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Relationship between g-Weyl operator and basic analogue of I-function
in preview of g-Laplace transform
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Abstract: The g-derivatives and g-integrals are part of so called quantum calculus
[1]. In this paper, we investigate how such derivatives and integrals can be possi-
ble used in establishing a formula exhibiting relationship between basic analogue of
q-Weyl operator and g-Laplace transform, which allows the straight forward deriva-
tion of some useful results involving Weyl operator and basic analogue of I-function
in terms of g-gamma function [2]. Also some special cases has been discussed.
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Introduction:

The fractional g-calculus is the g-extension of the ordinary fractional calculus.
The subject deals with the investigations of g-integrals and g-derivatives of arbi-
trary order and has gained importance due its various applications in the areas
like ordinary fractional calculus, solution of the g-differential and g-integral equa-
tions, g-transform analysis [4,5 and 6]. Motivated by these avenues of applications,
a number of workers have made use of these operators to evaluate fractional -
calculus, basic analogue of H-function, basic analogue of I-function, general class
of g-polynomials etc. Al-Salam [7,8] introduced the g-analogue of Weyl fractional
integral operator in the following manner.
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