = éi((?y Ri(z)=[(14+(¢— 1)(/\i;p)af)]3%f7 i=1,2.

Ry ()
Then failure rate function given in (10) satisfies the following limits.

Lemma 2.1

pmpH ) =0
and

:Elggo H(z) =0.
Proof. We have H;(r) = £15, i=1,2.
Then

a9 _ ar—1 1 -1 ay _q+
[1+ (g — D) (Agz)or]a
a1(2 —q) ai(2 —q)
= : = . — (13)

(¢ =Dzl + gopamer] (@ D2+ ymgeeT

When z — 0, the denominator in (13) tends to infinity, so

lim Hy(z) = 0. Similarly 1111(1) Hy(z) = 0.
z—

z—0

Now counsider

. 1
il_r% s 1+ lim —(1 = ™) Ra()
a0 wRi(x)

= 7.
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Then from (11), it can be shown that

lim H(z) = 0.

x—0

Again we have % > 0= h(z) < oo. Also from (13), it can be shown that when

r — 00 the denominator tends to oo, so

lim H(z)=0.

T—r20

Hence the proof.

3- Identifiability :

Identifiability gives a unique representation for a class of mixtures. KEstimation of
parameters and testing hypotheses about a mixture distribution can be meaningfully
discussed only if the family of mixing distributions is identifiable. Identifiability of mix-
tures may be found in several papers, including Teicher (1963), Yakowitz and Spragins
(1968), Al-Hussaini and Ahmad (1981), Kent (1983), Ahmad (1988). We prove the
identifiability of WM, by using the following theorem of Chandra (1977).

Theorem 3.1 (Chandra 1977): Let there be associated with each F; € ® a transform
¢; having the domain of definition Dy, and suppose that the mapping M : F;, — ¢, is
linear. Suppose also that there exists a total ordering (<) of ® such that

(1) I\ < Fy (Fy, Py € @) implies Dy, C Dy,

(1) for each F; € ®, there exists some sy € Dy, , ¢1(s) # 0 such that limg_,s, ¢o(8)/1(s) =
0 fOT F1 S F2 (Fl,FQ € CI))

Then the class A of all finite mixing distributions is identifiable relative to P.

By using the above theorem we prove the following Proposition.

Proposition 3.1 The class of all finite mizing distributions relative to the pathway
Weibull model is identifiable.

Proof. Let x be a random variable having the density function and distribution function
given in (4), (7) respectively. Then the s moment of the i'" pathway Weibull model
is given by

(2—q) (g +DI oY
Mg — 1)t P(7=) ’

S
=] =
iy

min{—a;} < R(s) < min{%}, i=1,2, 1 <¢ <2, a;, A\ >0.From (7) we have

Fy < Fy when oy = s and A\; < Xy for 2 >0 (14)
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and
< F, when \; = Xy and a; < ay for z > 0. (15)
Now let Dy, (s) = (—o0, a(1q(i;1)) and Dy, (s) = (—o0, a(zq(i;z)) Since a < a, from (14)

and (15), we have Dy, (s) C Dy, (s) and

2-q DE+DGH-=-1)

lim ¢i(s) = lim - — 00 (16)
S SO0 A (g — 1) L)

Similarly, when A\; = Ay and oy < ap, we have

2-¢ TDE+IIGE-5-1)

lim @y(s) = lim — R >0 (17)
s 2 sl A% (g — 1) M)
From (16) and (17), we have

Hence by Theorem 3.1 the identifiability of WM, is proved.

4- Special Cases :

The following known mixture models are particular cases of WMN,:

4.1 Exponential-Weibull mixture

If g— 1, oy =1, the WM, reduces to

The” M) (1— ﬂ)agAgzxa2—1e—(Azz)a2
0, otherwise

fa(@; U3) = {

for A\; > 0, ap > 04 = 1,2. This exponential-Weibull model was considered and studied
by Erisoglu et al. (2011) in their work on mixture model of two different distributions
approach to model heterogencous survival data. They illustrated that the mixture of
different distributions is the appropriate model for the heterogeneous survival times.
They proposed three models and among them one was the exponential-Weibull mixture.
They have successfully applied the exponential-Weibull model for modeling failure times
of oral irrigators dataset.

4.2 Weibull-Weibull mixture
If ¢ = 1, the WM, reduces to

Ta A p e MB™ (1 — m)ag\yrpee e~ (Mee)™

0, otherwise

Jalw; Wy) = {
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for a; > 0. \; > 0, ¢ = 1,2. This Weibull-Weibull model was considered by Jiang
and Murthy (1995). They characterized the 2-fold Weibull mixture models in terms
of the Weibull probability plotting, and cxamined the graphical plotting approach to
determine if a given data set can be modeled by such models.

4.3 Exponential-Exponential mixture
Ifg—1, oy =1, and ay = 1, the WM, reduces to

77'/\1()7()\1‘%) + (1 — W)/\QCi(/\Zw)
0, otherwise

fs(z; Ws) = {

for \; > 0, ¢ = 1,2. This cxponential-cxponential model was considered by Jaheen
(2005) in connection with the problem of estimating the parameters of the finite mixture
of two exponential distributions based on record statistics. They used the maximum
likelihood method and Bayces method of estimation for estimating the parameters. They
have also given a comparison of the Bayes estimates with their corresponding maximum
likelihood estimates based on a Monte Carlo simulation study.

4.4 Rayleigh-Rayleigh mixture
If ¢ =1, =2, and oy = 2, the WM, reduces to

21\ 2re M1)® L 9(1 — m) Ny we (M22)
0, otherwise

Jo(a; We) = {

for A\; > 0, i = 1,2. This Rayleigh-Rayleigh model was studied by Soliman (2006) for
solving the problem of estimating the parameters and some lifetime parameters such
as reliability and hazard functions using progressively type-II censored samples from
a heterogeneous population. They used both classical and Bayesian approach and a
comparison between the estimates obtained by these two methods is also given.

5- Application in stress-strength analysis :

Let Y represent the strength of a component which is subject to a stress X, then
R = Pr{X < Y} is the measure of system performance or reliability of the system
which arises in the context of mechanical reliability. The system fails if and only if at
any time the applied stress is greater than its strength. More details on stress-strength
analysis can be found in Kotz et al. (2007).

Let X and Y be independently and identically distributed as WM, with parameters
(a1, as , A1, Ag, q). Also let f{(.) and f3(.) be the probability density functions of X,
Y and Fi(.) and Fy(.) be the corresponding distribution functions.Then

R=pPrix<v)= [ [ fi@sednd
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where A is the wedge product discussed in Mathai (1997).
= R= /OOO Fi(y)f3 (y)dy,
where F1(y) = w1 — [1+ (¢ — D(Ap)™ |55 + (1 - ) [1 [t (g 1><A2y>a2]3—ﬂ y>
0, a; >0, \; >0, 1<g<?2, i=1,2.
Ro= [T s @ Dm0 @ 00w | e
= 1= [ [Fere - o i - 00w 4y
- /OOO (1 mPasg2(2 — gy L+ (g - 1)(Azy)aﬂz_ﬂ dy

- /0°° _Wg(l — A (2 = @y 1+ (g = D(\y)TEIL+ (¢ — 1)(Azy)“2]3;f] dy

- /O‘X’ (0 Mg (2~ [+ (- Du)™] BT (0 1)(,\1y)“1]3_3] dy
= 1- []1:"[2+]3+I4]

where I, Is, I3. I, are the first, second, third and fourth integrals respectively. By
direct integration we get

2 1—m)?
11:?and12:( 2)

The integrals I3 and I, can be integrated by using the Mellin Convolution technique.
Counsider

Iy = m(1 = m)a1AT' (2 —q) /OOO {y‘“l[l + (= D)™ T+ (g — 1) (Aay)™] 1 | dy

The integrand can be taken as a product of two integrable functions. Consider the
transformation u = ;—‘ and v = T, where 1 and x5 be two independently distributed
real scalar positive random variables with density functions hy(z;) and hg(zs).

u = % = x; = wv and x = v, dx; A dzs = vdu A dv. Then the joint density of v and
v is g(u,v) = vhy(uv)hg(v). Now the marginal density of u, denoted by g(u) is given
by g1(u) = [, vhy(uv)hy(v)dv. Let

() = 4 @l (@ = D)= E, o 20 1< <2
0, otherwise

and

h (fE ) _ CQ$20172(1 + (q - 1)(A1x2)m1)7{]1j7 Ty, A, A1 2 0: 1< q < 27
s 0, otherwise
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where ¢; and ¢, are normalizing constants. Then

g1(u) = (31(32/ v 1+ (g — 1)(/\17))0‘1)_4%1[1 +(q— 1)(7/,7))”2]%(17), w= Xy (19)
0

Now
. M - 2)
Bz = o / 2 L+ (g — Do) dey = — A o
0 as(q—1)°2 (=)
2 —
0<R(s) < 22— 4q) and
qg—1
E(zy™) = 02/ ™ N1+ (g — 1)()\11’2)041)7‘11_1(1‘%2
0
B 0 P1— 2P +2-1)
o (A)1=s(g = 1)’ 7 (=)
-2
% < R(s) < a.
Now
E@w"') = E(z) )E(z; %)
_ C1C2 F(Q;Z)F(Z:(f - a%) NG ail)r(qul + ail - 1)
alag)\lo‘“s(q — 1)17&_14»(‘;—2 F(i;(lz) F(ﬁ) ’
2(2—-q) (¢—2)u ,
0<R(s) < 1 o1 <R(s) < .

Now the density of u is obtained by the inverse Mellin transform. The detailed existence
conditions for Mellin and Inverse Mellin transtorms are available in Mathai (1993). Thus

€1Co 1 /CHOO [ S 2—q s S
W) = — P rE—L - Zpa - 2y
gl( ) a1a2Alo¢1 (q B l)r((i:(l])r(qil) i i (QQ) (q 1 O[Q) ( a )( )
1 5 u -
M(——+—— ds|,
(q—l 3 )(Al(q—l)(;1 —a%)) ]

@(2—q) (¢—2)y
g—1 7~ q—1

0<R(s) <

Equating (19) and (20) we get
ren [0 g = DO L+ (g = D] =

cres 1 /CHOO [p(i)p(ﬂ g - i)p(# + 2 1) x

arep @1 (q- )0 (=4 0(Ly) 2w

—100
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U —S8
omz=m) «|
a(2-q) (¢-2)m
-1 " q-1

= [T = D)) L (- D

0<R(s) < < R(s) < 3.

- L < 132 | )
O[la/g)\lm (q — 1)1“(;:1)1“((1%) ’ )\1((] — 1)( ) (0, _) (—%:01)

1
1 wy g
a; >0, Ay >0, ay >0, 1 <q <2, wherell(.)denotes the H-function (see Mathai and
Saxena (1978)).

m(1-7)(2—q) 22 1 (22,19, (0,1)
Then I3 = H e, 3V g >0,
' = ey DPED(D) 2 N - DT - D)l e |

AM >0, >0 1<qg<?2.

Proceeding in the same way we get,
1 (24—3, 1 , (0’1_)

m(l—7)(2—q) 29{ —Toar }
5 H5 ql al,q 02 ,(1/1>0, /\2>0,
arla - DTEDTCE) 22 [Nalg= D = 2) (00 G

ay >0, 1<g<2.

I

Substituting the values of Iy, I. I3, and I, we get,

m(1-m(2—-q
(q— DT ()

1H22 1 (L) 05 ngg 1 (=), 0
2,2 Xo(q — 1)L T m) 0.2%). (=4 7,;2> ay 2?2 Al(q—l)(;—ﬂ—L) 05 e ||

ap >0, A\ >0, ag >0, /\2>O, 1<g<2.

X

1
R = P?’{X<Y}:§+7T(1—7T)—

6- Data Analysis :

The data used in this section is the fatigue lives data set which consists of 25 specimens
of two different types listed in ascending order (Ling and Pan, 1998). The pdf of Weibull
model, pathway Weibull model, lognormal model and WM, are applied to the data. A
graphical comparison of the fitted empirical cumulative distribution function (cdf) with
cdf of the Weibull model, pathway Weibull model, lognormal model and the WM, for
fatiguc lives data arc given in Figure 5(ii). Histogram of the data is given in Figure 5(i).
Keeping the parameters w, a;, A;, i = 1,2 fixed. by using the method of moments, the
estimate of the pathway parameter ¢ is obtained as follows:

G = 1.57434.
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The graphical representation shown in Figure 5(ii) clearly shows that the WM, is
the best representation of the sample data among these models. We calculated the
Kolmogorov-Smirnov (K-S) statistic for these four different probability models. For
Weibull model, the value of K-S statistic is obtained as 0.1737. For the lognormal
model, the value of the statistic is 0.1343, for the pathway Weibull model, the value of
the K-S statistic is 0.1582 and for the WM, the value is 0.0200. The table value of the
K-S statistic for n = 25 and a significance level of 0.05 is 0.270. All the four models
are consistent with the data. But the distance measure of the statistic of WM, is less
than that of the other three probability models which can be clearly understood from
the figurc. Hence we can conclude that our new model fits the data better than the
other three. Here, the mathematical software MATLAB is used for the data analysis.

Spvimen Fuigne Life ( 1 ) Specinen Fatgue Lfe (100,000 Cycles) (11)

Figure 5 - (i): Histogram of the data. (ii): A comparison of the theoretical cdfs of
failure and the observed failure probability for different densities.

Conclusions :

In this paper, we illustrate the efficiency of pathway idea in modeling heterogeneous
real data sets through a finite mixture of two pathway Weibull models (WM,) and
discuss some of its statistical properties. We made a path from the WM, for obtaining
some known mixture models that exists in the literature. In addition, the identifiability
property of the WM, is proved. A theorem which is useful in stress-strength analysis
is also given. Further, a comparison study which shows the efficiency of the new model
over the existing ones in the literature is demonstrated through graphs.
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