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Abstract: In this paper we have established certain reduction and product formulae for basic
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1. Introduction, Notations and Definitions

As usual, let for any positive integer n,
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and
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we define a generalized basic or g-hypergeometric series as,
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where ¢ # 0 and r < s+ 1.
The series (1.1) converges absolutely for all z, if » < s and for |z| < 1if r =s+ 1.
Following Agrawal and Verma [1], we define the bibasic hypergeometric series as,

(@): (0 ] _ g [@); lal0); gluzg 12
(b{ (0): (d); } 2 [(¢); ¢]n(d); q]n ’ (12)

where (a) stands for the sequence of parameters ay,az, ...,a4.

The series (1.2) converges for all values of x if A > 0 and when A = 0, we require the additional
convergence condition |z| < 1.

We shall make use of the following identity in our analysis

ZZA(TL,T) = Z Aln +r,r). (1.3)
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