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Abstract:

This is a brief survey of theory of hypergeometric series with particular emphasis on es-
tablishing some transformation formula in hypergeometric series using Laplace transform and
Pochamar’s integral.
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Notations and Known results -

An infinite series of the form Z
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(2n) (bn) z" is known as ordinary hypergeometric series. It
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Where a,b and ¢ are real or complex parameters and z is an argument with |z| < 1 and
(an) =ala+1)(a+2)...(a+n—1).

is denoted as o F[a, b; ¢; z]. So,

The Pochamer integral is given by
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For Re(b) > 0 and Re(c —a —b) > 0.
The integral (2) gives o Ffa,bic; 1] = Hof(c—a—-b) (3)
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This is known as gauss Summation formula. The restriction Re(b) > 0 is not necessary for
this formula to hold. Gauss [1813] used one of his contiguous relation to prove (3) is hold if
Re(c—a—1b) > 0.
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This is simply an alternative form of the discrete binomial formula.
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